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ABSTRACT

Homology of the circle with non-trivial local coefficients is trivial. From this well-
known fact we deduce geometric corollaries involving codimension-two links. In partic-
ular, the Murasugi-Tristram signatures are extended to invariants of links formed of
arbitrary oriented closed codimension two submanifolds of an odd-dimensional sphere.
The novelty is that the submanifolds are not assumed to be disjoint, but are transver-
sal to each other, and the signatures are parametrized by points of the whole torus.
Murasugi-Tristram inequalities and their generalizations are also extended to this setup.

1. Introduction

The goal of this paper is to simplify and generalize a part of classical link theory
based on various signatures of links (defined by Trotter [19] Murasugi [10],[11],
Tristram [18], Levine [7] [8], Smolinsky [17], Florens [2] and Cimasoni and Florens
[1]). This part is known for its relations to topology of 4-dimensional manifolds, see
[18], [20], [21] [4], [6] and applications in topology of real algebraic curves [12], [13]
and [2].

Similarity of the signatures to the new invariants [15], [14], which were defined
in the new frameworks of link homology theories and had spectacular applications
[15], [9], [16] to problems on classical link cobordisms, gives a new reason to revisit
the old theory.

There are two ways to introduce the signatures: the original 3-dimensional, via
Seifert surface and Seifert form, and 4-dimensional, via the intersection form of the
cyclic coverings of 4-ball branched over surfaces. I believe, this paper clearly demon-
strates advantages of the latter, 4-dimensional approach, which provides more con-
ceptual definitions, easily working in the situations hardly available for the Seifert
form approach.

In the generalization considered here the classical links are replaced by collec-
tions of transversal to each other oriented submanifolds of codimension two.

Technically the work is based on a systematic use of twisted homology and
the intersection forms in the twisted homology. Only the simplest kinds of twisted
homology is used, the one with coefficients in C, see Appendix.
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1.1. Twisted acyclicity of a circle

A key property of twisted homology, which makes the whole story possible, is the
following well-known fact, which I call twisted acyclicity of a circle:

Twisted homology of a circle with coefficients in C and non-trivial monodromy
vanishes.

This implies that the twisted homology of this kind completely ignores parts of
the space formed by circles along which the monodromy of the coefficient system
is non-trivial (for precise and detailed formulation see Section Appendix B).

1.2. How the acyclicity works

In particular, twisted acyclicity of a circle implies that the complement of a tubular
neighborhood of a link looks like a closed manifold, because the boundary, being
fibered to circles, is invisible for the twisted homology.

Moreover, the same holds true for a collection of pairwise transversal generically
immersed closed manifolds of codimension 2 in arbitrary closed manifold, provided
the monodromy around each manifold is non-trivial. The twisted homology does
not feel the intersection of the submanifolds as a singularity.

The complement of a cobordism between such immersed links looks (again, from
the point of view of twisted homology) like a compact cobordism between closed
manifolds.

This, together with classical results about signatures of manifolds and relations
between twisted homology and homology with constant coefficients, allows us to
deal with a link of codimension two as if it was a single closed manifold.

1.3. Organization of the paper

I cannot assume the twisted homology well-known to the reader, and review the
material related to it. Of course, the material on non-twisted homology is not
reviewed. The review is limited to a very special twisted homology, the one with
complex coefficients. More general twisted homology is not needed here.

The review is postponed to appendices. The reader somehow familiar with
twisted homology may visit this section when needed. The experts are invited to
look through appendices, too.

We begin in Section 2 with a detailed exposition restricted to the classical links.
Section 3 is devoted to higher dimensional generalization, including motivation for
our choice of the objects. Section 4 is devoted to span inequalities, that is, restric-
tions on homology of submanifolds of the ball, which span a given link contained
in the boundary of the ball. Section 5 is devoted to slice inequalities, which are
restrictions on homology of a link with given transversal intersection with a sphere
of codimension one.
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2. In the classical dimension

2.1. Classical knots and links.

Recall that a classical knot is a smooth simple closed curve in the 3-sphere S3.
This is how one usually defines classical knots. However it is not the curve per
se that is really considered in the classical knot theory, but rather its placement
in S3. Classical knots incarnate the idea of knottedness: both the curve and S3

are topologically standard, but the position of the curve in S3 may be arbitrarily
complicated topologically. Therefore a classical knot is rather a pair (S3,K), where
K is a smooth submanifold of S3 diffeomorphic to S1.

A classical link is a pair (S3, L), where L is a smooth closed one-dimensional
submanifold of S3. If L is connected, then this is a knot.

2.2. Twisted homology of a classical link exterior

An exterior of a classical link (S3, L) is the complement of an open tubular neigh-
borhood of L. This is a compact 3-manifold with boundary. The boundary is the
boundary of the tubular neighborhood of L. Hence, this is the total space of a locally
trivial fibration over L with fiber S1. An exterior X(L) is a deformation retract
of the complement S3 r L. It’s a nice replacement of S3 r L, because IntX(L) is
homeomorphic to S3 rL, but X(L) is compact manifold and has a nice boundary.

If L consists of m connected components, L = K1 ∪ · · · ∪ Km, then by the
Alexander duality H0(X(L)) = Z, H1(X(L)) = Zm and Hi(X(L)) = 0 for i 6= 0, 1.
The group H1(X(L)) is dual to H1(L) with respect to the Alexander linking pairing
H1(L)×H1(X(L)) → Z. Hence a basis of H1(L) defines a dual basis in H1(X(L)).
An orientation of L determines a basis [K1], . . . , [Km] of H1(L), and the dual basis
of H1(X(L)), which is realized by meridians M1, . . . , Mm positively linked to K1,
. . . , Km, respectively. (The meridians are fibers of a tubular fibration ∂X(L) → L

over points chosen on the corresponding components.)
Therefore, if L is oriented, then a local coefficient system on X(L) with fiber

C is defined by an m-tuple of complex numbers (ζ1, . . . , ζm), the images under the
monodromy homomorphism H1(X(L)) → C× of the generators [M1], . . . , [Mm] of
H1(X(L)).

Thus for an oriented classical knot L consisting of m connected components,
local coefficient systems on X(L) with fiber C are parametrized by (C×)m.

2.3. Link signatures

Let L = K1 ∪ · · · ∪Km ⊂ S3 be a classical link, ζi ∈ C, |ζi| = 1, ζ = (ζ1, . . . , ζm) ∈
(S1)m and µ : H1(S3rL) → C× takes to ζi a meridian of Ki positively linked with
Ki.

Let F1, . . . Fm ⊂ D4 be smooth oriented surfaces transversal to each other with
∂Fi = Fi ∩ ∂D4 = Ki. Extend the tubular neighborhood of L involved in the
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construction of X(L) to a collection of tubular neighborhoods N1, . . . , Nm of F1,
. . . , Fm, respectively.

Without loss of generality we may choose Ni in such a way that they would
intersect each other in the simplest way. Namely, each connected component B of
Ni ∩ Nj would contain only one point of Fi ∩ Fj and no point of others Fk and
would consist of entire fibers of Ni and Nj , so that the fibers define a structure of
bi-disk D2 ×D2 on B.

To achieve this, one has to make the fibers of the tubular fibration Ni → Fi at
each intersection point of Fi and Fj coinciding with a disk in Fj and then diminish
all Ni appropriately.

Now let us extend X(L) to X(F ) = D4 r ∪m
i=1 IntNi. This is a compact 4-

manifold. Its boundary contains X(L), the rest of it is a union of pieces of boundaries
of Ni with i = 1, . . . , m. These pieces are fibered over the corresponding pieces of
Fi with fiber S1.

