Tritangent circles to a generic curve

September 22, 2015
Pre-history

For a circle generically immersed to the plane
Pre-history

For a circle generically immersed to the plane

$\#(\overbrace{\quad\quad\quad}^{\text{a}}) - \#(\overbrace{\quad\quad\quad}^{\text{a}}) = \#(\overbrace{\quad\quad\quad}^{\text{a}}) + \frac{1}{2}\#(\overbrace{\quad\quad\quad}^{\text{a}})$
Pre-history

For a circle generically immersed to the plane

\[
\text{#}(\text{---}) - \text{#}(\text{---}) = \text{#}(\text{--}) + \frac{1}{2} \text{#}(\text{--})
\]

Fabricius-Bjerre formula (1962):

\[
e - i = n + \frac{1}{2} f
\]
Pre-history

For a circle generically immersed to the plane

\[
\#(\xrightarrow{\text{triangle}}) - \#(\xrightarrow{\text{disk}}) = \#(\xrightarrow{\text{circle}}) + \frac{1}{2}\#(\xrightarrow{\text{point}})
\]

Fabricius-Bjerre formula (1962):

\[
e - i = n + \frac{1}{2}f
\]

Ferrand splitted this formula (1997):

\[
e^+ - i^+ = J^+ + w^2 - 1 + \frac{1}{2}f
\]

\[
e^- - i^- = -J^- - w^2 + 1,
\]

where \(w \) is the Whitney number and \(J^\pm \) are the Arnold invariants.
Pre-history

For a circle generically immersed to the plane

\[\#(\overrightarrow{\text{---}}) - \#(\overrightarrow{\text{---}}) = \#(\overrightarrow{\text{---}}) + \frac{1}{2}\#(\overrightarrow{\text{---}})\]

Fabricius-Bjerre formula (1962):

\[e - i = n + \frac{1}{2}f\]

Ferrand splitted this formula (1997):

\[e^+ - i^+ = J^+ + w^2 - 1 + \frac{1}{2}f\]

\[e^- - i^- = -J^- - w^2 + 1,\]

where \(w\) is the Whitney number and \(J^\pm\) are the Arnold invariants.

In pictograms:

\[\#(\overrightarrow{\text{---}}) - \#(\overrightarrow{\text{---}}) = J^+ + w^2 - 1 + \frac{1}{2}\#(\overrightarrow{\text{---}})\]

\[\#(\overrightarrow{\text{---}}) - \#(\overrightarrow{\text{---}}) + \#(\overrightarrow{\text{---}}) - \#(\overrightarrow{\text{---}}) = -J^- - w^2 + 1\]
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)

The harmonic extension for a function of faces.
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)

The harmonic extension for a function of faces.
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)

The harmonic extension for a function of faces.
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)

The harmonic extension for a function of faces.
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)

The harmonic extension for a function of faces.

Denote by \(i_v \) the value on a vertex \(v \) of the harmonic extension of the winding number.
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)

The harmonic extension for a function of faces.

\[
\begin{align*}
 j + 1 & \quad j \\
 i_f = j & \quad j - 1
\end{align*}
\]

Denote by \(i_v \) the value on a vertex \(v \) of the harmonic extension of the winding number.
Winding numbers

Winding numbers of faces: \(f \mapsto i_f \in \mathbb{Z} \)

\[
\begin{array}{cccc}
0 & 1 & 2 & 1 \\
1 & 0 & 1 & -1 \\
1 & 0 & -1 & 1 \\
1 & -1 & 1 & 0 \\
-1 & 1 & 0 & 1 \\
1 & -1 & 0 & 1 \\
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & 1 \\
1 & -1 & 0 & 1 \\
1 & -1 & 0 & 1 \\
\end{array}
\]

The harmonic extension for a function of faces.

\[j + 1 \]
\[i_v = j \]
\[i_f = j \]

Denote by \(i_v \) the value on a vertex \(v \)

of the harmonic extension of the winding number.
Formulas for J^\pm
Formulas for J^\pm

$$J^- = 1 - \sum_f i_f^2 + \sum_v i_v^2$$
Formulas for J^\pm

$$J^- = 1 - \sum_f i_f^2 + \sum_v i_v^2$$

$$J^+ = 1 + n - \sum_f i_f^2 + \sum_v i_v^2$$
Formulas for J^\pm

\[J^- = 1 - \sum_f i_f^2 + \sum_v i_v^2 \]

\[J^+ = 1 + n - \sum_f i_f^2 + \sum_v i_v^2 = 1 - \sum_f i_f^2 + \sum_v (1 + i_v^2) \]
Formulas for J^\pm

$$J^- = 1 - \sum_f i_f^2 + \sum_v i_v^2$$

$$J^+ = 1 + n - \sum_f i_f^2 + \sum_v i_v^2 = 1 - \sum_f i_f^2 + \sum_v (1 + i_v^2)$$

