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IN THE 1980s the topology of low dimensional manifolds has experienced the most
remarkable intervention of ideas developed in rather distant areas of mathematics. In the 4-
dimensional topology this process was initiated by S. Donaldson. He applied the theory of the
Yang–Mills equation and instantons to study 4-manifolds. In dimension 3 a similar breakthrough
was made by V. Jones. He discovered his famous polynomial of links in 3-sphereS3 via an
astonishing use of von Neumann algebras. It has been soon understood that deep notions of
statistical mechanics and quantum field theory stay behind the Jones polynomial (see [8,16,18]).
The relevant basic algebraic structures turn out to be the Yang–Baxter equation, theR-matrices,
and the quantum groups (see [5–7]). This viewpoint, in particular, enables one to generalize the
Jones polynomial to links in arbitrary compact oriented 3-manifolds (see [13]).

In this paper we present a new approach to constructing “quantum” invariants of 3-manifolds.
Our approach is intrinsic and purely combinatorial. The invariant of a manifold is defined as
a certain state sum computed on an arbitrary triangulation of the manifold. The state sum in
question is based on the so-called quantum 6j -symbols associated with the quantized universal
enveloping algebraUq(sl2(C)) whereq is a complex root of 1 of a certain degreer > 2 (see [9]).
The state sum on a triangulationX of a compact 3-manifoldM is defined, roughly speaking,
as follows. Assume for simplicity thatM is closed, i.e.∂M =∅. We consider “colorings” ofX
which associate with edges ofX elements of the set of colors{0,1/2,1, . . . , (r − 2)/2}. Having
a coloring ofX we associate with each 3-simplex ofX theq-6j -symbol

i j k

l m n
∈C

where(i, l), (j,m), (k, n) are the pairs of colors of opposite edges of this simplex. We multiply
these symbols over all 3-simplexes ofX and sum up the resulting products (with certain weights)
over colorings ofX.

The main point of the construction outlined above is independence of the state sum
of the choice of triangulation. This is verified using a geometric technique developed by
M.H.A. Newman [12] and J.W. Alexander [1] in the late 1920s. Alexander proved that
some simple transformations of triangulations of polyhedra enable one to relate any two
combinatorially equivalent triangulations. These Alexander transformations are infinite in
number even in the case of 3-dimensional manifolds. However, in the case of triangulations of
manifolds one may pass to the dual cell subdivisions. This passage transforms the Alexander
moves into certain operations on cell complexes. These latter operations can be presented
as compositions of certain local moves, which are finite in number in each dimension. In
particular in dimension 3 there are three such moves. (Essentially these moves were considered
by S. Matveev [11] and R. Piergallini [21] in their study of special spines of 3-manifolds). Thus,
translating our state model into the “dual” language we have to check only 3 identities which
happen to follow directly from the basic properties ofq-6j -symbols.
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The ideas outlined above lead not only to numerical invariants of 3-manifolds but rather to a

3-dimensional non-oriented topological quantum field theory (corresponding to the root of unity

q ; for a general discussion of topological quantum field theories see [2].) In particular, with each

closed surfaceF we associate a finite-dimensional vector spaceQ(F) = Qq(F) overC. The

full modular groupModF (the group of isotopy classes of degree±1 homeomorphismsF → F )

canonically acts inQ(F). Note that to defineQ(F) we have to fix a triangulation ofF and to

show thata posterioriQ(F) does not depend on the choice of triangulation up to a canonical

isomorphism. In this respect our construction resembles very much the construction of simplicial

homology.

It would be most important to relate our invariants of 3-manifolds with Witten’s topological

quantum field theory based on a Feynmann integral with non-abelian Chern–Simons action [18]

and its mathematical counterpart introduced in [13]. In contrast to [18,13], our invariants are not

sensible to orientations of manifolds. Moreover they are defined for non-oriented (and even non-

orientable) manifolds. Note also that the action ofModF in Q(F) discussed above is an honest

linear action in contrast to the projective action in [18,13]. These obsevations suggest that for

orientable 3-manifolds our topological quantum field theory is related toF ⊗ F̄ whereF is the

theory constructed in [13] and overbar is the complex conjugation.

