
FROM THE SIXTEENTH HILBERT PROBLEM TO
TROPICAL GEOMETRY

OLEG VIRO

Part 1. A story of mystery, mistakes and solution

How important to read classics. In 2000 I was invited to give a
talk on the 16th Hilbert problem. In order to prepare the talk, I read
the text of the problem and was astonished. I realized how difficult
was to formalize the problem and how much the modern understanding
differs from Hilbert’s one. The most striking discovery: the sixteenth
Hilbert’s problem was solved long ago.

1. Let us read the Sixteenth Hilbert Problem

The title of the corresponding part of Hilbert’s talk [9] is
16. Problem of the topology of algebraic curves and surfaces.
Hilbert started with reminding of a background result:

The maximum number of closed and separate branches which
a plane algebraic curve of the n-th order can have has been
determined by Harnack (Mathematische Annalen, vol. 10).

Here Hilbert referred to the following Harnack inequality.1The number of connected components

of a plane projective real

algebraic curve of degree n

 ≤ (n− 1)(n− 2)

2
+ 1.

Digression on the nature of the Harnack Inequality. The Har-
nack Inequality can be proved by very different arguments. This unveils
the dual nature of the subject.

Harnack’s proof. Assume the contrary: let a curve A of degree n

has #(ovals) > M = (n−1)(n−2)
2

+ 1. By an oval of a non-singular real
algebraic plane projective curve A one means a connected component

1The words Harnack inequality are confusing: there are other, more famous
Harnack inequalities concerning values of a positive harmonic function.
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C of the set of real points of A zero homologous modulo 2 (that is C
realizes 0 ∈ H1(RP 2;Z/2Z)).

Draw a curve B
¯
of degree n−2 through M points chosen on M ovals

of A and n− 3 points on one more connected component.

A curve of degree n − 2 is defined by an equation with (n−1)n
2

coef-
ficients. The condition that it passes through a given point is a lin-
ear equation on the coefficients. Hence a curve can be drawn indeed
through

(n− 1)n

2
− 1 =

(n− 1)(n− 2)

2
+ n− 1− 1 = M + n− 3

points. On the other hand, let us estimate the number of intersection
points. Since each oval is met an even number of points, this number
is at least

2M + n− 3 = (n− 1)(n− 2) + 2 + n− 3 = n2 − 2n+ 1 > n(n− 2).

However, by the Bezout Theorem, the number of intersection points
cannot be greater than n(n− 2). �
Klein’s proof. The Harnack Inequality is an immediate corollary of
the following theorem applied to the complexification of the curve and
the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, σ : S → S
an orientation reversing involution, and F the fixed point set of σ.
Then #connected components(F ) ≤ genus(S) + 1.

Lemma. Under the assumptions of Theorem above,

#connected components(S r F ) ≤ 2.

Proof of Lemma. Let A be a connected component of S rF . Then
Cl(A) ∪ σ(A)

¯
is a closed surface. Hence Cl(A) ∪ σ(A) = S. If A 6=

σ(A), then #connected components (S r F ) = 2. If A = σ(A), then
#connected components (S r F ) = 1. �
Proof of Theorem. A curve with

#connected components (S) > genus(S) + x

divides S to > x + 1 components. This follows immediately from the
classical definition of genus. �

Which of the proofs of the Harnack Inequality do you prefer? Har-
nack’s proof is confined in the real domain and relies on the Bezout
Theorem. Klein’s proof relies on simple topological considerations,
which run in the complexification. Harnack was a graduate student of
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Klein, and the Harnack Inequality belongs to his thesis. It was pub-
lished in Mathematische Annalen [7]. Later, in the same volume of
Mathematische Annalen, Klein published [21] his own proof.

Relative position of branches. Let us return back to Hilbert’s
text. He continued:

There arises the further question as to the relative position of
the branches in the plane.

This question was raised by Hilbert in his paper [8]. Harnack, in the
paper [7] mentioned above constructed curves with the maximal number
of components for each degree. However, his curves are very special:

• The depth of each of their nests ≤ 2.
• A Harnack curve of degree n

¯
has 3n2−6n

8
+1 outer and n2−6n

8
+1

inner ovals.

In degree 6 this means that a Harnack curve has 10 outer ovals and 1

inner oval: .

Harnack’s construction [7].

Take a line and circle:

Perturb their union:

Perturb the union of
the result and the line:

Perturb the union of
the result and the line:

And so on. . .

Hilbert’s construction. Hilbert in his paper [8] suggested another
construction:
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An ellipse does here what the line did in Harnack’s construction.