By the Alexander duality, the orientation of Fi defines a homomorphism
H1(X(F )) → Z, the linking number with Fi. These homomorphisms altogether
determine a homomorphism H1(X(F )) → Zm. For any ζ = (ζ1, . . . , ζm), the com-
position of this homomorphism with the homomorphism

Zn → (C×)m : (n1, . . . , nm) → (ζn1
1 , . . . , ζnm

m )

is a homomorphism H1(X(F )) → (C×)m extending µ. If each Fi has no closed
connected components, then this extension is unique. Let us denote it by µ.

According to Appendix D.6, in H2(X(F );Cµ) there is a Hermitian intersection
form. Denote its signature by σζ(L).

Theorem 2.A σζ(L) does not depend on F1, . . . , Fm.

Proof. Any F ′i with ∂F ′i = F ′i ∩ ∂D4 = Ki is cobordant to Fi. The cobordisms
Wi ⊂ D4 × I can be made pairwise transversal. They define a cobordism D4 × I r
∪i IntN(Wi) between X(F ) and X(F ′). By Theorem App.D.B,

σζ(∂D4 × I r ∪i IntN(Wi)) = 0.

The manifold ∂D4 × I r ∪i IntN(Wi) is the union of X(F ), −X(F ′) and a homo-
logically negligible part ∂(N(∪i IntWi)), the boundary of a regular neighborhood
of the cobordism ∪iWi between ∪iFi and ∪iFi. By Theorem App.D.A,

σζ(∂D4 × I r ∪i IntN(Wi)) = σζ(D4 r ∪iFi)− σζ(D4 r ∪iF
′
i )

Hence, σζ(D4 r ∪iFi) = σζ(D4 r ∪iF
′
i ).

2.4. Colored links

In the definition of signature σζ(L) above one needs to numerate the components
Ki of L to associate to each of them the corresponding component ζi of ζ, but there
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is no need to require connectedness of each Ki. This leads to a notion of colored
link.

An m-colored link L is an oriented link in S3 together with a map (called
coloring) assigning to each connected component of L a color in {1, . . . , m}. The
sublink Li is constituted by the components of L with color i for i = 1, . . . ,m.

For an m-colored link L = L1 ∪ · · · ∪ Lm and ζ = (ζ1, . . . , ζm) ∈ (S1)m, the
signature σζ(L) is defined as above, but each component Kj colored with color i is
associated to ζi.

2.5. Relations to other link signatures

If ζi = −1 for all i = 1, . . . ,m, then the signature σζ(L) coincides with the Murasugi
signature ξ(L) introduced in [11]. If all ζi are roots of unity of a degree, which is
a power of a prime number and all linking numbers lk(Li, Lj) vanish, then σζ(L)
coincides with the signature defined by Florens [2].

In the most general case, σζ(L) coincides with the signature defined for arbitrary
ζ by Cimasoni and Florens [1] using a 3-dimensional approach, with a version of
Seifert surface, C-complex.

3. In higher dimensions

3.1. Apology for the generalization of higher dimensional links

There is a spectrum of objects considered as generalizations of classical knots and
links. The closest generalization of classical knots are pairs (Sn,K), where K is a
smooth submanifold diffeomorphic to Sn−2. Then the requirements on K are weak-
ened. Say, one may require K to be only homeomorphic to Sn−2, not diffeomorphic.
Or just a homology sphere of dimension n − 2. The codimension is important in
order to keep any resemblance to classical knots.

In the same spirit, for the closest higher-dimensional counter-part of classical
links one takes a pair consisting of Sn and a collection of its disjoint smooth sub-
manifolds diffeomorphic to Sn−2. One allows to weaken the restrictions on the
submanifolds. Up to arbitrary closed submanifolds.

I suggest to allow transversal intersections of the submanifolds.

Of course, the main excuse for this is that some results can extended to this
setup. Here is a couple of other reasons.

First, in the classical dimension it is easy for submanifolds to be disjoint. Gener-
ically curves in 3-sphere are disjoint. If they intersect, it is a miracle or, rather, has
a special cause.

Generic submanifolds of codimension two in a manifold of dimension > 3 inter-
sect. If they do not intersect, this is a miracle, or consequence of a special cause.

Second, classical links emerge naturally as links of singular points of complex
algebraic curves in C2. Recall that for an algebraic curve C ⊂ C2 and a point p ∈ C
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the boundary of a sufficiently small ball B centered at p, the link (∂B, ∂B ∩ C) is
well-defined up to diffeomorphism, and it is called the link of C at p.

An obvious generalization of this definition to an algebraic hypersurface C ⊂ Cn

gives rise to a pair (S2n−1, K) with connected K. It cannot be a union of disjoint
submanifolds of S2n−1.

It would not be difficult to extend the results of this paper to a more general
setup. For example, one can replace the ambient sphere with a homology sphere,
or even more general manifold. However, one should stop somewhere. The author
prefers this early point, because the level of generality accepted here suffices for
demonstrating the new opportunities open by a systematic usage of twisted ho-
mology. On the other hand, further generalizations can make formulations more
cumbersome.

3.2. Colored links

By an m-colored link of dimension n we shall mean a collection of m oriented
smooth closed n-dimensional submanifolds L1, . . . , Lm of the sphere Sn+2 such
that any sub-collection has transversal intersection. The latter means that for any
x ∈ Li1 ∩ · · · ∩ Lik

the tangent spaces TxLi1 , . . . , TxLik
are transverse, that is,

dim(TxLi1 ∩ · · · ∩ TxLik
) = n + 2− 2k.

3.3. Generic configurations of submanifolds

More generally, an m-colored configuration of transversal submanifolds in a smooth
manifold M is a family of m smooth submanifolds L1, . . . , Lm of M such that any
sub-collection has transversal intersection. If M has a boundary, the submanifolds
are assumed to be transversal to the boundary, as well as the intersection of any
sub-collection. Furthermore, assume that ∂M ∩ Li = ∂Li for any i = 1, . . . ,m.

As above, in Section 2.3, for any m-colored configuration L of transversal sub-
manifolds L1, . . . , Lm in M one can find a collection of their tubular neighborhoods
N1, . . . , Nm which agree with each other in the sense that for any sub-collection
Li1 , . . . , Liν the intersection of the corresponding neighborhoods Ni1 ∩ · · · ∩Niν is
neighborhood of the intersection Li1 ∩ · · · ∩ Liν fibered over this intersection with
the corresponding poly-disk fiber.

Denote the complement M r ∪m
i=1 IntNi by X(L) and call it an exterior of L.

This is a smooth manifold with a system of corners on the boundary. The differential
type of the exterior does not depend on the choice of neighborhoods. Moreover, one
can eliminate the choice of neighborhoods and deleting of them from the definition.
Instead, one can make a sort of real blowing up of M along L1, . . . , Lm. However,
for the purposes of this paper it is easier to stay with the choices.

3.4. Link signatures

Let L = L1 ∪ · · · ∪ Lm be an m-colored link of dimension 2n− 1 in S2n+1.
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As well known (see, e.g., [7]), for each oriented closed codimension 2 submanifold
K of S2n+1 there exists an oriented smooth compact submanifold F of D2n+2 such
that ∂F = K. Choose for each Li such a submanifold of D2n+2, denote it by Fi,
and make all the Fi transversal to each other by small perturbations.

