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Let X be a compact manifold, p ∶ Y →X be its infinite cyclic covering

defined by ξ ∈H1(X ;Z) ;
i.e., induced by a map f ∶X → S1 from R→ S1 ∶ x↦ exp(2πix) .

Let F = f−1(pt) be the pre-image of a regular value pt of f .
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn) → Z(Fn+1) is the map induced by cobordism Xn .

The increasing sequence

KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn) → Z(Fn+1) is the map induced by cobordism Xn .

The increasing sequence

KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.

Let Q(X, ξ) = Z(F0)/Ker(Z(
∞
⋃
n=0Xn))

≅
∞
⋂
j=1 Im(Z(

−1
⋃

n=−jXn)) ⊂ Z(F0).

Theorem. Q(X, ξ) does not depend on F .

Proof:
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn) → Z(Fn+1) is the map induced by cobordism Xn .

The increasing sequence

KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.

Let Q(X, ξ) = Z(F0)/Ker(Z(
∞
⋃
n=0Xn))

≅
∞
⋂
j=1 Im(Z(

−1
⋃

n=−jXn)) ⊂ Z(F0).

Theorem. Q(X, ξ) does not depend on F .

Deck transformations determine an action of Z in Q(X, ξ) .

If X = S3
∖K , Z(F ) =H1(F ;Q) , then

this is Seifert’s calculation of the Alexander module H1(Y ;Q) of K .
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Let dimX =m , and Z be an m-dimensional TQFT.

Z(Xn) ∶ Z(Fn) → Z(Fn+1) is the map induced by cobordism Xn .

The increasing sequence

KerZ(X0) ⊂ KerZ(X1 ∪X0) ⊂ KerZ(X2 ∪X1∪X0) ⊂ ⋅ ⋅ ⋅ ⊂ Z(F0)
stabilizes.

Let Q(X, ξ) = Z(F0)/Ker(Z(
∞
⋃
n=0Xn))

≅
∞
⋂
j=1 Im(Z(

−1
⋃

n=−jXn)) ⊂ Z(F0).

Theorem. Q(X, ξ) does not depend on F .

Deck transformations determine an action of Z in Q(X, ξ) .

For 3-manifolds and various TQFT’s, it was studied by Pat Gilmer in 90s.
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I construct new invariants by versions of the Seifert-Turaev construction.

The first construction gives an isotopy invariant of a classical link.

For each root q of unity of degree r > 2 and a coloring of components
of a link L with pairs of natural numbers ≤ r − 2 , it gives a

finite-dimensional vector space over C with an invertible operator.

A linear combination of traces of these operators
is the value at q of the colored Jones of L .

The coefficients are products of values at q of Tchebyshev polynomials.

The second construction gives a diffeotopy invariant
of a smooth closed 2-submanifold Λ of S3

× S1 .

The invariant is a bigraded Z[Z]-module. It is trivial, unless χ(Λ) = 0 .
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the union of all handles of indices ≤ n in a handle decomposition of M

can be collapsed.
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An n-skeleton of a manifold M is an n-polyhedron S to which
the union of all handles of indices ≤ n in a handle decomposition of M

can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons,
and their generic transformations to each other.

A generic graph that cannot be diminished by a collapse is trivalent.

A non-generic graph:
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An n-skeleton of a manifold M is an n-polyhedron S to which
the union of all handles of indices ≤ n in a handle decomposition of M

can be collapsed.

There is no natural n-skeleton, but there are generic n-skeletons,
and their generic transformations to each other.

A generic non-collapsible 2-polyhedron has local structure of a foam:

stratified with trivalent 1-strata:

and vertices of one kind:
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Theorem (Casler, 1965). A closed oriented 3-manifold can be
recovered from its generic 2-skeleton.
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An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.
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Theorem (Casler, 1965). A closed oriented 3-manifold can be
recovered from its generic 2-skeleton.

An oriented smooth closed 4-manifold
cannot be recovered from its generic 2-skeleton.