Hilbert sextics. Each Hilbert’s curve of degree 6 has one of the
following two configurations of ovals:

(1) the configuration obtained by Harnack:

(2) a new configuration, which cannot be realized by Harnack’s con-

struction:

Hilbert worked hard, but could not construct curves of degree
6 with 11 connected components positioned with respect to each other
in any other way. He concluded that this is impossible. and
turned to proof of impossibility:

As to curves of the 6-th order, I have satisfied myself–by a com-
plicated process, it is true–that of the eleven branches which
they can have according to Harnack, by no means all can lie ex-
ternal to one another, but that one branch must exist in whose
interior one branch and in whose exterior nine branches lie, or
inversely.

In other words, only mutual positions of ovals realized by Harnack’s
and Hilbert’s constructions are possible.
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Hilbert’s “complicated process” allows one to answer to virtually all
questions on topology of curves of degree 6. Now it is called Hilbert-
Rohn-Gudkov method.

Hilbert-Rohn-Gudkov method involves a detailed analysis of sin-
gular curves which could be obtained by continuous deformation from
a given nonsingular one.

The Hilbert-Rohn-Gudkov method required complicated fragments
of singularity theory , which had not been elaborated at the time of
Hilbert.

Hilbert’s arguments were full of gaps. His approach was realized
completely only 69 years later by D.A.Gudkov. In 1954 Gudkov, in
his Candidate dissertation (Ph.D.), proved Hilbert’s statement about
topology of sextic curves with 11 components. 15 years later, in his
Doctor dissertation, Gudkov disproved it and found the final answer.

Call for an attack. A “complicated process” could not really
satisfy Hilbert. Desperately wishing to understand the real reasons of
this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate
branches when their number is the maximum seems to me to be
of very great interest,

Why did Hilbert distinguish curves with maximal number of branches?
Extremal cases of inequalities had been known to be of extreme interest.
Hilbert deeply appreciated this paradigm of the calculus of variations.

Now people (especially, specialists) tend to widen the content of
Hilbert’s 16th problem as just a call for study of the topology of all real
algebraic varieties. To support this view, they cite also the next piece
of Hilbert’s text:

and not less so the corresponding investigation as to the number,
form, and position of the sheets of an algebraic surface in space.

The word corresponding is crucial here. Without it, this would really
be a mere call to study the topology of real algebraic surfaces. So,
what is “the corresponding”? Hilbert continues:

Till now, indeed, it is not even known what is the maximum
number of sheets which a surface of the 4-th order in three
dimensional space can really have (Cf. Rohn, “Flächen vierter
Ordnung” 1886).

Solutions. Now we know that the maximum number of connected com-
ponents of a quartic surface in the 3-dimensional projective space is 10.
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This was proven in 1972 by V.M.Kharlamov in his Master thesis [13], in
the breakthrough of 1969-72, which solved the sixteenth Hilbert prob-
lem.

All the questions contained, explicitly or implicitly, in the sixteenth prob-
lem have been answered byD.A.Gudkov, V.I.Arnold, V.A.Rokhlin
and V.M.Kharlamov in this breakthrough.

In 1969, D.A.Gudkov [3] found the final answer to the question about
position of real branches of maximal curves of degree 6.

V.I.Arnold [1] and V.A.Rokhlin [32] found in 1971-72 a conceptual
cause of the phenomenon which struck Hilbert.

V.M.Kharlamov [17] completed by 1976 the “corresponding investi-
gation” of nonsingular quartic surfaces.

All in all this gives good reasons to consider the sixteenth Hilbert
problem solved. However, I am not aware about any publication,
where it is claimed.

Unusual? The solution was initiated by completion of long difficult
technical work, which looked like a final point. It followed by opening
a new world with a relations to the complex domain, 4-dimensional
topology, complex algebraic geometry.

The sixteenth Hilbert problem served the symbol of the break-
through. Nobody wanted to dispose the symbol. Nobody cared to
report that the puzzle had been solved.

2. Breakthrough

Isotopy classification of nonsingular sextics. In 1969, Gudkov
completed isotopy classification of nonsingular real algebraic plane pro-
jective curves of degree 6. The project started in 1948. The adviser of
Gudkov, A.A.Andronov, proposed him to develop theory of degrees of
coarseness for real algebraic curves similar to the one that he developed
in the theory of dynamical systems. I.G.Petrovsky suggested to unite
this with study of sextics.

In 1954 Gudkov defended PhD. About 12-14 years later he prepared
a publication. The summary of the results can be presented in the
following table, where the ordinate is the total number of ovals, the
abscissa is the difference between the numbers p and n of even and
odd ovals of the curve (an oval is even or odd if it lies inside of, respec-
tively, even or odd number of other ovals). The coordinates characterize
uniquely an isotopy type of a nonsingular curve of degree 6, except the
situation when p + n = 3 and p − n = 1 (i.e., p = 2, n = 1). In the

latter situation there are two isotopy types: and .
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10
9
8
7
6
5
4
3
2
1
0

11

8 6 4 2 0 2 4 6 8 1010p− n:

p+ n:

The referee did not like it. He suggested to make it more sym-
metric.