$$\omega = \sum_f i_f - \sum_v i_v$$
Formulas for J^\pm

$$J^− = 1 − \sum_f i_f^2 + \sum_v i_v^2$$

$$J^+ = 1 + n − \sum_f i_f^2 + \sum_v i_v^2 = 1 − \sum_f i_f^2 + \sum_v (1 + i_v^2)$$

$$w = \sum_f i_f − \sum_v i_v$$

$$e^+ − i^+ = \sum_f i_f^2 − \sum_v (1 + i_v^2) + w^2 + \frac{1}{2} f$$

$$e^− − i^− = \sum_v i_v^2 − \sum_f i_f^2 − w^2$$
Formulas for J^\pm

\[
J^- = 1 - \sum_f i_f^2 + \sum_v i_v^2
\]

\[
J^+ = 1 + n - \sum_f i_f^2 + \sum_v i_v^2 = 1 - \sum_f i_f^2 + \sum_v (1 + i_v^2)
\]

\[
w = \sum_f i_f - \sum_v i_v
\]

\[
e^+ - i^+ = \sum_f i_f^2 - \sum_v (1 + i_v^2) + w^2 + \frac{1}{2} f
\]

\[
e^- - i^- = \sum_v i_v^2 - \sum_f i_f^2 - w^2
\]

Extra splitting of e^\pm, i^\pm, J^\pm and n.
Planar circles

The space of circles on \mathbb{R}^2
Planar circles

\[\{ \text{The space of circles on } \mathbb{R}^2 \} = \mathbb{R}^3_0 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}. \]
Planar circles

\[\{ \text{The space of circles on } \mathbb{R}^2 \} = \mathbb{R}^3_{>0} = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}. \]
Planar circles

\[
\{\text{The space of circles on } \mathbb{R}^2 \} = \mathbb{R}_>^3 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}.
\]

Circles tangent to a fixed line at a fixed point form two rays:
Planar circles

\[\{ \text{The space of circles on } \mathbb{R}^2 \} = \mathbb{R}^3_0 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}. \]

Circles tangent to a fixed line at a fixed point form two rays:

Circles tangent to a curve form a surface:
Circles tangent to a curve

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2.
Circles tangent to a curve

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2.

The surface T_1 of all circles tangent to γ, a big wave front in $\mathbb{R}_{>0}^3$.
Circles tangent to a curve

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2.

The surface T_1 of all circles tangent to γ, a big wave front in $\mathbb{R}^3_{>0}$.

Osculating circles form the caustic T_2, a cuspidal edge of T_1.
Circles tangent to a curve

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2.

The surface T_1 of all circles tangent to γ, a big wave front in $\mathbb{R}^3_{>0}$.

Osculating circles form the caustic T_2, a cuspidal edge of T_1.

Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.
Circles tangent to a curve

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2.

The surface T_1 of all circles tangent to γ, a big wave front in $\mathbb{R}^3_{>0}$.

Osculating circles form the caustic T_2, a cuspidal edge of T_1.

Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.

Tri-tangent circles form a finite set $T_{1,1,1}$

of triple transversal self-intersections points.
Circles tangent to a curve

Let \(\gamma \) be a generic immersion of \(S^1 \) to \(\mathbb{R}^2 \) or \(S^2 \).

The surface \(T_1 \) of all circles tangent to \(\gamma \), a big wave front in \(\mathbb{R}^3_{>0} \).

Osculating circles form the caustic \(T_2 \), a cuspidal edge of \(T_1 \).

Bi-tangent circles form the self-intersection curve \(T_{1,1} \) of \(T \).

Tri-tangent circles form a finite set \(T_{1,1,1} \) of triple transversal self-intersections points.

Osculating circles that are tangent \(\gamma \) at another point form a finite set \(T_{2,1} \).
Circles tangent to a curve

Let γ be a generic immersion of S^1 to \mathbb{R}^2 or S^2.
The surface T_1 of all circles tangent to γ, a big wave front in $\mathbb{R}^3_{>0}$.
Osculating circles form the caustic T_2, a cuspidal edge of T_1.
Bi-tangent circles form the self-intersection curve $T_{1,1}$ of T.
Tri-tangent circles form a finite set $T_{1,1,1}$ of triple transversal self-intersections points.
Osculating circles that are tangent γ at another point form a finite set $T_{2,1}$.
Osculating circles at extremal points of the curvature of γ form a finite set T_3 of swallow tail singularities.
Circles tangent to a curve

Let \(\gamma \) be a generic immersion of \(S^1 \) to \(\mathbb{R}^2 \) or \(S^2 \).

The surface \(T_1 \) of all circles tangent to \(\gamma \), a big wave front in \(\mathbb{R}^3 \).

Osculating circles form the caustic \(T_2 \), a cuspidal edge of \(T_1 \).