A 2-stratum of a generic 2-skeleton in an oriented 4-manifold has

self-intersection number ∈
1

2
Z .

Theorem (Turaev, 1991). An oriented smooth closed 4-manifold can be
recovered from its generic 2-skeleton equipped with self-intersection
numbers of 2-strata.

Self-intersection numbers are called gleams ,
a generic 2-polyhedron with gleams is a shadowed 2-polyhedron .

A generic 2-polyhedron that is not equipped with gleams
is considered shadowed with all gleams equal zero .
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Theorem (Matveev, Piergallini). Any two 2-skeletons of an oriented
closed 3-manifold can be transformed to each other by a sequence of
moves of the following 3-types.
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closed 3-manifold can be transformed to each other by a sequence of
moves of the following 3-types.
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Corollary. Any quantity calculated for a generic 2-polyhedron and
invariant with respect the three Matveev-Piergallini moves is a
topological invariant of a 3-manifold .
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.
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smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:

0x+y
x
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:

0
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Theorem (Turaev). Any two shadowed 2-skeletons of an oriented
smooth closed 4-manifold can be transformed to each other by a
sequence of moves of the following 4 types.

Gleams change as follows:

+1/2 +1/2−1/2

+1/2 −1/2

0

0
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A generic 2-polyhedron with boundary has interior points with

neighborhoods homeomorphic to R2 , or , or ,

and boundary points with no neighborhoods of these sorts,

but with neighborhoods homeomorphic to or .



Generic 2-polyhedra with boundary

Table of Contents p. 54 – 11 / 28

A generic 2-polyhedron with boundary has interior points with

neighborhoods homeomorphic to R2 , or , or ,

and boundary points with no neighborhoods of these sorts,

but with neighborhoods homeomorphic to or .

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.



Generic 2-polyhedra with boundary

Table of Contents p. 55 – 11 / 28
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The boundary of a generic 2-polyhedron is a generic 1-polyhedron.

A generic 2-polyhedron X whose boundary ∂X is a disjoint union of
3-valent graphs Γ0 and Γ1 is a cobordism between Γ0 and Γ1 .
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A generic 2-polyhedron X whose boundary ∂X is a disjoint union of
3-valent graphs Γ0 and Γ1 is a cobordism between Γ0 and Γ1 .

Generic shadowed 2-polyhedra with boundary are called equivalent ,
if they can be transformed to each other by the moves.

Recall: moves do not affect the boundary.
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A generic 2-polyhedron with boundary has interior points with

neighborhoods homeomorphic to R2 , or , or ,

and boundary points with no neighborhoods of these sorts,

but with neighborhoods homeomorphic to or .

The boundary of a generic 2-polyhedron is a generic 1-polyhedron.

A generic 2-polyhedron X whose boundary ∂X is a disjoint union of
3-valent graphs Γ0 and Γ1 is a cobordism between Γ0 and Γ1 .

Generic shadowed 2-polyhedra with boundary are called equivalent ,
if they can be transformed to each other by the moves.

Recall: moves do not affect the boundary.

Any two trivalent graphs are cobordant,
but there are many non-equivalent generic shadowed 3-polyhedra.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X .
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X .

For 2-strata of X adjacent to ∂X , self-intersections are not defined.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X .

For 2-strata of X adjacent to ∂X , self-intersections are not defined.

Choose a framing of ∂X in ∂W .
Now all 2-strata of X have self-intersections.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X .

Any compact 3-manifold W has a relative generic 2-skeleton.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
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(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X .

Any compact 3-manifold W has a relative generic 2-skeleton.

Any smooth oriented compact 4-manifold W

has a relative generic 2-skeleton.
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X .

Any compact 3-manifold W has a relative generic 2-skeleton.

Any smooth oriented compact 4-manifold W

has a relative generic 2-skeleton.

In both dimensions, any generic 1-skeleton of ∂W
bounds a relative generic 2-skeleton of W .
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A relative generic 2-skeleton of a compact 3-manifold W is a generic
2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) W ∖ finite set can collapse to X .