10
9
8
7
6
5
4
3
2
1
0

11

8 6 4 2 0 2 4 6 8 1010p− n:

p+ n:

Gudkov found a mistake and the final answer.

Gudkov’s M-curve [4], [5]. The missing curve

disproved Hilbert’s statement.
By the way, in the first version of his paper with formulations of the

problems Hilbert was more cautious and correct:

As to curves of the 6-th order, I have satisfied myself–by a com-
plicated process, it is true–that of the eleven branches which
they can have according to Harnack, by no means all can lie
external to one another.

He stopped here. Later he added words, which made the statement
incorrect:

but that one branch must exist in whose interior one branch and
in whose exterior nine branches lie, or inversely.

Gudkov’s conjecture. Symmetric top of the table
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10
9
8
7
6
5
4
3
2
1
0

11

8 6 4 2 0 2 4 6 8 1010p− n:

p+ n:

forced Gudkov [4] to formulate:
Gudkov’s Conjecture. For any curve of even degree d = 2k with
maximal number of ovals, p− n ≡ k2 mod 8.

It was this conjecture that inspired the breakthrough.

Arnold’s congruence. In 1971 Arnold [1] proved a half of Gudkov’s
conjecture: the same congruence, but modulo 4: p− n ≡ k2 mod 4.

Arnold’s proof works for a larger class of curves: for any nonsingular
curve of type I – a curve whose real ovals divide the Riemann surface of
its complex points. The proof relies on the topology of the configuration
formed in the complex projective plane CP 2 by the complexification
CA of the curve and the real projective plane RP 2.

Complexification. Curve A of degree d = 2k, is defined by equa-
tion F (x0, x1, x2) = 0 on the projective plane, where F is a real ho-
mogeneous polynomial of degree d. If F is generic, then the equation
F (x0, x1, x2) = 0 defines RA ⊂ RP 2, a collection of circles smoothly

embedded in RP 2, and CA ⊂ CP 2, a smooth sphere with g = (d−1)(d−2)
2

handles. Since d is even, RA divides RP 2 into RP 2
+, where F (x) ≥ 0,

and RP 2
−, where F (x) ≤ 0. They are well-defined, as F (λx) =

λ2kF (x). Choose F to have RP 2
+ orientable. p− n = χ(RP 2

+).
Let p be the number of even ovals, that is the number of connected

components of RP 2
+, n be the number of odd ovals, thet is the number

of holes in RP 2
+.

How to complexify RP 2
+? In other words, how to complexify the

notion of manifold with boundary? How to complexify inequality
F (x) ≥ 0?

Arnold: Complexification of inequality is two-fold branched covering!
Indeed, F (x) ≥ 0 ⇔ ∃y ∈ R : F (x) = y2. F (x0, x1, x2) = y2 defines

a surface CY in 3-variety

E = (C3 r 0)× C/(x0, x1, x2, y) ∼ (tx0, tx1, tx2, t
ky).
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Projection CY → CP 2 : [x0, x1, x2, y] 7→ [x0:x1:x2] is a two-fold cover-
ing branched over CA. It maps RY onto RP 2

+. Let τ : CY → CY be
the automorphism of this branched covering, it is an involution with
fix(τ) = CA.

In homology. One can show that π1(CY ) = 0. This simplifies algebra,
makes it commutative. Further, H0(CY ) = H4(CY ) = Z, H1(CY ) =
H3(CY ) = 0.

H2(CY ) = Z4k2−6k+4. This is the scene of our algebraic action. Here
are its decorations:

• Intersection form H2(CY ) × H2(CY ) → Z : (α, β) 7→ α ◦ β, it
is a symmetric bilinear unimodular form.
• Involution τ∗ : H2(CY )→ H2(CY ).
• Form of involution τ H2(CY )×H2(CY )→ Z : (α, β) 7→ α◦τβ =
α ◦ τ∗(β). This is also a symmetric bilinear unimodular form.
• Homology classes [∞], [RY ], [CA] ∈ H2(CY ). We orient RY .
[∞] is the preimage of a generic projective line under CY →
CP 2. [CA] ◦τ ξ ≡ ξ ◦τ ξ mod 2 for any ξ. Because X ∩ τ(X)
= (X ∩ CA) ∪ (even number of points). [CA] = k[∞]; k[∞] ≡
[RY ] mod 2, if RA divides CA. Hence [RY ]◦τ ξ ≡ ξ◦τ ξ mod 2
for any ξ, if RA divides CA.

Proof of Arnold’s congruence. Arithmetics digression. Let
Φ : Zr × Zr → Z be a unimodular symmetric bilinear form. w ∈ Zr is
a characteristic class of Φ, if Φ(x, x) ≡ Φ(x,w) mod 2 for any x ∈ Zr.
Any unimodular symmetric bilinear form has a characteristic class.
Any two characteristic classes are congruent modulo 2.