Bi-tangent circles form the self-intersection curve \(T_{1,1} \) of \(T \).

Tri-tangent circles form a finite set \(T_{1,1,1} \) of triple transversal self-intersections points.

Osculating circles that are tangent \(\gamma \) at another point form a finite set \(T_{2,1} \).

Osculating circles at extremal points of the curvature of \(\gamma \) form a finite set \(T_3 \) of swallow tail singularities.

Resolution of its multi-singularities

\[
S = \{ (c, p) \mid p \in S^1, c \text{ is tangent to } \gamma \text{ at } \gamma(p) \}
\]
Ordinary tritangent circles
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is either on the right, or on the left side of the circle.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is either on the right, or on the left side of the circle.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is either on the right, or on the left side of the circle.

The sign $\sigma(C')$ of the circle C' is negative if the curve is on the right of the circle at odd number of points (1 or 3).
Ordinary tritangent circles

Cyclic order of tangency points on γ defines
the orientation of a tritangent circle $C \in T_{1,1,1}$.

At an ordinary tangency point, a curve is
either on the right, or on the left side of the circle.

The sign $\sigma(C')$ of the circle C' is negative if the curve is
on the right of the circle at odd number of points (1 or 3).
On the picture, $\sigma = -1$.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines
the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points,
where the orientations of C and γ agree.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points, where the orientations of C and γ agree.

On the picture, the coherency is two.
Ordinary tritangent circles

Cyclic order of tangency points on γ defines the orientation of a tritangent circle $C \in T_{1,1,1}$.

A coherency of C is the number of tangency points, where the orientations of C and γ agree. On the picture, the coherency is two.

Denote by T^i the set of tritangent circles with coherency i and put $t^i = \sum_{C \in T^i} \sigma(C)$.
Osculating tritangent circles
Osculating tritangent circles

Orientation of γ at point of osculating tangency
defines the orientation of osculating tritangent circle $C \in T_{2,1}$.
Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.
Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.
Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.
Osculating tritangent circles

Orientation of γ at point of osculating tangency
defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C')$ is negative
if the curve at the non-osculating tangency point is on the left.
Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative if the curve at the non-osculating tangency point is on the left.

Denote the set of osculating tritangent circles with coherent/incoherent tangency at non-osculating point by S^+ / S^-, respectively.
Osculating tritangent circles

Orientation of γ at point of osculating tangency defines the orientation of osculating tritangent circle $C \in T_{2,1}$.

The sign $\sigma(C)$ is negative if the curve at the non-osculating tangency point is on the left.

Denote the set of osculating tritangent circles with coherent/incoherent tangency at non-osculating point by S^+ / S^-, respectively.

Let $s^\pm = \sum_{C \in S^\pm} \sigma(C)$.
The main formulations
The main formulations

Theorem (Yu. Sobolev). The numbers t^0, t^1, $\tau^2 = t^2 + \frac{s^-}{2}$ and $\tau^3 = t^3 + \frac{s^+}{2}$ are diffeomorphism invariants of γ. They change under the moves (perestroikas) of C' as follows:
The main formulations

Theorem (Yu. Sobolev). The numbers t^0, t^1, $\tau^2 = t^2 + \frac{s^-}{2}$ and $\tau^3 = t^3 + \frac{s^+}{2}$ are diffeomorphism invariants of γ. They change under the moves (perestroikas) of C as follows:

<table>
<thead>
<tr>
<th></th>
<th>$\Delta(t^0)$</th>
<th>$\Delta(t^1)$</th>
<th>$\Delta(\tau^2)$</th>
<th>$\Delta(\tau^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple point proper strong</td>
<td>-1</td>
<td>-3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Triple point reflected strong</td>
<td>1</td>
<td>3</td>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>Triple point proper weak</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Triple point reflected weak</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Direct self-tangency</td>
<td>2 ind</td>
<td>-2 ind</td>
<td>2 ind</td>
<td>-2 ind</td>
</tr>
<tr>
<td>Indirect left self-tangency</td>
<td>0</td>
<td>4 ind -4</td>
<td>-4 ind +4</td>
<td>0</td>
</tr>
<tr>
<td>Indirect right self-tangency</td>
<td>0</td>
<td>4 ind +4</td>
<td>-4 ind -4</td>
<td>0</td>
</tr>
</tbody>
</table>
Formulas
Let $F = \sum_f \text{ind}(f)^3$, $E = \sum_e \text{ind}(e)^3$, $V = \sum_v \text{ind}(v)^3$
Formulas

Let $F = \sum_f \text{ind}(f)^3$, $E = \sum_e \text{ind}(e)^3$, $V = \sum_v \text{ind}(v)^3$

$t^0 = -\tau^3 = -\frac{1}{3}F + \frac{2}{3}E - V$ and $t^1 = -\tau^2 = F - \frac{2}{3}E + \frac{1}{3}V$