
MAT 311 Introduction to Number Theory

Problem Set 3

Some solutions

Problem 1. Prove that a square of an integer cannot end by two odd digits (in decimal
notation).

Solution. Write n = 10a+b, with 0 ≤ b < 9, then n2 = 100a2 +20ab+b2. The first term,
100a2, ends in two zeroes; the second ends in 0 and has an even digit in the tens place.
Thus n2 can only end in two odd digits if both digits in b2 are odd. Looking at squares of
all numbers from 0 to 9, we see that this never happens. (We can reduce the number of
cases by looking at 1,3,5,7 and 9 only, as an even b would contribute an even last digit.

Problem 2. For n integer, prove that if the last digit of n2 is 5, then n2 ends by 25 (in
decimal notation).

Solution. If the last digit of n2 is 5, 5|n2 and so 5|n (by prime decomposition theorem,
for example: if 5 doesn’t appear in prime decomposition of n, it won’t appear in n2). Then
n = 5k, and k must be odd, for otherwise 10|n and n2 ends in 0. So n = 5(2a+1) = 10a+5,
and n2 = 100a2 + 100a + 25 ends in 25.

Problem 3. Prove the following criterion for divisibility by 11: a natural number is
congruent modulo 11 to an alternating sum of its digits. ”Alternating” means taken with
alternating signs, + for the units, − for tens, + for hundreds, etc. (Example: 123456 ≡
−1 + 2 − 3 + 4 − 5 + 6 mod 11.)

Solution. A number with digits anan−1 . . . a2a1a0 equals to an10n + an−110
n−1 + · · · +

a210
2 +a110+a0 and is congruent to ±an ∓an−1 · · ·+a2 −a1 +a0 since 10 ≡ −1 mod 11

and so 10n ≡ 1 for n even, 10n ≡ −1 for n odd (because we can multiply congruences and
take powers).

Problem 4. Let f(x) be a polynomial with integer coefficients, f(x) = anxn+an−1x
n−1+

· · · + a1x + a0. Suppose we are looking for (integer) solutions of a congruence f(x) ≡ b

mod m. Show that if two numbers are congruent mod m, and one is a solution, then the
other is also a solution.

Solution. This follows from the fact that we can add congruences and multiply them.

Problem 5. Let f(x), g(x) be polynomials with integer coefficients, p prime. Suppose
f(x) ≡ 0 mod p has exactly k solutions (in the sense of Problem 4) while g(x) ≡ 0 mod p

has none. Show that f(x)g(x) ≡ 0 mod p has exactly k solutions. Is the same true if p is
not prime?

Solution. In plain language, solutions for f(x)g(x) ≡ 0 mod p are the residues x such
that p divides the product f(x)g(x). Given that p is prime and never divides g(x), x

can only be a solution if p|f(x), so x must be among k solutions of f(x) ≡ 0 mod p.
Obviously, all of those solutions satisfy f(x)g(x) ≡ 0 mod p.