Lemma. For any two characteristic classes w,w′ of a form Φ
Φ(w′, w′) ≡ Φ(w,w) mod 8

Proof. w′ = w + 2x for some x ∈ Zr. Hence Φ(w′, w′) = Φ(w,w) +
4Φ(x,w) + 4Φ(x, x), but Φ(x, x) ≡ Φ(x,w) mod 2. Therefore
Φ(w′, w′) ≡ Φ(w,w) + 8Φ(x, x) mod 8. �

Back to CY : As we have seen [CA] and [RY ] are characteristic for
◦τ , if RA divides CA. Therefore [CA] ◦τ [CA] ≡ [RY ] ◦τ [RY ] mod 8.
[CA] ◦τ [CA] = [CA] ◦ [CA] = k[∞] ◦ k[∞] = k2[∞] ◦ [∞] = 2k2.
[RY ] ◦τ [RY ] = −[RY ] ◦ [RY ] = −(−χ(RY )) = χ(RY ) = 2χ(RP 2

+) =

2(p − n). Because multiplication by
√
−1 is antiisomorphism between

tangent and normal fibrations of RA + Poincaré-Hopf. Finally, we
get 2k2 ≡ 2(p − n) mod 8, that is p − n ≡ k2 mod 4. Provided RA
bounds in CA. In particular, if p+ n = g + 1. �
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Gudkov-Rokhlin congruence. Soon after Arnold’s paper [1], Rokhlin
published a paper [31], Proof of Gudkov’s conjecture. He extended
his famous topological theorem on divisibility by 16 of signature of a
smooth closed 4-manifold with Spin structure, and deduced from this
extension the Gudkov congruence. The deduction was wrong. The
mistake was discovered and fixed much later by Alexis Marin [22].

Why did it take that long (8 years) to find the mistake? Because
another proof of the Gudkov conjecture became available shortly after
publication of the wrong one.

Four months after publication of [31], Rokhlin published [32] a gen-
eralization of Gudkov conjecture to maximal varieties of any dimension
with a simple and correct general proof.

Rokhlin’s Theorem. Let A be a non-singular real algebraic variety
of even dimension with dimZ2 H∗(RA;Z2) = dimZ2 H∗(CA;Z2).

2 Then
χ(RA) ≡ σ(CA) mod 16.

Between the two papers by Rokhlin, [31] and [32], there was a paper
[13] by Kharlamov with the upper bound (=10) for the number of
connected components of a quartic surface.

The role of complexification. Hilbert’s puzzle had been solved! The
answer is in the complexification.

Gudkov’s conjecture and its high-dimensional generalization proven
by Rokhlin explain all the phenomena which had struck Hilbert and
motivated his sixteenth problem. They are real manifestations of fun-
damental topological phenomena located in the complexification.

Hilbert never showed a slightest sign that he had expected a progress
via getting out of the real world into the realm of complex.

Felix Klein did. He consciously looked for interaction of real and
complex pictures as early as in 1876.

Mystery of the 16th Hilbert problem that emerged when the
problem was solved is in its number! The number sixteen plays a
very special role in the topology of real algebraic varieties.

Rokhlin’s paper with his proof of Gudkov’s conjecture and its gen-
eralizations is entitled: “Congruences modulo sixteen in the sixteenth
Hilbert problem”.

Many of subsequent results in this field have also the form of con-
gruences modulo 16. It is difficult to believe that Hilbert was aware
of phenomena that would not be discovered until some seventy years
later. Nonetheless, 16 was the number chosen by Hilbert.

2This is an extremal case of the Smith-Thom inequality according to which
dimZ2 H∗(RA;Z2) ≤ dimZ2 H∗(CA;Z2) for any A.
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The second part. Hilbert’s sixteenth problem does not stop where I
stopped citation, it has the second half:

In connection with this purely algebraic problem, I wish to
bring forward a question which, it seems to me, may be at-
tacked by the same method of continuous variation of coef-
ficients, and whose answer is of corresponding value for the
topology of families of curves defined by differential equations.
This is the question as to the maximum number and posi-
tion of Poincaré’s boundary cycles (cycles limites) for a dif-
ferential equation of the first order and degree of the form

dy
dx

= Y
X
,

where X and Y are rational integral functions of the nth degree
in x and y.
Written homogeneously, this is

X

(
y
dz

dt
− z

dy

dt

)
+ Y

(
z
dx

dt
− x

dz

dt

)
+

Z

(
x
dy

dt
− y

dx

dt

)
= 0,

where X, Y , and Z are rational integral homogeneous functions
of the nth degree in x, y, z, and the latter are to be determined
as functions of the parameter t.

There is still quite a little progress in the second half of the sixteenth
problem. Hilbert’s hope for a similarity between the two halves has not
realized.