A relative generic 2-skeleton of an oriented smooth compact
4-manifold W is a generic 2-polyhedron X with boundary such that:
(1) ∂X =X ∩ ∂W is a generic 1-skeleton of ∂W and
(2) the union of all handles of W with indices ≤ 2 can collapse to X .

Any compact 3-manifold W has a relative generic 2-skeleton.

Any smooth oriented compact 4-manifold W

has a relative generic 2-skeleton.

In both dimensions, any generic 1-skeleton of ∂W
bounds a relative generic 2-skeleton of W ,

and any two relative 2-skeletons with the same boundary are equivalent.
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Fix a finite set P called a pallet and a field k .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ , a map {1-strata of Γ}→ P
is called a coloring of Γ .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ , a map {1-strata of Γ}→ P
is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ , a map {1-strata of Γ}→ P
is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ , a map {1-strata of Γ}→ P
is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ , a map {1-strata of Γ}→ P
is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .

A map Z ∶ {states of X}→ k defines a linear map
C(∂X)→ k that maps a coloring c of ∂X to ZX(c) = ∑

∂s=cZ(s) .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ , a map {1-strata of Γ}→ P
is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .

A map Z ∶ {states of X}→ k defines a linear map
C(∂X)→ k that maps a coloring c of ∂X to ZX(c) = ∑

∂s=cZ(s) .

If Γ = ∅ , then there is only one coloring of Γ and C(Γ) = k .
If ∂X = ∅ , then ZX ∈ k .
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Fix a finite set P called a pallet and a field k .

For a trivalent graph Γ , a map {1-strata of Γ}→ P
is called a coloring of Γ .

Denote by C(Γ) a vector space over k generated by colorings of Γ .

A state or coloring of a generic polyhedron X is a map
s ∶ {2-strata of X}→ P .

A state s of X induces a coloring ∂s of ∂X .

A map Z ∶ {states of X}→ k defines a linear map
C(∂X)→ k that maps a coloring c of ∂X to ZX(c) = ∑

∂s=cZ(s) .

If Γ = ∅ , then there is only one coloring of Γ and C(Γ) = k .
If ∂X = ∅ , then ZX ∈ k .

If X is a cobordism between Γ0 and Γ1 ,
then ZX(c0, c1) is a matrix defining a map ZX ∶ C(Γ0)→ C(Γ1) .
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For what Z , ZX is reasonable to manifolds:
(1) depends only on the equivalence class of X ,

that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms→ Vect(k) )?
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For what Z , ZX is reasonable to manifolds:
(1) depends only on the equivalence class of X ,

that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms→ Vect(k) )?

Fix w0 ∶ P6 → C , w1 ∶ P3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .
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For what Z , ZX is reasonable to manifolds:
(1) depends only on the equivalence class of X ,

that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms→ Vect(k) )?

Fix w0 ∶ P6 → C , w1 ∶ P3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .

w1 is symmetric (symmetric group S3 );

w0 has the symmetry of tetrahedron (S4 acting on the set of 6 edges).
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For what Z , ZX is reasonable to manifolds:
(1) depends only on the equivalence class of X ,

that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms→ Vect(k) )?

Fix w0 ∶ P6 → C , w1 ∶ P3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .

w1 is symmetric (symmetric group S3 );

w0 has the symmetry of tetrahedron (S4 acting on the set of 6 edges).

For a state s , let Z(s) =
w
−χ(X)+ 1

2
χ(∂X)

3 ∏
f∈{2-strata}w2(s(f))χ(f)+ 1

2
χ(f̄∩∂X∖{vertices}) t(s(f))2f○f

× ∏
e∈{1-strata of IntX}w1(s(f)∣f ∈ St(e))χ(e)+ 1

2
χ(e∩∂X)

× ∏
v∈{vertices of IntX}w0(s(f)∣f ∈ St(v)).
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For what Z , ZX is reasonable to manifolds:
(1) depends only on the equivalence class of X ,

that is only on the manifold whose skeleton is X and
(2) defines a TQFT (i.e, a functor Cobordisms→ Vect(k) )?