In a forthcoming paper of the first author our constructions will be used to produce invariants

of links in compact 3-manifolds which are computed from triangulations of link exteriors and

which generalize the Jones polynomial of links in the 3-sphere.

In the caser = 3, q = exp(±2π
√−1/3), our invariants may be computed from standard

cohomological invariants of manifolds. In particular, this computation shows non-triviality of

our invariants.

Actual computation of our invariants from their definition is algorithmical but rather work-

consuming. With this view we develop a dual approach to the invariants based on the theory of

simple 2-skeletons of 3-manifolds. This theory generalizes the theory of special spines (see [4,11,

21]). Namely, we show that the invariants may be computed via a state sum model on any simple

2-skeletons. Usually it is easier to deal with simple 2-skeletons than with triangulations. Here the

situation is similar to the one in homology theory where simplicial homology of polyhedra are

computed in terms of cell decompositions. The difference however is that cell decompositions

generalize triangulations whereas simple stratifications generalize the cell subdivisions of 3-

manifolds which are dual to triangulations.

In particular this dual approach enables one to calculate our invariants from Heegaard

diagrams.

Note thatq-6j -symbols were used in [17] in a different manner to produce isotopy invariants

of links in those 3-manifolds which are circle bundles over surfaces.

The paper consists of eight sections. In Section 1 we introduce our state sum models on

triangulations of 3-manifolds. Section 1 begins with an axiomatic description of algebraic objects

which are prerequisite for our approach to constructing invariants. We present the state sum

model for closed 3-manifolds (this case is conceptually simpler) and then proceed to 3-manifolds

with boundary.

In Section 2 we construct the relevant 3-dimensional topological quantum field theory and, in

particular, define the corresponding representations of the modular groups.

Sections 3, 4 and 5 are devoted to proof of independence of the state sum on the choice

of triangulation. In Section 3 we recall the Alexander theorem and translate it into the dual

language. In Section 4 we introduce simple 2-polyhedra and study a version of our model on

these polyhedra. In Section 5 we conclude the proof of the invariance of the state sum.
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In Section 6 we develop an approach to the same invariants based on the theory of simple
stratifications.

In Section 7 we show that theq-6j -symbols whereq is a root of unity fit in the framework of
our constructions.

In Section 8 we present calculation of|M| forM = S3,RP 3,L(3,1) andS1× S2.
Section 9 is concerned with the simplest case: whenq is a cubic root of unity. In this case

we give an interpretation of our state sum invariants in terms of cohomology. In Appendix 1 we
prove a relative version of the Alexander theorem (used in Section 5).

In Appendix 2 we discuss simple spines of manifolds.
Topological part of this paper is written in PL-category. In particular, all manifolds as well as

maps of polyhedra are piecewise linear.

1. STATE SUM INVARIANTS OF TRIANGULATED 3-MANIFOLDS

1.1 Initial data. In this subsection we describe our initial, purely algebraic data which will
be used below to define an invariant of triangulated 3-manifolds.

Fix a commutative ringK with unity. Denote byK∗ the group of invertible elements ofK.
Assume that we are given a finite setI , a functioni 7→ wi : wi : I → K∗, and an elementw
of K∗. Assume that we have distinguished a setadmof unordered triples of elements ofI .
Here we put no condition on this set of triples; in particular, elements of a triple are permitted
to coincide with each other. The triples belonging to this distinguished set will be said to be
admissible.