Finiteness for the number of limit cycles for each individual equa-
tion has been proven. But even for n = 2, the maximal number of
limit cycles is still unknown. See a nice survey [10] by Ilyashenko.

Success of the first part. In comparison to the second half, the first
half of the 16th Hilbert problem was extremely successful:

It contained difficult concrete problems (maximal sextic curves, num-
ber of components of a quartic surface) which have been solved.

It attracted attention to a difficult field in the core of Mathematics.
Topological problems are the roughest and allow one to treat com-

plicated objects unavailable for investigation from more refined view-
points.

Although the concrete questions contained in the first half have been
completely solved, the subject has little chances to be completed. As
a “thorough investigation”, the problem can hardly be solved.
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3. Post Solution

What has happened since then? Use of complexification made
possible to find numerous restrictions on the topology of real algebraic
varieties.

Besides the congruence modulo 4, Arnold proved in the same paper
[1] several inequalities on numerical characteristics of mutual position
of ovals. He found a few useful ways to translate geometric phenomena
in the real domain to the complex domain and back.

Kharlamov [14], [16], Gudkov and Krakhnov [6], Nikulin [29], Fiedler
[2] and Mikhalkin [24] proved congruences modulo various powers of 2
similar to the Gudkov-Rokhlin congruence.

Rokhlin [33] observed that a curve of type I brings a distinguished
pair of orientations which come from the complexification and discov-
ered a topological restriction on them. He suggested to change the
main object of study: Add to topology of the real variety the topology of
its position in the complexification.

Rigid isotopy is a deformation of a nonsingular real algebraic variety
in the corresponding class of nonsingular real algebraic varieties.

Complex picture enhances our vision of rigid isotopies. Rokhlin [33]
observed that curves of degree 5 with 4 ovals may be of type I or type
II. This is why these curves are not rigid isotopic, although their real
parts have the same topology.

Plane projective nonsingular curves of degree ≤ 4 were classified up
to rigid isotopy by XX century.

Curves of degree 4, by Zeuthen. The rigid isotopy classification co-
incides with the isotopy classification.

Curves of degree 5 – Kharlamov [19]. The rigid isotopy classes are
defined by the topology of real part and the type.

Curves of degree 6 – Nikulin [28]. As in degree 5, the rigid isotopy
classes are defined by the topology of real part and the type.

Surfaces of degree 4 – Nikulin [28] and Kharlamov [18].

Constructions of curves similar Harnack’s and Hilbert’s constructions
mentioned above cannot give nonsingular plane curves of all isotopy
types for degree ≥ 7

I had to develop [36], [37] a technique for perturbations of curves
with complicated singularities and gluing of algebraic varieties.

This technique was used to obtain the isotopy classification of non-
singular projective curves of degree 7 (Viro [34]) and counter-examples
to the Ragsdale conjecture (Viro [34], Itenberg [12]).
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This technique is the subject of the second part of this talk. See also
surveys [40] and [12].

To what degree? Often people ask: To what degree the Hilbert
sixteenth problem has been solved?

The problem was not to give the topological classification of real al-
gebraic curves of some specific degree. However, one may ask: For what
degrees the classification problems on topology of real algebraic varieties
are solved?

Isotopy classification problem of nonsingular plane projective curves
of degree n has been solved for n ≤ 7.

For n ≤ 5 it was easy, solved in XIX century.
For n = 6 in 1969 by Gudkov [3].
For n = 7 in 1979 by Viro [34].
For maximal curves the isotopy classification has almost been done in

degree 8.
Only 6 isotopy types are questionable.
For pseudoholomorphic M-curves the isotopy classification has been

done in degree 8 by Orevkov [30].
Rigid isotopy classification of nonsingular plane projective curves of

degree n has been solved for n ≤ 6.
For n ≤ 4 in XIX century by Zeuthen, Klein.
For n = 5 in 1981 by Kharlamov [19].
For n = 6 in 1979 by Nikulin [28].
For nonsingular surfaces in the projective 3-space all the problems

have been solved for degree ≤ 4.
For n ≤ 2 see textbooks on Analytic Geometry.
For n = 3 by Klein.
For n = 4 in the seventies by Nikulin [28] and Kharlamov [18],

[20].

Other objects of real algebraic geometry also were studied: curves
on surfaces, curves with symmetries, degenerations of curves and sur-
faces, surfaces of classical types (like rational, Abelian, Enriques and
K3 surfaces), rational 3-varieties, singular points of real polynomial
vector fields, critical points of real polynomials, real algebraic knots
and links, amoebas of real and complex algebraic varieties, real pseu-
doholomorphic curves, tropical varieties, . . .

Open problems.

(1) The second half of the sixteenth Hilbert problem!
(2) How many connected components can a surface of degree 5 in

the real projective 3-space have?