As a union of m-colored transversal submanifolds of D2n+2, F = F1 ∪ · · · ∪
Fm has an exterior X(F ). By the Alexander duality, H1(X(F );C×) is naturally
isomorphic to H2n(F, L;C×). Let ζ = (ζ1, . . . , ζm) ∈ (S1)m. Take

∑m
i=1 ζi[Fi] ∈

H2n(F,L;C×) and denote by µ the Alexander dual cohomology class considered as
a homomorphism H1(X(F )) → C×. Denote by Cµ the local coefficient system on
X(F ) corresponding to µ.

According to Appendix D.6, in Hn+1(X(F );Cµ) there is an intersection form,
which is Hermitian, if n is odd, and skew-Hermitian, if n is even. Denote its signature
by σζ(L).

Theorem 3.A σζ(L) does not depend on F1, . . . , Fm.

Proof. Any F ′i with ∂F ′i = F ′i ∩ ∂D2n+2 = Li is cobordant to Fi. The cobordisms
Wi ⊂ D2n+2 × I can be made pairwise transversal to form m-colored configura-
tion W of transversal submanifolds of D2n+2 × I. They define a cobordism X(W )
between X(F ) and X(F ′). By Theorem App.D.B,

σζ(∂X(W )) = 0.

The manifold ∂X(W ) = ∂D2n+2× I r∪i IntN(Wi) is the union of X(F ), −X(F ′)
and a homologically negligible part ∂(N(∪i IntWi)), the boundary of a regular
neighborhood of the cobordism ∪iWi between F and F ′. By Theorem App.D.A,

σζ(∂X(W )) = σζ(X(F ))− σζ(X(F ′))

Hence, σζ(X(F )) = σζ(X(F ′)).

4. Span inequalities

Let L = L1 ∪ . . . ,∪Lm be an m-colored link of dimension 2n − 1 in S2n+1. Let
F = F1 ∪ · · · ∪ Fm be an m-colored configuration of transversal oriented compact
2n-dimensional submanifolds of D2n+2 with ∂Fi = Fi∩∂D2n+2 = Li. In this section
we consider restrictions on homological characteristics of F in terms of invariants
of L.

4.1. History

The first restrictions of this sort were found by Murasugi [10] and Tristram [18]
for classical (1-colored) links. To m-colored classical links and pairwise disjoint
surfaces Fi the Murasugi-Tristram inequalities were generalized by Florens [2]. A
further generalization to m-colored classical links and intersecting Fi was found
by Cimasoni and Florens [1]. Higher dimensional generalizations for 1-colored links
were found by the author [21], [22].
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4.2. No-nullity span inequalities

The most general results in this direction are quite cumbersome. Therefore, let me
start with weak but simple ones.

Recall that σζ(L) can be obtained from F : for an appropriate local coefficient
system Cµ on X(F ), this is the signature of a Hermitian intersection form defined
in Hn+1(X(F );Cµ). The signature of an Hermitian form cannot be greater than
the dimension of the underlying space. In particular,

|σζ(L)| ≤ dimCHn+1(X(F );Cµ). (4.1)

This can be considered as a restriction on a homological characteristic of F

in terms of invariants of L. However, dimCHn+1(X(F );Cµ) is not a convenient
characteristic of F . It can be estimated in terms of more convenient ones.

Let ζ = (ζ1, . . . , ζm) ∈ (S1)m. Let p1, . . . , pk ∈ Z[t1, t−1
1 . . . , tm, t−1

m ] be genera-
tors of the ideal of relations satisfied by complex numbers ζi. Let d be the greatest
common divisor of the integers p1(1, . . . , 1), . . . , pk(1, . . . , 1), if at least one of these
integers does not vanish, and zero otherwise. Cf. Appendix C.6. Let

P =

{
Z/pZ, if d > 1 and p is a prime divisor of d

Q, if d = 0

By App.C.C,

dimCHn+1(X(F );Cµ) ≤ dimP Hn+1(X(F ); P ).

The advantage of passing to homology with non-twisted coefficients is that we can
use the Alexander duality:

Hn+1(X(F ); P ) = Hn+1(D2n+2 r F ;P )

= Hn+1(D2n+2, ∂D2n+2 ∪ F ;P )

= Hn(∂D2n+2 ∪ F ; P ) = Hn(F, L;P ).

Hence,

|σζ(L)| ≤ dimP Hn(F,L; P ).

4.3. General span inequalities

The inequality (4.1) can be improved. Indeed, the manifold X(F ) has a non-
empty boundary. Therefore, its intersection form may be degenerate and the right
hand side of (4.1) may be replaced by a smaller quantity, the rank of the form.
The rank is known to be the rank of the homomorphism Hn+1(X(F );Cµ) →
Hn+1(X(F ), ∂X(F );Cµ). Let us estimate this rank.
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Lemma 4.A For any exact sequence . . .
ρk+1→ Ck

ρk→ Ck−1
ρk−1→ . . . of vector spaces

and any integers n and r

rk(ρn+1) + rk(ρn−2r) =
2r∑

s=0

(−1)s dim Cn−s (4.2)

Proof. The Euler characteristic of the exact sequence

0 → Im ρn+1 ↪→ Cn
ρn→ Cn−1 → . . .

ρn−2r+1→ Cn−2r → Im ρn−2r → 0

is the difference between the left and right hand sides of (4.2). On the other hand,
it vanishes, as the Euler characteristic of an exact sequence.

Lemma 4.B Let X be a topological space, A its subspace, ξ a local coefficient
system on X with fiber C. Then for any natural n and r ≤ n

2

rk(Hn+1(X; ξ) → Hn+1(X, A; ξ)) + rk(Hn−2r(X; ξ) → Hn−2r(X,A; ξ))

=
2r∑

s=0

(−1)sbn+1−s(X, A)−
2r∑

s=0

(−1)sbn−s(A) +
2r∑

s=0

(−1)sbn−s(X) (4.3)

where bk(∗) = dimCHk(∗; ξ)

Proof. Apply Lemma 4.A to the homology sequence of pair (X, A) with coefficients
in ξ.

Theorem 4.C For any integer r with 0 ≤ r ≤ n
2

|σζ(L)|+
2r∑

s=0

(−1)s dimCHn−s(S2n+1 r L;Cζ)

≤
2r∑

s=0

(−1)s dim Hn+1+s(F, L; P ) +
2r∑

s=0

(−1)s dim Hn+s(F ;P ) (4.4)

|σζ(L)|+
2r∑

s=0

(−1)s dimCHn+1+s(S2n+1 r L;Cζ)

≤
2r∑

s=0

(−1)s dim Hn−s(F, L;P ) +
2r∑

s=0

(−1)s dimHn−s−1(F ;P ) (4.5)

where ζ and P are is in Section 4.2

Proof. As mentioned above,

|σζ(L)| ≤ rk(Hn+1(X(F );Cµ) → Hn+1(X(F ), ∂X(F );Cµ)). (4.6)
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By Lemma 4.B ,

rk(Hn+1(X(F );Cµ) → Hn+1(X(F ), ∂X(F );Cµ))

≤
2r∑

s=0

(−1)s dimCHn+1−s(X(F ), X(L);Cζ)−
2r∑

s=0

(−1)s dimCHn−s(X(L);Cζ)

+
2r∑

s=0

(−1)s dimCHn−s(X(F );Cζ). (4.7)

Summing up these inequalities and moving one of the sums from the right hand
side to the left, we obtain:

|σζ(L)|+
2r∑

s=0

(−1)s dimCHn−s(X(L);Cζ)

≤
2r∑

s=0

(−1)s dimCHn+1−s(X(F ), X(L);Cζ) +
2r∑

s=0

(−1)s dimCHn−s(X(F );Cζ).