Fix w0 ∶ P6 → C , w1 ∶ P3 → C , w2 ∶ P → C , t ∶ P → C , w3 ∈ C .

w1 is symmetric (symmetric group S3 );

w0 has the symmetry of tetrahedron (S4 acting on the set of 6 edges).

For a state s , let Z(s) =
w
−χ(X)+ 1

2
χ(∂X)

3 ∏
f∈{2-strata}w2(s(f))χ(f)+ 1

2
χ(f̄∩∂X∖{vertices}) t(s(f))2f○f

× ∏
e∈{1-strata of IntX}w1(s(f)∣f ∈ St(e))χ(e)+ 1

2
χ(e∩∂X)

× ∏
v∈{vertices of IntX}w0(s(f)∣f ∈ St(v)).

Let ZX(c) = ∑
s such that ∂s=cZ(s) . What wi and t to choose?
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The usual source of the structural constants wi and t

is a modular category .
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The usual source of the structural constants wi and t

is a modular category .
Not all the axioms of modular category are needed.
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .

Assume that the invariant satisfies two axioms:
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .

Assume that the invariant satisfies two axioms:

⟨ Γ

k

j

⟩ = δkjC(Γ, j) ⟨
j

j

⟩

⟨
l

i j

k

Γ ⟩ = ∑
m∈PC(Γ, i, j, k, l,m) ⟨ m

l

i j

k

⟩.
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We may start with isotopy invariants of embedded in R3 framed
trivalent graphs with 1-strata colored with colors from a finite pallet P .

Assume that the invariant satisfies two axioms:

⟨ Γ

k

j

⟩ = δkjC(Γ, j) ⟨
j

j

⟩

⟨
l

i j

k

Γ ⟩ = ∑
m∈PC(Γ, i, j, k, l,m) ⟨ m

l

i j

k

⟩.

Theorem. If w2(j) = ⟨
j
⟩ , t(j) = ⟨ j

⟩
⟨

j

⟩ , w1(j,m, l) = ⟨ m

j

l⟩ ,

w0 (i j k

l m n
) = ⟨ kj

n m

l

i ⟩ , w3 = ∑j w
2

2
(j) , then ZX is

invariant under moves and defines a TQFT.
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .

The identity cobordism of a trivalent graph Γ is Γ × I , but
if Γ is a 1-skeleton of M , then Γ × I is not a 2-skeleton of M × I .
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .

The identity cobordism of a trivalent graph Γ is Γ × I , but
if Γ is a 1-skeleton of M , then Γ × I is not a 2-skeleton of M × I .
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .

The identity cobordism of a trivalent graph Γ is Γ × I , but
if Γ is a 1-skeleton of M , then Γ × I is not a 2-skeleton of M × I .

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.
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Correction: the state sums define a functor(trivalent graphs and their cobordisms)→ Vectk .
but only a semifunctor (manifolds, their cobordisms)→ Vectk .

The identity cobordism of a trivalent graph Γ is Γ × I , but
if Γ is a 1-skeleton of M , then Γ × I is not a 2-skeleton of M × I .

Still, the composition of cobordisms has a 2-skeleton
that is the compositions of 2-skeletons of the cobordisms.

In order to turn a functor(trivalent graphs and their cobordisms)→ Vectk

to a functor (manifolds and their cobordisms)→ Vectk ,
factorize C(1-skeleton of a manifoldM) by KerZ2-skeleton of M×I .

Denote C(1-skeleton of a manifoldM)/KerZ2-skeleton of M×I by Z(M)
and Z2-skeleton of a cobordism W by ZW . This is a TQFT!
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1992.
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .

Because then ZW is invariant under cobordism (Turaev, 1991).
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .

Because then ZW is invariant under cobordism (Turaev, 1991).

