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3D Lie group, Card=c.
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Plane Isometries

3D Lie group, Card=c.
Examples of plane isometries:
Reflection in line, Translation, Rotation, Glide reflection.

Theorem. Any plane isometry is a composition
of at most three reflections.

Lemma. A plane isometry is recovered from its restriction
to any three non-collinear points.
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Plane Isometries

3D Lie group, Card=c.
Examples of plane isometries:
Reflection in line, Translation, Rotation, Glide reflection.

Theorem. Any plane isometry is a composition
of at most three reflections.
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Compositions of two reflections

translation
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Compositions of two reflections

translation
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Compositions of two reflections

translation
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Presentations are not unique:
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Compositions of two reflections

translation
e @ =@
L Rm(x) R; o Rm(x)
m [
rotation
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Presentations are not unique: R,,o R; = R, o Ry
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Relations

Theorem. Any relation among reflections in lines follow from Rz2 =1
and Rm o Rl = Rm/ o Rl/ .
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Relations

Theorem. Any relation among reflections in lines follow from Rf =1
and Rm o Rl = Rm/ o Rl/ .

Lemma. A composition of any 4 reflections by these relations can be
transformed to a composition of 2 reflections.

K n' K n'
15> l/ m/ L5
k [ m n

In R™ : a composition of any n + 2 reflections is a composition of n
reflections.

A composition of odd number of reflections reverses orientation and
cannot be id.
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Other planes

In the isometry group of the Lobachevsky plane the same is true.
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Other planes

In the isometry group of the Lobachevsky plane the same is true.
Theorem. Any relation among reflections in lines follow from Rf =1
and Rm O Rl = Rm/ o Rl/ .

How can this be? The groups are not isomorphic?

How does curvature work?

On sphere everything holds true.

On the projective plane a reflection in line has extra fixed point.

One more relation...
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Bachmann foundations of geometry

Group (G generated by the set of involutions S.

Four axioms.
Involutions from S = reflections in lines = lines.
Lines are perpendicular iff the reflections commute.
A point is a composition of commuting reflections.
A point belongs to a line iff the reflections commute.
Three lines are concurrent or parallel
iff the composition of the reflections is a reflection.
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Reflections in lines

The composition of 2 reflections in planes
= the composition of 2 reflections in lines.
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Reflections in lines

The composition of 2 reflections in planes
= the composition of 2 reflections in lines.
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Reflections in lines

The composition of 2 reflections in planes
= the composition of 2 reflections in lines.

Reflections in scew lines is a screw displacement.
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Reflections in lines

The composition of 2 reflections in planes
= the composition of 2 reflections in lines.
Reflections in scew lines is a screw displacement.
Theorem. Any isometry of the 3-space preserving orientation
is a composition of reflections in lines.
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Compose rotations

Angular displacement vectors

" Table of Contents 9/11



Compose rotations

Angular displacement vectors are not vectors.

" Table of Contents 9/11



Compose rotations

Angular displacement vectors are not vectors.

What are vectors?

" Table of Contents 9/11



Compose rotations

Angular displacement vectors are not vectors.

What are vectors? Translations and arrows.

" Table of Contents 9/11



Compose rotations

Angular displacement vectors are not vectors.

What are vectors? Translations and arrows.
Another relation between arrows and translations.

" Table of Contents 9/11



Compose rotations

Angular displacement vectors are not vectors.

What are vectors? Translations and arrows.
Another relation between arrows and translations.
Vectors on 2-sphere and rotations.

" Table of Contents 9/11



Compose rotations

Angular displacement vectors are not vectors.

What are vectors? Translations and arrows.
Another relation between arrows and translations.
Vectors on 2-sphere and rotations.

" Table of Contents 9/11



Compose screw displacements

A screw displacement is a composition of reflections in scew lines:
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