(4.8)

The left hand sum of (4.8) coincides with the left hand side of (4.4). The right hand
side can be estimated using Theorem App.C.C:

2r∑
s=0

(−1)s dimCHn+1−s(X(F ), X(L);Cζ) +
2r∑

s=0

(−1)s dimCHn−s(X(F );Cζ)

≤
2r∑

s=0

(−1)s dimP Hn+1−s(X(F ), X(L); P ) +
2r∑

s=0

(−1)s dimP Hn−s(X(F ); P ).

(4.9)

Further,

Hn+1−s(X(F ), X(L); P ) = Hn+1−s(D2n+2 r F, S2n+1 r L; P ).

By the Alexander duality,

Hn+1−s(D2n+2 r F, S2n+1 r L; P ) = Hn+1+s(D2n+2, F ; P ).

By exactness of the pair sequence, Hn+1+s(D2n+2, F ; P ) = Hn+s(F ; P ).
Similarly,

Hn−s(X(F ); P ) = Hn−s(D2n+2 r F ; P )

= Hn+2+s(D2n+2, F ∪ S2n+1; P )

= Hn+1+s(S2n+1 ∪ F ;P ) = Hn+1+s(F,L; P )

The last equality in this sequence holds true if n + 1 + s < 2n + 1, that is, s < n.
Since P is a field,

dimP Hn+s(F ; P ) =dimP Hn+s(F ;P ), (4.10)

dimP Hn+1+s(F,L; P ) =dimP Hn+1+s(F, L;P ). (4.11)
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Combining formulas (4.10), (4.11) with the calculations above and equalities
(4.9) and (4.8), we obtain the first desired inequalities (4.4).

The inequalities (4.5) are proved similarly. Namely, by Lemma 4.B

rk(Hn+1(X(F );Cµ) → Hn+1(X(F ), ∂X(F );Cµ))

≤
2r∑

s=0

(−1)s dimCHn+2+s(X(F ), X(L);Cζ)−
2r∑

s=0

(−1)s dimCHn+1+s(X(L);Cζ)

+
2r∑

s=0

(−1)s dimCHn+1+s(X(F );Cζ). (4.12)

Summing up inequalities (4.6) and (4.12) and moving one of the sums from the
right hand side to the left, we obtain:

|σζ(L)|+
2r∑

s=0

(−1)s dimCHn+1+s(X(L);Cζ)

≤
2r∑

s=0

(−1)s dimCHn+2+s(X(F ), X(L);Cζ) +
2r∑

s=0

(−1)s dimCHn+1+s(X(F );Cζ).

(4.13)

After this the same estimates and transformations as in the proof of (4.4) gives rise
to (4.5).

4.4. Nullities

The sum in the left hand side of the inequalities (4.4) is an invariant of the link L.
Its special case for classical links with r = 0 is known as ζ-nullity and appeared in
the Murasugi-Tristram inequalities and their generalizations.

Denote
∑2r

s=0(−1)s dimHn−s(S2n+1 r L;Cµ) by nr
ζ(L) and call it rth ζ-nullity

of L.
By the Poincaré duality (see Appendix D.3), Hn−s(S2n+1 r L;Cµ) is iso-

morphic to Hn+1+s(S2n+1 r L;Cµ). The latter complex vector space is dual to
Hn+1+s(S2n+1 r L;Cµ−1) and anti-isomorphic to Hn+1+s(S2n+1 r L;Cµ), see
Appendix D.5. Therefore,

nr
ζ(L) =

2r∑
s=0

(−1)s dimCHn+1+s(S2n+1 r L;Cµ) (4.14)

and nr
ζ(L) = nr

ζ
(L). This sum is a part of the left hand side of (4.5).

Now we can rewrite Theorem 4.C as follows:
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Theorem 4.D For any integer r with 0 ≤ 2r ≤ n

|σζ(L)|+ nr
ζ(L)

≤
2r∑

s=0

(−1)s dim Hn+s+1(F, L;P ) +
2r∑

s=0

(−1)s dim Hn+s(F ; P ) (4.15)

|σζ(L)|+ nr
ζ(L)

≤
2r∑

s=0

(−1)s dim Hn−s(F,L; P ) +
2r∑

s=0

(−1)s dim Hn−s−1(F ; P ) (4.16)

If Fi are pairwise disjoint, than the right hand sides of (4.15) and (4.16) are
equal due to Poincaré-Lefschetz duality for F , but we do not assume that F = ∪Fi

is a manifold, and therefore the inequalities (4.15) and (4.16) are not equivalent
and we have to keep both of them.

5. Slice inequalities

Again, as in the preceding section, let L1, . . . , Lm ⊂ S2n+1 be smooth oriented
transversal to each other submanifolds constituting an m-colored link L = L1 ∪
· · · ∪ Lm of dimension 2n− 1.

Let Λi ⊂ S2n+2 be oriented closed smooth submanifolds transversal to each
other and to S2n+1, with ∂Λi ∩S2n+1 = Li. In this section we consider restrictions
on homological characteristics of Λ = ∪m

i=1Λi in terms of invariants of link L. Of
course, some results of this kind can be deduced from the results of the preceding
section, but an independent consideration gives better results.

5.1. No-nullity slice inequalities

The most general results in this direction are quite cumbersome. Therefore, let me
start with weak but simple ones.

We will use the same algebraic objects as in the preceding section. In particular,
ζ = (ζ1, . . . , ζm) ∈ (S1)m, p1, . . . , pk ∈ Z[t1, t−1

1 . . . , tm, t−1
m ] are generators of the

ideal of relations satisfied by complex numbers ζi. Integer d is the greatest common
divisor of the integers p1(1, . . . , 1), . . . , pk(1, . . . , 1), if at least one of them does not
vanish, and d = 0 otherwise. Cf. 4.2 and Appendix C.6. Finally,

P =

{
Z/pZ, if d > 1 and p is a prime divisor of d

Q, if d = 0

Let µ : H1(S2n+1 r L) → C× be the homomorphism which maps the meridian
of Li to ζi. The local coefficient system Cµ on S2n+1 r L defined by µ extends to
S2n+2 r Λ. We will denote the extension by the same symbol Cµ.
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The sphere S2n+1 bounds in S2n+2 two balls, hemi-spheres S2n+2
+ and S2n+2

−
such that ∂S2n+2

+ = S2n+1 and ∂S2n+2
− = −S2n+1 with the orientations inher-

ited from the standard orientation of S2n+2. In Hn+1(S2n+2 r Λ;Cµ) there is a
(Hermitian or skew-Hermitian) intersection form. Its signature is zero by Theorem
App.D.B, because Λ bounds a configuration of pairwise transversal submanifolds
∆ = ∆1 ∪ · · · ∪∆m in D2n+3 and Cµ extends over D2n+3 r∆.

Theorem 5.A Under the assumption above,

2|σζ(L)| ≤ dimP Hn(Λ; P ). (5.1)

Proof. The intersection form on Hn+1(S2n+2 rΛ;Cµ) restricted to the images of
Hn+1(S2n+2

+ rΛ;Cµ) and Hn+1(S2n+2
− rΛ;Cµ) has signatures σζ(L) and −σζ(L),

respectively. Therefore the dimension of each of the images is at least |σζ(L)|.
The images are obviously orthogonal to each other with respect to the inter-

section form, because their elements can be realized by cycles lying in disjoin open
hemi-spheres. Hence

2|σζ(L)| ≤ dimCHn+1(S2n+2 r Λ;Cµ).

On the other hand, by Theorem App.C.C,

dimCHn+1(S2n+2 r Λ;Cµ) ≤ dimP Hn+1(S2n+2 r Λ;P ) = dimP Hn(Λ; P ).