It follows from the axiom requiring invertibility of S-matrix .
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For 2-skeletons of 3-manifolds and the background invariants
obtained from the Kauffman bracket extended by cabling and

the Jones-Wenzl projectors and evaluated at a root q of unity ,
this is the Turaev-Viro TQFT introduced in 1992.

The same background invariants give a new (3+1)-TQFT.

If the state sums come from a modular category ,
then dimZ(M) = 1 for any oriented closed connected 3-manifold M .

Then for any cobordism W

the map ZW is multiplication by an exponent of the signature of W .

Because then ZW is invariant under cobordism (Turaev, 1991).

It follows from the axiom requiring invertibility of S-matrix .

There many invariants of framed colored trivalent graphs
for which the S-matrix is not invertible.
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Take for the background invariants the Kauffman bracket extended by
cabling and the Jones-Wenzl projectors and evaluated at a root q of
unity.
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Take for the background invariants the Kauffman bracket extended by
cabling and the Jones-Wenzl projectors and evaluated at a root q of
unity.

Then the value at q of the colored Jones polynomial of a link L

can be obtained as the state sum of a generic 2-skeleton S of
X =D4

∪⋃iHi , where Hi are 2-handles attached along the
components of L .
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Take for the background invariants the Kauffman bracket extended by
cabling and the Jones-Wenzl projectors and evaluated at a root q of
unity.

Then the value at q of the colored Jones polynomial of a link L

can be obtained as the state sum of a generic 2-skeleton S of
X =D4

∪⋃iHi , where Hi are 2-handles attached along the
components of L .

The only restriction: Hi ∩ S is a disk for each i

and in the state sum the colors of these disks coincide with the colors of
the corresponding components of L .



Building a special 2-skeleton

Table of Contents p. 105 – 21 / 28

Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;

R is also a 2-skeleton of (S3
∖L) × I .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;

R is also a 2-skeleton of (S3
∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;

R is also a 2-skeleton of (S3
∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3
× I .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;

R is also a 2-skeleton of (S3
∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3
× I and of D4 .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;

R is also a 2-skeleton of (S3
∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3
× I and of D4 .

(4) Adjoin to R a disk li along longitude of each Li . Let U = R ∪⋃
i
li .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;

R is also a 2-skeleton of (S3
∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3
× I and of D4 .

(4) Adjoin to R a disk li along longitude of each Li . Let U = R ∪⋃
i
li .

This completes building of S = U ∪⋃
i
mi , a 2-skeleton for X .
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Let L = ⋃
i
Li ⊂ S3 be an oriented classical link framed by its Seifert

surface, Hi be a 2-handle attached along Li and X =D4
∪⋃

i
Hi .

Build a generic 2-skeleton S of X :
(1) Take the boundary T of a tubular neighborhood of L ;
(2) Extend T to a 2-skeleton R of S3

∖L ;

R is also a 2-skeleton of (S3
∖L) × I .

(3) Adjoin to R disks mi along meridians of Li .

The result is a 2-skeleton of S3
× I and of D4 .

(4) Adjoin to R a disk li along longitude of each Li . Let U = R ∪⋃
i
li .

This completes building of S = U ∪⋃
i
mi , a 2-skeleton for X .

Choose a Seifert surface F ⊂ S3 for L transversal to R and ∂mi

and disjoint from ∂li .
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The infinite cyclic covering of S3
∖L does not extend to disks mi .

There is no non-trivial coverings of S , since π1(S) = 0 .
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The infinite cyclic covering of S3
∖L does not extend to disks mi .

There is no non-trivial coverings of S , since π1(S) = 0 .

Therefore one cannot apply the Seifert-Turaev construction to S .
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Instead,
we split the state sum that provides the value at q of the colored Jones

into partial state sums based on U ⊂ S ,
and apply the Seifert-Turaev construction to each of them and

to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .



Partial state sums

Table of Contents p. 118 – 22 / 28

Instead,
we split the state sum that provides the value at q of the colored Jones

into partial state sums based on U ⊂ S ,
and apply the Seifert-Turaev construction to each of them and

to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .

Each of the partial sums is formed by the summands of the whole sum
with fixed colors on all mi .
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Instead,
we split the state sum that provides the value at q of the colored Jones

into partial state sums based on U ⊂ S ,
and apply the Seifert-Turaev construction to each of them and

to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .

Each of the partial sums is formed by the summands of the whole sum
with fixed colors on all mi .

In a partial sum, take the common factor ∏iw2(color of mi) outside
the brackets. Inside the brackets we see a new state sum,

a sum over colorings of the 2-strata of S that are contained in U .
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a sum over colorings of the 2-strata of S that are contained in U .

The summands are products of contributions from these strata.
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Disks mi are not in U , but ∂mi contribute to the stratification by
subdividing 2-strata of R and affecting gleams of the resulting pieces.
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Instead,
we split the state sum that provides the value at q of the colored Jones

into partial state sums based on U ⊂ S ,
and apply the Seifert-Turaev construction to each of them and

to the infinite cyclic covering Ũ → U defined by F ∩U = F ∩R .

Each of the partial sums is formed by the summands of the whole sum
with fixed colors on all mi .

In a partial sum, take the common factor ∏iw2(color of mi) outside
the brackets. Inside the brackets we see a new state sum,

a sum over colorings of the 2-strata of S that are contained in U .

The summands are products of contributions from these strata.

Disks mi are not in U , but ∂mi contribute to the stratification by
subdividing 2-strata of R and affecting gleams of the resulting pieces.

The arcs on ∂mi contribute via w1 ,
the vertices (i.e., intersections of ∂mi with 1-strata of R ) via w0 .
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Application of the Seifert-Turaev construction to the partial sums gives,
for each root q of unity and

a coloring of components of a link L with pairs of colors from P ,
a finite-dimensional vector space over C with an invertible operator.
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Application of the Seifert-Turaev construction to the partial sums gives,
for each root q of unity and

a coloring of components of a link L with pairs of colors from P ,
a finite-dimensional vector space over C with an invertible operator.

A linear combination of traces of these operators
is the value at q of the colored Jones of L .
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Application of the Seifert-Turaev construction to the partial sums gives,
for each root q of unity and

a coloring of components of a link L with pairs of colors from P ,
a finite-dimensional vector space over C with an invertible operator.

A linear combination of traces of these operators
is the value at q of the colored Jones of L .

The coefficients are products of values at q of Tchebyshev polynomials.
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Let Λ ⊂ S3
× S1 be a smooth 2-submanifold.
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Let Λ ⊂ S3
× S1 be a smooth 2-submanifold.

This can be obtained from a link Λ̄ ⊂ S4 by a surgery along an
unknotted component of Λ̄ homeomorphic to S2 .
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Let Λ ⊂ S3
× S1 be a smooth 2-submanifold.

Let the intersection L = S3
× {1} ∩Λ be transversal, and Λ̃ ⊂ S3

×R

be the preimage of Λ under S3
×R→ S3

× S1
∶ (x, y)↦ (x, e2πiy) .
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Let Λ ⊂ S3
× S1 be a smooth 2-submanifold.

Let the intersection L = S3
× {1} ∩Λ be transversal, and Λ̃ ⊂ S3
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∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3
× {n}) ⊂ S3

×R , and Wn = Λ̃ ∩ (S3
× [n,n + 1]) .

Now apply Seifert-Turaev construction to Khovanov homology:
denote by Zi,j(Λ) the image of Khi,j(L0) under the homomorphism

induced by cobordism ∪kn=0Wn for sufficiently large k .



Surfaces in S3 × S1

Table of Contents p. 132 – 25 / 28

Let Λ ⊂ S3
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Let Λ ⊂ S3
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If the restriction to Λ of the projection S3
× S1 → S1 is

a locally trivial fibration, then Zi,j(Λ) =Khi,j(L) .
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be the preimage of Λ under S3
×R→ S3

× S1
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If the restriction to Λ of the projection S3
× S1 → S1 is

a locally trivial fibration, then Zi,j(Λ) =Khi,j(L)
with an additional structure: the action of Z (the monodromy).
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Let Λ ⊂ S3
× S1 be a smooth 2-submanifold.

