Problem Set 1

Solutions to a few questions

Problem 2. Prove that for every integer n

- (a) $n^2 n$ is divisible by 2
- (b) $n^3 n$ is divisible by 6

(c) $n^2 + 2$ is not divisible by 4

Solution. (a) Observe that $n^2 - n = n(n-1)$ and note that one of the numbers n and n-1 is always even, thus the product is even.

(b) Observe that $n^3 - n = n(n^2 - 1) = (n - 1)n(n + 1)$. Again, either n is even or n - 1 (and n + 1) is even, so the product is even. Now, n can be written as n = 3k, n = 3k + 1 or n = 3k + 2; it follows that 3 divides one of the numbers n - 1, n or n + 1. Since (n - 1)n(n + 1) is divisible by 2 and 3, it is divisible by 6 (why?)

(c) Consider two cases, n odd and n even, ie n = 2k or n = 2k + 1. In the first case $n^2 + 2 = 4k^2 + 2$, in the second $n^2 + 2 = (2k+1) + 2 = 4k^2 + 4k + 3$, and neither is divisible by 4.

Problem 4. Prove that (a, a + 2) = 1 or 2 for every integer a.

Solution. For the shortest proof, use the property gcd(a,b) = gcd(a,b-an) for any integer *n*. Then gcd(a, a+2) = gcd(a, a+2-a) = gcd(a, 2) cannot be greater than 2. (It equals to 2 if *a* even, 1 if *a* is odd).

Problem 6.

(a) Show that there are no prime triplets, that is primes p, p+2, p+4, other than 3,5, and 7.

(b) Find all prime p such that $p^2 + 1$ is also prime.

(c) Find all prime p such that $p^2 + 2$ is also prime.

Solution. (a) Unless 3 divides p (in which case p = 3, p + 2 = 5, p + 4 = 7 are all prime), we have p = 3k + 1 or p = 3k + 2. In the first case p + 2 = 3k + 3 is divisible by 3 and cannot be prime since k > 0, in the second case p + 4 = 3k + 6 > 3 is divisible by 3 and cannot be prime.

(b) Most prime numbers are odd. If p is odd, p^2 is also odd, and then $p^2 + 1$ is even. Because p > 1, $p^2 + 1 > 2$, and an even number greater than 2 cannot be prime. So p has to be even, then p = 2 (and $p^2 + 1 = 5$ is also prime).

(c) Unless p = 3 (which gives $p^2 + 2 = 11$, also a prime), p is not divisible by 3, so p = 3k + 1 or p = 3k + 2. In the first case $p^2 + 2 = 9k^2 + 6k + 1 + 2 = 9k^2 + 6k + 3 = 3(3k^2 + 2k + 1)$, in the second $p^2 + 2 = 9k^2 + 12k + 4 + 2 = 9k^2 + 12k + 6 = 3(3k^2 + 4k + 2)$, both are divisible by 3 and can't be prime (since they are greater than 3).