Summing up these two inequalities, we obtain the desired one.

5.1.1. General slice inequalities

Theorem 5.B Under assumptions above

2|σζ(L)|+ 2nr
ζ(L)

≤
2r∑

s=0

(−1)s dimP Hn−s(Λr L; P ) +
2r−1∑

s=−2r+1

(−1)s dimP Hn−s(Λ;P ) (5.2)

Lemma 5.C Let j be the inclusion S2n+1 r L → S2n+2 r Λ. Then

2|σζ(L)|+ 2 rk(j∗ : Hn+1(S2n+1 r L;Cµ) → Hn+1(S2n+2 r Λ;Cµ))

≤ dimCHn+1(S2n+2 r Λ;Cµ) (5.3)

Proof. Denote by i± the inclusion S2n+2
± rΛ → S2n+2rΛ. Observe that the space

Hn+1(S2n+2 r Λ;Cµ) has a natural filtration:

j∗Hn+1(S2n+1 r L;Cµ)

⊂ i+∗ Hn+1(S2n+2
+ r Λ;Cµ) + i−∗ Hn+1(S2n+2

− r Λ;Cµ)

⊂ Hn+1(S2n+2 r Λ;Cµ) (5.4)
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The inclusion homomorphisms

j∗ : Hn+1(S2n+1 r L;Cµ) → Hn+1(S2n+2 r Λ;Cµ)

and the boundary homomorphism

∂ : Hn+1(S2n+2 r Λ;Cµ) → Hn(S2n+1 r L;Cµ)

of the Mayer-Vietoris sequence of the triad (S2n+2 r Λ; S2n+2
+ r Λ, S2n+2

− r Λ) are
dual to each other with respect to the intersection forms:

j∗(a)◦b = a◦∂(b) for any a ∈ Hn+1(S2n+1rL;Cµ) and b ∈ Hn+1(S2n+2rΛ;Cµ).

Since the intersection forms are non-singular, it follows that rk j∗ = rk ∂.
By exactness of the Mayer-Vietoris sequence, the rank of ∂ is the dimensions of

the top quotient of the filtration (5.4), while the rank of j∗ is the dimension of the
smallest term j∗Hn+1(S2n+1 r L;Cµ) of this filtration.

The middle term of the filtration contains the subspaces i+∗ Hn+1(S2n+2
+ rΛ;Cµ)

and i−∗ Hn+1(S2n+2
− r Λ;Cµ). Their intersection is the smallest term, which is or-

thogonal to both of the subspaces. Therefore the dimension of the quotient of the
middle term of the filtration by the smallest term is at least 2|σζ(L)|

The dimension of the whole space Hn+1(S2n+2 r Λ;Cµ) is the sum of the di-
mensions of the factors. We showed above that the top and lowest factor have the
same dimensions equal to rk j∗ and that the dimension of the middle factor is at
least 2|σζ(L)|.

Lemma 5.D For any exact sequence . . .
ρk+1→ Ck

ρk→ Ck−1
ρk−1→ . . . of vector spaces

and any integers n and t

rk(ρn)− rk(ρn+2t) =
2t−1∑
s=0

(−1)s dim Cn+s (5.5)

Proof. The Euler characteristic of the exact sequence

0 → Im ρn+2t ↪→ Cn+2t−1
ρn+2t−1→ Cn+2t−2 → . . .

ρn+1→ Cn → Im ρn → 0

is rk(ρn)−∑2t−1
s=0 (−1)s dim Cn+s − rk(ρn + 2t), that is the difference between the

left and right hand sides of (5.5). On the other hand, it vanishes, as the Euler
characteristic of an exact sequence.

Lemma 5.E Let X be a topological space, A its subspace, ξ a local coefficient
system on X with fiber C. Then for any natural n and integer r

rk(Hn+1(A; ξ) → Hn+1(X; ξ))− rk(Hn+2+2r(X; ξ) → Hn+2+2r(X, A; ξ))

=
2r∑

s=0

(−1)sbn+1+s(A)−
2r∑

s=0

(−1)sbn+2+s(X,A) +
2r−1∑
s=0

(−1)sbn+2+s(X) (5.6)

where bk(∗) = dimCHk(∗; ξ).
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Proof. Apply Lemma 5.D to the homology sequence of pair (X,A) with coeffi-
cients in ξ.

Lemma 5.F For any integer r with 0 ≤ r ≤ n
2

2|σζ(L)|+ 2nr
ζ(L)

≤ 2
2r∑

s=0

(−1)s dimCHn+2+s(S2n+2 r Λ, S2n+1 r L;Cµ)

+
2r−1∑

s=−2r+1

(−1)s dimCHn+1+s(S2n+2 r Λ;Cµ) (5.7)

Proof. By Lemma 5.E applied to the pair (S2n+2 r Λ, S2n+1 r L), we obtain

rk(j∗ : Hn+1(S2n+1 r L;Cµ) → Hn+1(S2n+2 r Λ;Cµ))

≥
2r∑

s=0

(−1)sHn+1+s(S2n+1 r L;Cµ)

−
2r∑

s=0

(−1)s dimCHn+2+s(S2n+2 r Λ, S2n+1 r L;Cµ)

+
2r−1∑
s=0

(−1)s dimCHn+2+s(S2n+2 r Λ;Cµ) (5.8)

From this inequality and inequality (5.3) we obtain

2|σζ(L)|+ 2nr
ζ(L)

≤ 2
2r∑

s=0

(−1)s dimCHn+1+s(S2n+2 r Λ, S2n+1 r L;Cµ)

− 2
2r−1∑
s=0

(−1)s dimCHn+s+2(S2n+2 r Λ;Cµ)

+ dimCHn+1(S2n+2 r Λ;Cµ) (5.9)

From this and the Poincaré duality (which states that Hn+1+s(S2n+2 r Λ;Cµ) is
isomorphic to Hn+1−s(S2n+2 r Λ;Cµ)) the desired inequality follows.

Lemma 5.G

2r∑
s=0

(−1)s dimCHn+1+s(S2n+2 r Λ, S2n+1 r L;Cµ)

≤
2r∑

s=0

(−1)s dimP Hn−s(Λr L;P ) (5.10)
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Proof. By Theorem App.C.C

2r∑
s=0

(−1)s dimCHn+1+s(S2n+2 r Λ, S2n+1 r L;Cµ)

≤
2r∑

s=0

(−1)s dimP Hn+1+s(S2n+2 r Λ, S2n+1 r L; P ). (5.11)

By Poincaré duality, Hn+1+s(S2n+2 r Λ, S2n+1 r L;P ) is isomorphic to
Hn+1−s(S2n+2rS2n+1, ΛrL; P ). The latter is isomorphic to Hn−s(ΛrL; P ). By
the universal coefficients formula, Hn−s(ΛrL; P ) is isomorphic to Hn−s(ΛrL;P ).

Lemma 5.H

2r−1∑
s=−2r+1

(−1)s dimCHn+1+s(S2n+2 r Λ;Cµ)

≤
2r−1∑

s=−2r+1

(−1)s dimP Hn−s(Λ; P ) (5.12)

Proof. By Theorem App.C.C

2r−1∑
s=−2r+1

(−1)s dimCHn+1+s(S2n+2 r Λ;Cµ)

≤
2r−1∑

s=−2r+1

(−1)s dimP Hn+1+s(S2n+2 r Λ;P ). (5.13)

By Poincaré duality, Hn+1+s(S2n+2rΛ;P ) is isomorphic to Hn+1−s(S2n+2, Λ;P ).
From the sequence of pair (S2n+2,Λ) it follows that Hn+1−s(S2n+2,Λ; P ) is isomor-
phic to Hn−s(Λ;P ). By the universal coefficient formula, Hn−s(Λ;P ) is isomorphic
to Hn−s(Λ; P ).