Let the intersection L = S3
× {1} ∩Λ be transversal, and Λ̃ ⊂ S3

×R

be the preimage of Λ under S3
×R→ S3

× S1
∶ (x, y)↦ (x, e2πiy) .

Let Ln = Λ̃ ∩ (S3
× {n}) ⊂ S3

×R , and Wn = Λ̃ ∩ (S3
× [n,n + 1]) .

Now apply Seifert-Turaev construction to Khovanov homology:
denote by Zi,j(Λ) the image of Khi,j(L0) under the homomorphism

induced by cobordism ∪kn=0Wn for sufficiently large k .

Observe that Zi,j(Λ) = 0 , unless χ(Λ) = 0 .

If the restriction to Λ of the projection S3
× S1 → S1 is

a locally trivial fibration, then Zi,j(Λ) =Khi,j(L)
with an additional structure: the action of Z (the monodromy).

Luoying Weng calculated Zi,j(Λ) for many such surfaces.
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
0-surgery along the knot) have not been studied in this way.
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
0-surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
0-surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?

If not, how are they related to the Khovanov homology?
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
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can the new TQFT modules be reduced to the colored Jones?

If not, how are they related to the Khovanov homology?

What kind of knotting phenomena for surfaces in S3
× S1

are detected by Khovanov homology?
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Calculate the TQFT modules of knots and links in a traditional form:
higher colored Jones polynomials aka higher Alexander polynomials.

Old TQFT modules (invariants of the 3-manifold obtained by the
0-surgery along the knot) have not been studied in this way.

A sharp question:
can the new TQFT modules be reduced to the colored Jones?

If not, how are they related to the Khovanov homology?

What kind of knotting phenomena for surfaces in S3
× S1

are detected by Khovanov homology?

Can it detect linking/knotting of a surface consisting of
a sphere and sphere with 2 handles?
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
× S1 .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
× S1 .

Why does it require a separate proof?
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
× S1 .

Why does it require a separate proof?

Because cobordisms needed for Khovanov homology
are surfaces in S3

× I ,
while in the proof we meet

a cobordism between a link in S3
× {pt} and a skew copy of it.
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
× S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
× S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .

Extend it to an isotopy ht ∶ S3
× S1 → S3

× S1 with h0 = id ,
ht(Λ) = Λt .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
× S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .

Extend it to an isotopy ht ∶ S3
× S1 → S3

× S1 with h0 = id ,
ht(Λ) = Λt .

Let Λ̃t ⊂ S3
×R be the preimage of Λt under

S3
×R → S3

× S1
∶ (x, y)↦ (x, e2πiy) .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
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and Wt,n = Λ̃t ∩ (S3

× [n,n + 1]) .
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Theorem. Zi,j(Λ) is invariant under isotopy of Λ in S3
× S1 .

Proof. Let Λt , t ∈ I be an isotopy of Λ .

Extend it to an isotopy ht ∶ S3
× S1 → S3

× S1 with h0 = id ,
ht(Λ) = Λt .

Let Λ̃t ⊂ S3
×R be the preimage of Λt under

S3
×R → S3

× S1
∶ (x, y)↦ (x, e2πiy) .

Let Lt,n = Λ̃t ∩ (S3
× {n}) ⊂ S3

×R ,
and Wt,n = Λ̃t ∩ (S3

× [n,n + 1]) .

Pull this new stuff back by h̃t ∶ S3
×R→ S3

×R :
h̃−1t (Lt,n) = Ln ⊂ h̃

−1
t (S3

× {n}) ,

h̃−1t (Wt,n) = Λ̃ ∩ h̃−1t (S3
× [n,n + 1])
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