MAT 311, Homework 7 due 10/25

1. Compute the Legendre symbol to determine whether the following congruences have solutions. Note that 227 and 1009 are prime.
(a) $x^{2} \equiv-7 \bmod 227$;
(b) $x^{2} \equiv 11 \bmod 41$;
(c) $x^{2} \equiv 54 \bmod 1009$.
2. Find all primes p such that the congruence $x^{2} \equiv 10 \bmod p$ has solutions.
3. (a) Show that there exist infinitely many positive integers n which cannot be written as a sum of three squares,

$$
n=x^{2}+y^{2}+z^{2}
$$

Note: In class, we proved Fermat's theorem (2.15, section 2.1) describing which integers can be represented as a sum of two squares. The complete answer for the sum of three squares is also known. A theorem of Lagrange says that every integer can be represented as a sum of four squares.
(b) Determine (with proof) what integers can be written as a difference of two squares, $n=x^{2}-y^{2}$. This is much easier than the sum of squares!
4. Find all integer solutions of the following equations. Use basic divisibility and modular arithmetics.
(a) $3 x^{2}+2=y^{2}$;
(b) $2 x^{2}+y^{2}=8 t+13$.
5. Using Pythagorean triples, prove that the equation $x^{2}+y^{2}=z^{4}$ has infinitely many integer solutions where x, y, and z share no common divisors $d>1$.
6. Find all the integer solutions of the equation

$$
x^{2}+y^{2}+z^{2}=2 x y z
$$

Hint: Determine whether x, y, z can be odd or even. For positive integers, use the method of descent.
7. Show that the equation $x^{3}=3 y^{3}+9 z^{3}$ has no solutions where x, y, and z are positive integers.
(Optional challenge (do not submit): Mimic some of the steps in the proof of Fermat's theorem (Lemmas 2.13 and 2.14, Theorem 2.15) in Section 2.1 to solve questions 56-60 in section 2.1 and determine which integers can be represented in the form $n=a^{2}+2 b^{2}$.