14 OLEG VIRO

(3) Rigid isotopy classification of curves for degree 7.
(4) Are all nonsingular real projective curves of a given odd degree

with connected set of real points rigid isotopic to each other?
(5) Find algebraic expressions for basic topological invariants of a

real algebraic curve (and, further, hypersurface, . . . ) in terms
of its equation.

(6) Sharp estimates in the theory of fewnomials.
(7) Develop real algebraic knot theories.
(8) Study metric characteristics of real algebraic curves.
(9) Formulate counter-parts of topological questions about real al-

gebraic varieties for varieties over other non algebraically closed
fields,

(10) and solve them!

Part 2. Patchworking algebraic varieties and
Tropical Geometry

4. Patchwork

Restrictions and constructions. A work towards isotopy classifica-
tion of real algebraic varieties of a specific type (say, non-singular plane
projective curves of a fixed degree) splits into work in two directions:
first, one should find restrictions on topology imposed by the algebraic
nature; second, one should prove existence of algebraic varieties of all
the classes satisfying the restrictions.

In the rest of the talk we consider the technique which is used in the
constructions. I discovered this technique in 1979-1980. It proved to
be useful for many other problems.

Construction of sextics. Here is how this technique works: 53 out of
56 topological types of non-singular plane projective curves of degree
6 can be realized by perturbation of the union of 3 ellipses tangent to
each other at 2 points.

What can jump out of the points of tangency under perturbation?
All possible isotopy types of the result are shown in Figure 1.

The two points of tangency can be perturbed simultaneously and
independently. Figure 2 shows how curves of degree 6 with the maximal
number of components of all three isotopy types are obtained.

Similarly non-singular curves of degree 7 of all topological types
which were not realized by 1979 are obtained from four curves with
two singular points of the same kind.
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α = 4 0 3 0 2 1 0 1 0 0
β = 0 4 0 3 0 1 2 0 1 0

γ = 3 2 1 0 0
δ = 0 0 0 1 0

Figure 1. Perturbations of three branches tangent
quadratically to each other at a point. Here 〈n〉 denotes
n ovals which lie outside each other. Possible pairs (α, β),
(γ, δ) are shown in the tables.

What lies behind these pictures? What are the equations of the
curves?

Draw equations. Equations of curves are to be drawn on plane.
A monomial aklx

kyl should be placed at (k, l) ∈ R2. A polynomial
a(x, y) =

∑
kl aklx

kyl should sit on its Newton polygon

∆(a) = conv{(k, l) ∈ R2 | akl 6= 0}.

Harnack’s curve Gudkov’s curve Hilbert’s curve

Figure 2. Obtaining of the M-sextics by small pertur-
bation of the union of three ellipses.
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The Newton polygon for a generic polynomial of degree 6 is the
triangle with vertices (0, 0), (6, 0), (0, 6).

However we started from the union of 3 ellipses. On RP 2 it can be
placed as the union of 3 parabolas (y − ax2)(y − bx2)(y − cx2) = 0.
Then the Newton polygon is [(6, 0), (0, 3)].

To perturb, we fill the two missing triangles with equations of curves
we want to insert instead of neighborhoods of the singular points.

Introduce a small parameter t > 0 to keep the new fragments of
the polynomial in peace with each other. For sufficiently small t, the
fragments defined by small terms are small, separated and do not spoil
each other.

t4
t6

t2

t2

t4

t6

tt3t5

t

t3

t5

Log paper. A (double) logarithmic paper is a graph paper with loga-
rithmic scales on both axes. The transition to the log paper corresponds
to the change of coordinates:{

u = ln x

v = ln y.

How do graphs look on the log paper? The simplest special case:
y = axk. We are forced to consider only positive x, y and hence assume
that a > 0. Then v = ln y = ln(axk) = k ln x + ln a = ku + ln a, or
v = ku+ b, where b = ln a. Thus y = axk turns into v = ku+ b.

Similarly, any binomial equation yl = axk defines line lv = ku+ b.
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Logarithmic asymptotes. Let a be a real polynomial in x, y,

a(x, y) =
∑
kl

aklx
kyl

and V be the curve defined by a(eu, ev) = 0. Let ∆ be the Newton
polygon of a,

∆ = conv{(k, l) ∈ R2 | akl 6= 0},
Σ be a side of ∆, and ν = (m,n) be an integer vector orthogonal to Σ.

∆

Σ

ν

Go in the direction of ν looking at V . This movement corresponds to
the following change of coordinates: (u, v) 7→ (mt+ u, nt+ v). Here is
what happens to the equation:

a(eu, ev) = 0 7→ a(emt+u, ent+v) = 0,

that is
∑

ak,le
ku+lv = 0 7→

∑
(ak,le

(km+ln)t)eku+lv = 0. All the coeffi-
cients tend to∞. The distributions of the factors can be shown on the
Newton polygon. The same factors appear on the line orthogonal to ν:

∆

Σ

ν

e10t

e5t
e8t

e3t e4t

Calibrate!