Proof of Theorem 5.B . Sum up the inequalities of the last three Lemmas. ¤

Appendix. Twisted homology

Appendix A. Twisted coefficients and chains

Appendix A.1. Local coefficient system

Let X be a topological space, and ξ be a C-bundle over X with a fixed flat connec-
tion.
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Here by a connection we mean operations of parallel transport: for any path s

in X connecting points x and y the parallel transport Ts is an isomorphism from
the fiber Cx over x to the fiber Cy over y, such that the parallel transport along
product of paths equals the composition of parallel transports along the factors. In
formula: Tuv = Tv ◦ Tu. A connection is flat, if the parallel transport isomorphism
does not change when the path is replaced by a homotopic path.

A flat connection in a bundle ξ over a simply connected X gives a trivialization
of ξ.

Another name for ξ is a local coefficient system with fiber C.

Appendix A.2. Monodromy representation

Recall that for a path-connected locally contractible X (and in more general situa-
tions, which would not be of interest here) it is defined by the monodromy reprensen-

tation π1(X,x0) → C×, where C× = C r 0 is the multiplicative group of C. The
monodromy representation assigns to σ ∈ π1(X, x0) a complex number ζ such that
the parallel transport isomorphism along a loop which represents σ is multiplication
by ζ.

Since C× is commutative, a homomorphism π1(X, x0) → C× factors through
the abelianization π1(X, x0) → H1(X). Thus a local coefficient system with fiber
C is defined also by a homology version µ : H1(X) → C× of the monodromy
representation, which can be considered also as a cohomology class belonging to
H1(X;C×).

The local coefficient system defined by a monodromy representation µ :
H1(X) → C× is denoted by Cµ. Sometimes instead of µ we will write data which
defines µ, for example the images under µ of generators of H1(X) selected in a
special way.

Appendix A.3. Twisted singular chains

Homology groups Hn(X; ξ) of X with coefficients in ξ is a classical invariant studied
in algebraic topology. It is an immediate generalization of Hn(X;C). Hence it is
quite often ignored in textbooks on homology theory, I recall the singular version
of the definition.

Recall that a singular p-dimensional chain of X with coefficients in C is a for-
mal finite linear combination of singular simplices fi : T p → X with complex
coefficients.

A singular chain of X with coefficients in ξ is also a formal finite linear combina-
tion of singular simplices, but each singular simplex fi : T p → X appears in it with
a coefficient taken from the fiber Cfi(c) of ξ over fi(c), where c is the baricenter of
T p. Of course, all the fibers of ξ are isomorphic to C. So, a chain with coefficients in
ξ can be identified with a chain with coefficients in C, provided the isomorphisms
Cfi(c) → C are selected. But they are not.
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All singular p-chains of X with coefficients in ξ form a complex vector space
Cp(X; ξ).

The boundary of such a chain is defined by the usual formula, but one needs
to bring the coefficient from the fiber over fi(c) to the fibers over fi(ci), where
ci is the baricenter of the ith face of T p. For this, one may use translation along
the composition with fi of any path connecting c to ci in T p: since T p is simply
connected and the connection of ξ is flat, the result does not depend on the path.

These chains and boundary operators form a complex. Its homology is called
homology with coefficients in ξ and denoted by Hp(X; ξ).

Homology with coefficients in the local coefficient system corresponding to the
trivial monodromy representation 1 : H1(X) → C× coincides with homology with
coefficients in C.

Appendix A.4. Twisted cellular chains

It is possible to calculate the homology with coefficients in a local coefficient sys-
tem using cellular decomposition. Namely, a p-dimensional cellular chain of a cw-
complex X with coefficients in a local coefficient system ξ is a formal finite linear
combination of p-dimensional cells in which a coefficient at a cell belongs to the
fiber over a point of the cell. It does not matter which point is this, because fibers
over different points in a cell are identified via parallel transport along paths in the
cell: any two points in a cell can be connected in the cell by a path unique up to
homotopy.

In order to describe the boundary operator, let me define the incidence number

(zσx : τ)y ∈ Cy where σ is a p-cell, τ is a (p − 1)-cell, z ∈ Cx, x ∈ σ, y ∈ τ . The
boundary operator is then defined by the incidence numbers:

∂(zσ) =
∑

τ

(zσx : τ)yτ.

Let f : Dp → X be a characteristic map for σ. Assume that a point y in
(p− 1)-cell τ is a regular value for f . This means that y has a neighborhood U in
τ such that f−1(U) ⊂ Sp−1 ⊂ Dp is the union of finitely many balls mapped by f

homeomorphically onto U . Connect f−1(x) ∈ Dp with all the points of f−1(y) by
straight paths. Compositions of these paths with f are paths s1,. . . sN connecting
x with y. Then put

(zσ : τ)y =
N∑

i=1

εiTsi(z)

where Tsi is a parallel transport operator and εi = +1 or −1 according to whether
f preserves or reverses the orientation on the ith ball out of N balls constituting
f−1(U).
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Appendix B. Twisted acyclicity

Appendix B.1. Acyclicity of circle

According to one of the most fundamental properties of homology, the dimension of
H0(X;C) is equal to the number of path-connected components of X. In particular,
H0(X;C) does not vanish, unless X is empty.

This is not the case for twisted homology. A crucial example is the circle S1.
Let µ : H1(S1) → C× maps the generator 1 ∈ Z = H1(S1) to ζ ∈ C×.

Theorem App.B.A Twisted acyclicity of circle. H∗(S1;Cµ) = 0, iff ζ 6= 1.

Proof. The simplest cellular decomposition of S1 consists of two cells, one-
dimensional σ1 and zero-dimensional σ0. One can easily see that ∂σ1 = (ζ − 1)σ0.
Hence ∂ : C1(S1;Cµ) → C0(S1;Cµ) is an isomorphism, iff ζ 6= 0.

Appendix B.2. Vanishing of twisted homology

Corollary App.B.B Let X be a path connected space and µ : H1(S1 ×X) → C×
be a homomorphism. Denote by ζ the image under µ of the homology class realized
by a fiber S1 × point. Then H∗(S1 ×X;Cµ) = 0, if ζ 6= 0.

Proof. Since H1(S1 ×X) = H1(S1) ×H1(X), the homomorphism µ can be pre-
sented as product of homomorphisms µ1 : H1(S1) → C× and µ2 : H1(X) → C×
which can be obtained as compositions of µ with the inclusion homomorphisms.
Thus Cµ = Cµ1 ⊗ Cµ2 , and we can apply Künneth formula

Hn(S1 ×X;Cµ) =
n∑

p=0

Hp(S1;Cµ1)⊗Hn−p(X;Cµ2)

and refer to Theorem App.B.A.

Corollary App.B.C Let B be a path connected space, p : X → B a locally trivial
fibration with fiber S1. Let µ : H1(X) → C× be a homomorphism. Denote by ζ the
image under µ of homology class realized by a fiber of p. Then H∗(X;Cµ) = 0, if
ζ 6= 0.

Proof. It follows from Theorem App.B.A via the spectral sequence of fibration p.
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Appendix C. Estimates of twisted homology

Appendix C.1. Equalities underlying the Morse inequalities

Lemma App.C.A For a complex C : · · · → Ci
∂i→ Ci−1 → of finite dimensional

vector spaces over a field F

2n+r∑
s=r

(−1)s−r dimF Hs(C) =

2n+r∑
s=r

(−1)s−r dimF Cs − rk ∂r−1 − rk ∂2n+r. (C.1)

Proof. First, prove inequality (C.1) for n = 0. Since Hs(C) = Ker ∂s/ Im ∂s+1, we
have dimF Hs(C) = dimKer ∂s − dimF Im ∂s+1. Further, dimF Im ∂s+1 = rk ∂s+1,
and dimF Ker ∂s = dimF Cs − rk ∂s. It follows

dimF Hs(C) = dimF Cs − rk ∂s − rk ∂s + 1 (C.2)

This is a special case of (C.1) with n = 0, r = s.
The general case follows from it: make alternating summation of (C.2) for s =

r, . . . , 2n + s.

Appendix C.2. Algebraic Morse type inequalities

Lemma App.C.B Let P and Q be fields, R be a subring of Q and let h : R → P

be a ring homomorphism. Let C : · · · → Cp → Cp−1 → · · · → C1 → C0 be a complex
of free finitely generated R-modules. Then for any n and r

2n+r∑
s=r

(−1)s−r dimQ Hs(C ⊗R Q) ≤
2n+r∑
s=r

(−1)s−r dimP Hs(C ⊗h P )

Thus, the greater ranks of differentials, the smaller

2n+r∑
s=r

(−1)s−r dimF Hs(C).

Proof. Choose free bases in modules Ci. Let Mi be the matrix representing ∂i :
Ci → Ci−1 in these bases. The same matrix represents the differential ∂Q

i of C⊗RQ.
The matrix obtained from Mi by replacement the entries with their images under
h represents the differential ∂P

i of C ⊗h P . The minors of the latter matrix are the
images of the former one under h. Consequently, the rk ∂Q

i ≥ rk ∂P
i .
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By Lemma App.C.A

2n+r∑
s=r

(−1)s−r dimQ Hs(C ⊗R Q) =

2n+r∑
s=r

(−1)s−r dimQ Cs ⊗R Q− rk ∂Q
r−1 − rk ∂Q

r+2n

and

2n+r∑
s=r

(−1)s−r dimP Hs(C ⊗h P ) =

2n+r∑
s=r

(−1)s−r dimP Cs ⊗h P − rk ∂P
r−1 − rk ∂P

r+2n

Compare the right hand sides of these equalities. Since dimP Cs ⊗h P =
dimQ Cs ⊗R Q and, as it was shown above, rk ∂Q

i ≥ rk ∂P
i , the right hand side

of the first of them is smaller than the right hands side of the second one.

Probably, the simplest application of Lemma App.C.B gives well-known upper
estimation of the Betti numbers with rational coefficients by the Betti numbers
with coefficients in a finite field. It follows from the universal coefficients formula.

Appendix C.3. Application to twisted homology

Theorem App.C.C Let X be a finite cw-complex, and µ : H1(X) → C× be a
homomorphism. If Im µ ⊂ C× generates a subring R of C and there is a ring
homomorphism h : R → Q, where Q is a field, such that hµ(H1(X)) = 1, then we
can apply Lemma App.C.B and get an upper estimation for dimensions of twisted
homology groups in terms of dimensions of non-twisted ones.

2n+r∑
s=r

(−1)s−r dimQ Hs(X;Cµ) ≤
2n+r∑
s=r

(−1)s−r dimP Hs(X; P ) (C.3)

Here are several situations in which the assumptions of this theorem are fulfilled.

Appendix C.4. Estimates by untwisted Z/pZ Betti numbers

Let H1(X) be generated by g and ζ = µ(g) be an algebraic number. Assume that p is
the minimal integer polynomial with relatively prime coefficients which annihilates
ζ. Assume also that g(1) is divisible by a prime number p. Then for R we can take
Q[ζ] ⊂ C, for P the field Z/pZ, and for h the ring homomorphism Q[ζ] → Z/pZ
mapping ζ 7→ 1.

Here is a more general situation: Let H1(X) be generated by g1,. . . gk, and
ζi = µ(gi) be an algebraic number for each i. Assume that pi is the minimal integer
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polynomial with relatively prime coefficients which annihilates ζi. Assume also that
the greatest common divisor of g1(1),. . . , gk(1) is divisible by a prime number p.
Then for R we can take Q[ζ1, . . . , ζk] ⊂ C, for P the field Z/pZ, and for h the ring
homomorphism Q[ζ1, . . . , ζk] → Z/pZ mapping ζi 7→ 1 for all i.

Appendix C.5. Estimates by rational Betti numbers

Let H1(X) be generated by g and ζ = µ(g) be transcendent. Then for R we can
take the ring Z[ζ, ζ−1], for Q the field Q(ζ), for P the field Q, and for h the ring
homomorphism Z[ζ] → Q which maps ζ to 1.

Appendix C.6. The most general estimates

Let H1(X) be generated by g1,. . . gk, and the ideal of relations over the ring of inte-
gers satisfied by complex numbers ζi = µ(gi) be generated by Laurent polynomials
p1, . . . , pk ∈ Z[t1, t−1

1 . . . , tm, t−1
m ]. Let d be the greatest common divisor of the in-

tegers p1(1, . . . , 1), . . . , pk(1, . . . , 1), if at least one of them is not 0. Otherwise, let
d = 0

In other words, consider the specialization homomorphism

S : Z[t1, t−1
1 . . . , tm, t−1

m ] → C : ti 7→ ζi.

Let K be the kernel of S, and let d be the generator of the ideal which is the image
of K under the homomorphism

Z[t1, t−1
1 . . . , tm, t−1

m ] → Z : ti 7→ 1.

Then for R we can take the ring Z[ζ1, ζ
−1
1 , . . . , ζk, ζ−1

k ]. For Q we can take the
quotient field of R, but since both Q and its quotient field are contained in C, let
us take Q = C.

If d > 1, then we can take for P the field Z/pZ with any prime p which divides
d. If d = 0, then let P = Q. The case d = 1 is the most misfortunate: then our
technique does not give any non-trivial estimate. For d > 1 or d = 0 we have the
inequality (C.3).

Appendix D. Twisted duality

Appendix D.1. Cochains, cohomology and tensor products

Cochain groups Cp(X; ξ) (which are vector spaces over C) and cohomology
Hp(X; ξ) are defined similarly: p-cochain with coefficients in ξ is a function as-
signing to a singular simplex f : T p → X an element of Cf(c), the fiber of ξ over
f(c).

This can be interpreted as the chain complex of the local coefficient system
Hom(C, ξ) whose fiber over x ∈ X is HomC(C,Cx). More generally, for any local
coefficient systems ξ and η on X with fiber C there is a local coefficient system
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Hom(ξ, η) constructed fiber-wise with the parallel transport defined naturally in
terms of the parallel transports of ξ and η. If the monodromy representations of ξ

and η are µ and ν, respectively, then the monodromy representation of Hom(ξ, η)
is µ−1ν : H1(X) → C× : x 7→ µ−1(x)ν(x).

Similarly, for any local coefficient systems ξ and η on X with fiber C there is
a local coefficient system ξ ⊗ η. If µ, ν : H1(X) → C× are homomorphisms, then
Cµ ⊗ Cν is the local coefficient system Cµν corresponding to the homomorphism-
product µν : H1(X) → C× : x 7→ µ(x)ν(x).

If ν = µ−1 (that is µ(x)ν(x) = 1 for any x ∈ H1(X)), then Cµ ⊗ Cν is the
non-twisted coefficient system with fiber C.