∆

Σ

ν

1

e−5t

e−2t

e−7t e−6t

a(emt+u, ent+v) = 0 tends to aΣ(u, v) =
∑

(k,l)∈Σ
akle

ku+lv = 0 as t→∞.
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Picture of logarithmic asymptotes:

In high dimensions everything goes similarly. Consider a hyper-
surface defined by a generic polynomial. The principal part of the
hypersurface fits inside of sufficiently expanded Newton polyhedron.

The space outside of ∆ is divided into domains corresponding to the
faces of ∆. A prism corresponds to a principal face.

The domain corresponding to Σ has a shape of Σ × Σ∧, where Σ∧ is
the cone dual to Σ.
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In the domain corresponding to face Σ the hypersurface is approxi-
mated by the hypersurface defined by the part of the polynomial sitting
on Σ.

Consider a trace of the picture on a hyperplane which is far bellow the
Newton Polyhedron.
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The intersection of the hypersurface with the hyperplane is made of
pieces corresponding to the faces of ∆ looking down.

This can be used to patchwork a hypersurface. Just prepare pieces
matching each other and put them on faces of a polyhedron.

Combinatorial patchwork. If only the smallest possible pieces are
used, then the patchwork is nothing but combinatorics.

Initial data for combinatorial patchworking.

• m a positive integer (the degree of the curve),

• ∆ the triangle with vertices (0, 0), (m, 0),
(0,m), (In our example, m = 2.)

• τ a convex triangulation of ∆ with integer ver-
tices.
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• ν : ∆ −→ R+ a convex PL-function, such that
triangles of τ are its domains of linearity.

400

0

1

2

• σk,l a sign (+ or −) at each vertex (k, l) of τ .

+

−

+

−

− +

Patchworking of polynomials.

bt(x, y) =
∑

(k, l) runs over

vertices of τ

σk,lt
ν(k,l)xkyl.

Patchworking of PL-curve.

+

−

+

−

− +

7→

+

+

−

−+

−

Combinatorial Patchwork Theorem. Let m, ∆, τ , σk,l and ν
be initial data, bt be the patchworked polynomial and L ⊂ ∆ be the
patchworked PL-curve.

Then for a sufficiently small t > 0 the polynomial bt defines in the
first quadrant R2

++ = {(x, y) ∈ R2 | x, y > 0} a curve at such that the
pair (R2

++, at) is homeomorphic to (Int∆, L ∩ Int∆).
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Patchwork in all quadrants.

Adjoin to ∆ its images ∆x = sx(∆),
∆y = sy(∆), ∆xy = sx ◦ sy(∆), where
sx, sy are reflections against the coordi-
nate axes. Put A∆ = ∆ ∪∆x ∪∆y ∪∆xy.

+

−

+

−

− +

Extend τ to a symmetric triangulation Aτ
of A∆. +

−

+

−

− +

Extend σi,j to a distribution of signs at the
vertices of Aτ by the rule: σi,jσεi,δjε

iδj =
1, where ε, δ = ±1. (In other words, pass-
ing from a vertex to its mirror image with
respect to an axis we preserve its sign if
the distance from the vertex to the axis is
even, and change the sign otherwise.)

+

−

− +

−

+

+

−

+

+

+ +

+

Draw the midlines.

−

+

−

− +++

+

−

+

+

+ +
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Addendum to the Patchwork Theorem. Under the assumptions
of Patchwork Theorem, for all sufficiently small t > 0 there exist a
homeomorphism A∆ → R2 mapping AL onto the the affine curve de-
fined by bt and a homeomorphism P∆ → RP 2 mapping PL onto the
projective closure of this affine curve.

Patchworking of the Harnack curve of degree 6.
−

− −

− − −

−−− −

− −−

−

−

−

−

−

−

−

− −

−

−−

−

−

−

−

−

−

− − − − − −

−−−−

−

−

−

−

−

−

− −

−

−

−

−

−−

+ +

+

+ ++ + +

++

++ + + + +

+++

+ +

+

+ +

++ +

++

+

Gudkov’s curve.

−

− −

−−− −

− −

−

− −

−−

−

−

− − − − −

−

−

−

−

−

−

− −

−

+

+

+ + + + +

+++

+

+

++ +

++

−

+

+

+

++

+

+ ++

+

++

+ + +

+

+

+

−

−

+

−

−

−−−

−

−−+

+

+

+

−

−

−

−
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Curve of degree 10 with 32 odd ovals. Ilia Itenberg’s patchwork
[11] of a counter-example to the Ragsdale Conjecture. This is a curve
of degree 10 with 32 odd ovals.