In contradistinction to non-twisted case, there is no way to calculate Hn(X; ξ⊗η)
in terms of H∗(X; ξ) and H∗(X; η). Indeed, both H∗(S1;Cµ) and H∗(S1;Cµ−1

)
vanish, unless µ : H1(S1) → C× is trivial, but H0(S1;Cµ⊗Cµ−1

) = H0(S1;C) = C.

Appendix D.2. Multiplications

Usual definitions of various cohomological and homological multiplications are eas-
ily generalized to twisted homology. For this one needs a bilinear pairing of the
coefficient systems. (Recall that in the case of non-twisted coefficient system a pair-
ing of coefficient groups also is needed.) For local coefficient systems ξ, η and ζ with
fiber C on X, a pairing ξ ⊕ η → ζ is a fiber-wise map which is bilinear over each
point of X. Given such a pairing, there are pairings

`: Hp(X; ξ)×Hq(X; η) → Hp+q(X; ζ),

a: Hp+q(X; ξ)×Hq(X; η) → Hp(X; ζ),

etc.
A pairing ξ ⊕ η → ζ of local coefficients systems can be factored through the

universal pairing ξ ⊕ η → ξ ⊗ η.
Since Cµ ⊗Cµ−1

is a non-twisted coefficient system with fiber C, this gives rise
to a non-singular pairing

Cp(X;Cµ−1
)⊗ Cp(X;Cµ) → C

which induces a non-singular pairing

a: Hp(X;Cµ−1
)⊗Hp(X;Cµ) → C

Thus, the vector spaces Hp(X;Cµ−1
) and Hp(X;Cµ) are dual.

Appendix D.3. Poincaré duality

Let X be an oriented connected compact manifold of dimension n. Then Hn(X, ∂X)
is isomorphic to Z and the orientation is a choice of the isomorphism, or, equiva-
lently, the choice of a generator of Hn(X, ∂X). We denote the generator by [X].
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Let µ : H1(X) → C× be a homomorphism. There are the Poincaré-Lefschetz
duality isomorphisms

[X] a: Hp(X;Cµ) → Hn−p(X, ∂X;Cµ),

[X] a: Hp(X, ∂X;Cµ) → Hn−p(X;Cµ)

Similarly to the case of non-twisted coefficients, there are non-singular pairings:
the cup-product pairing

`: Hp(X;Cµ)×Hn−p(X, ∂X;Cµ−1
) → Hn(X;C) = C

and intersection pairing

◦ : Hp(X;Cµ)×Hn−p(X, ∂X;Cµ−1
) → C (D.4)

However, the local coefficient systems of the homology or cohomology groups in-
volved in a pairing are different, unless Imµ ⊂ {±1}.

Appendix D.4. Conjugate local coefficient systems

Recall that for vector spaces V and W over C a map f : V → W is called semi-linear
if f(a + b) = f(a) + f(b) for any a, b ∈ V and f(za) = zf(a) for z ∈ C and a ∈ V .
This notion extends obviously to fiber-wise maps of complex vector bundles. If ξ

and η local coefficient systems of the type that we consider, then fiber-wise semi-
linear bijection ξ → η commuting with all the transport maps is called a semi-linear

equivalence between ξ and η.
For any local coefficient system ξ with fiber C on X there exists a unique local

coefficient system on X which is semi-linearly equivalent to ξ. It is denoted by ξ

and called conjugate to ξ. If ξ = Cµ, then ξ is Cµ, where µ(x) = µ(x) for any
x ∈ H1(X).

Appendix D.5. Unitary local coefficient systems

A homomorphism µ : H1(X) → C× is called unitary if Imµ ⊂ S1 = U(1) = {z ∈
C | |z| = 1}. In S1 the inversion z 7→ z−1 coincides with the complex conjugation:
if |z| = 1, then z−1 = z. Therefore if µ : H1(X) → C× is unitary, then Cµ = Cµ−1

and there exists a semi-linear equivalence Cµ → Cµ−1
.

This semi-linear equivalence induces semi-linear equivalence

Hk(X;Cµ) → Hk(X;Cµ−1
)

and similar semi-linear equivalences in cohomology and relative homology and co-
homology.

Combining a semi-linear isomorphism

Hn−p(X, ∂X;Cµ) → Hn−p(X, ∂X;Cµ−1
)
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of this kind with the intersection pairing (D.4) we get a sesqui-linear pairing

◦ : Hp(X;Cµ)×Hn−p(X, ∂X;Cµ) → C (D.5)

(Sesqui-linear means that it is linear on the first variable, and semi-linear on the
second one.) This pairing is non-singular, because the bilinear pairing (D.4) is
non-singular, and (D.5) differs from it by a semi-linear equivalence on the second
variable.

Appendix D.6. Intersection forms

Let X be an oriented connected compact smooth manifold of even dimension n = 2k

and µ : H1(X) → C× be a unitary homomorphism. Combining the relativisation
homomorphism

Hn−p(X;Cµ) → Hn−p(X, ∂X;Cµ)

with the pairing (D.5) for p = k define sesqui-linear form

◦ : Hk(X;Cµ)×Hk(X;Cµ) → C (D.6)

It is called the intersection form of X.
If k is even, this form is Hermitian, that is α ◦ β = β ◦ α. If k is odd, it is

skew-Hermitian, that is α ◦ β = −β ◦ α.
The difference between Hermitian and skew-Hermitian forms is not as deep as

the difference between symmetric and skew-symmetric bilinear forms. Multiplica-
tion by i =

√−1 turns a skew-Hermitian form into a Hermitian one, and the original
form can be recovered. In order to recover, just multiply the Hermitian form by −i.

The intersection form (D.6) may be singular. Its radical, that is the orthogonal
complement of the whole Hk(X;Cµ), is the kernel of the relativisation homomor-
phism Hk(X;Cµ) → Hk(X, ∂X;Cµ). It can be described also as the image of the
inclusion homomorphism

Hk(∂X;Cµ in∗) → Hk(X;Cµ),

where in∗ is the inclusion homomorphism H1(∂X) → H1(X).

Appendix D.7. Twisted signatures and nullities

As well-known for any Hermitian form on a finite-dimensional space V there exists
an orthogonal basis in which the form is represented by a diagonal matrix. The
diagonal entries of the matrix are real. The number of zero diagonal entries is
called the nullity , and the difference between the number of positive and negative
entries is called the signature of the form. These numbers do not depend on the
basis.

For a skew-Hermitian form by nullity and signature one means the nullity and
signature of the Hermitian form obtained by multiplication of the skew-Hermitian
form by i.
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For a compact oriented 2k-manifold X and a homomorphism µ : H1(X) → C
the signature and nullity of the intersection form

◦ : Hk(X;Cµ)×Hk(X;Cµ) → C

are denoted by σµ(X) and nµ(X), respectively, and called the twisted signature
and nullity of X.

The classical theorems about the signatures of the symmetric intersection forms
of oriented compact 4k-manifolds are easily generalized to twisted signatures:

Theorem App.D.A Additivity of Signature. Let X be an oriented compact
manifold of even dimension. If A and B are its compact submanifolds of the same
dimension such that A ∪ B = X, IntA ∩ IntB = ∅ and ∂(A ∩ B) = ∅, then for
any µ : H1(X) → C×

σµ(X) = σµ in∗(A) + σµ in∗(B)

where in denotes an appropriate inclusion.

Theorem App.D.B Signature of Boundary. Let X be an oriented compact
manifold of odd dimension. Then σµ in∗(∂X) = 0 for any µ : H1(X) → C×.
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