5. Tropical

Arnold’s advice. In the late nineties Arnold proposed me to look
into papers by Litvinov and Maslov on the Idempotent Mathematics.
Arnold suggested that it may be related to integrals against the Euler
characteristic aka in [39].

I could not find any relation to the integrals, but was not disap-
pointed. This is really a fantastic matter.

Dequantization of positive real numbers is a family of semifields
{Sh}h∈[0,∞). As a set, Sh = R for each h.

The semiring operations ⊕h and �h in Sh are defined as follows:
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a⊕h b =

{
h ln(ea/h + eb/h), if h > 0

max{a, b}, if h = 0
(1)

a�h b = a+ b(2)

These operations depend continuously on h. For h > 0,

Dh : R>0 → Sh : x 7→ h lnx

is a semiring isomorphism of {R>0,+, ·} onto {Sh,⊕h,�h}.
Semiring Sh with h > 0 is a copy of R>0 with the usual operations.
S0 = Rmax+, a copy of R with addition (a, b) 7→ max{a, b} and

multiplication (a, b) 7→ a+ b. (This is an idempotent semiring, for the
addition is idempotent: a+ a = a for any a.)

It is fashionable to consider any one parameter family of objects with
all the objects but one isomorphic to each other and the one degener-
ated as a sort of quantization. Here it makes more sense than usually,
because the deformation was discovered in relation with quantum me-
chanics.

Speaking mathematically: Sh is a continuous degeneration of the
semiring R>0 to Rmax,+

Speaking quantum: S0 is a classical object (idempotent semifield
Rmax+, not that classical in mathematics), Sh with h 6= 0 are quantum
objects (but very classical in mathematics), and the whole family Sh is
a quantization of Rmax,+

Litvinov-Maslov Correspondence Principle [23]. There exists a
(heuristic) correspondence, in the spirit of the correspondence principle
in Quantum Mechanics, between important, useful and interesting con-
structions and results over the field of real (or complex) numbers (or the
semiring of all nonnegative numbers) and similar constructions and results
over idempotent semirings.

Correspondences.

Integral

∫
X

f(x) dx ←→ Supremum sup
X
{f(x)}

Fourier transform

f̃(ξ) =

∫
eixξf(x) dx ←→ Legendre transform

f̃(ξ) = sup{x · ξ − f(x)}

Linear problems ←→ Optimization problems

Polynomial over R+

p(x) =
∑

k akx
k ←→ Convex PL-function

Mp(u) = maxk {ku+ ln ak}
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The dequantization continuously deforms the graph of polynomial
on log paper to the tropical graph of the same polynomial. The defor-
mation consists of the graphs of the same polynomial

∑
k ln(ak)x

k, but
on S2

h with varying h ∈ [0, 1].

Tropical algebra is how one calls the algebra Rmax,+ that is the set
R with operations (a, b) 7→ max{a, b} and (a, b) 7→ a+ b (or rather an
isomorphic algebra Rmin,+).

The adjective tropical was coined by
French mathematicians in honor of Imre
Simon, who resides in São Paolo, Brazil
and was one of the pioneers in algebra
of Rmax,+. This is a semi-ring. Every-
thing is as in a ring, but it has neither
subtraction, nor 0.

Adjoin −∞ to Rmax,+ as 0 and denote the result by T. This is a
semi-field.

Tropical polynomials. A polynomial over T is a convex PL-function
with integral slopes. Indeed, a monomial axk1

1 xk2
2 . . . xkn

n is a + k1x1 +
k2x2 + · · ·+ knxn, a linear function a+ 〈k, x〉.

A tropical polynomial is a finite tropical sum of tropical monomials,
that is the maximum of a finite collection of linear functions.

Tropical geometry is an algebraic geometry over T.
Algebraic geometry is based on polynomials. The tropical geometry

is based on convex PL-functions with integral slopes.
It would be exotic and needless if there were no relations to the

classical algebraic geometry, which is provided by the Litvinov-Maslov
dequantization.

Real algebraic geometry as quantized PL-geometry

Real
polynomials

with positive coefficients

quantization←−−−−−−−
Convex

PL-functions
with integral slopesygenerate generate

y
Real

Algebraic Geometry
in positive quadrant

←−−−−−−−
quantization

Tropical Geometry

Additional simple tricks, like the transition above from patchworking
in the first quadrant to patchworking in all quadrant, allow one to
remove in the left hand side of this diagram all mentions of positivity.
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Furthermore, one can incorporate into the picture complex numbers
with arbitrary arguments. See [27].

Combinatorial patchworking can be presented as a construction of
real tropical plane curve and its dequantization. See details in [41]

Applications of Tropical Geometry (besides combinatorial patch-
working) lie in enumerative geometry, both real and complex. See [25],
[26], [27]. So far all applications are based on the fact that it is easier
to construct tropical varieties rather than algebraic varieties, and de-
formation quantization allows one to keep many interesting properties
of the varieties under consideration.
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