An ordered 6-tuple(i, j, k, l,m,n) ∈ I is said to be admissible, if the unordered triples

(i, j, k), (k, l,m), (m,n, i), (j, l, n)

are admissible. (A geometric motivation of this definition will be given in the next subsection.)
Assume that with each admissible 6-tuple(i, j, k, l,m,n) ∈ I it is associated an element of

K. We will denote this element by ∣∣∣∣ i j k

l m n

∣∣∣∣
and call it thesymbolof the 6-tuple. Assume finally the following symmetries of the symbol: for
any admissible 6-tuple(i, j, k, l,m,n)

∣∣∣∣ i j k

l m n

∣∣∣∣ = ∣∣∣∣ j i k

m l n

∣∣∣∣ = ∣∣∣∣ i k jl n m

∣∣∣∣ = ∣∣∣∣ i m n

l j k

∣∣∣∣ = ∣∣∣∣ l m k

i j n

∣∣∣∣ = ∣∣∣∣ l j n

i m k

∣∣∣∣. (1)

Note that if the 6-tuple(i, j, k, l,m,n) is admissible then the 6-tuples(j, i, k,m, l, n), (i, k, j, l,
n,m), (i,m,n, l, j, k), (l,m, k, i, j, n) and(l, j, n, i,m, k) involved in (1) are also admissible.

Now we introduce some conditions on initial data.
Let us say that the initial data described above satisfythe condition (∗), if for any

j1, j2, j3, j4, j5, j6 ∈ I such that the triples(j1, j3, j4), (j2, j4, j5), (j1, j3, j6), and (j2, j5, j6)

are admissible we have

∑
j

w2
jw

2
j4

∣∣∣∣ j2 j1 j

j3 j5 j4

∣∣∣∣ ∣∣∣∣ j3 j1 j6

j2 j5 j

∣∣∣∣= δj4,j6.
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Hereδ is the Kronecker delta. It is understood that we sum up overj such that the symbols
involved in the sum are defined, i.e. the 6-tuples involved are admissible.

The initial data is said to satisfythe condition(∗∗) if for any

a, b, c, e, f, j1, j2, j3, j23∈ I
such that the6-tuples

(j23, a, e, j1, f, b) and(j3, j2, j23, b, f, c)

are admissible we hare

∑
j

w2
j

∣∣∣∣ j2 a j

j1 c b

∣∣∣∣ ∣∣∣∣ j3 j e

j1 f c

∣∣∣∣ ∣∣∣∣ j3 j2 j23

a e j

∣∣∣∣ = ∣∣∣∣ j23 a e

j1 f b

∣∣∣∣ ∣∣∣∣ j3 j2 j23

b f c

∣∣∣∣.
Here, as above, we sum up over suchj that all the symbols involved are defined.

Conditions (∗) and (∗∗) axiomatize the orthogonality and the Biedenharn–Elliot identities for
q-6j -symbols.

The initial data is said to satisfythe condition(∗∗∗), if for anyj ∈ I

w2=w−2
j

∑
k,l : (j,k,l)∈adm

w2
kw

2
l .

The initial data is said to beirreducible, if for any j , k ∈ I there exists a sequencel1, l2, . . . , ln
with l1= j, ln = k such that(li , li+1, li+2) ∈ admfor anyi = 1, . . . , n− 2.

The following Lemma shows that in the case of irreducible initial data it suffices to verify the
equality of the condition(∗∗∗) only for one value ofj .

1.1.A LEMMA . If the initial data is irreducible and satisfy the condition(∗), thenw−2
j∑

k,l : (j,k,l)∈admw
2
kw

2
l does not depend onj ∈ I .

Proof. Irreducibility implies that it is sufficient to prove that

w−2
j

∑
k,l : (j,k,l)∈adm

w2
kw

2
l =w−2

r

∑
k,l : (r,k,l)∈adm

w2
kw

2
l

for any j, r ∈ I such that there existsi ∈ I with (i, j, r) ∈ adm. Fix such (i, j, r). The
condition (∗) implies that ifk, l ∈ I are such that the triple(j, k, l) is admissible then

w−2
j =

∑
m : (l,i,m)∈adm,
(m,r,k)∈adm

w2
m

∣∣∣∣ l i mr k j

∣∣∣∣ ∣∣∣∣ r i jl k m

∣∣∣∣. (2)

Thus

w−2
j

∑
k,l : (j,k,l)∈adm

w2
kw

2
l =

∑
k,l,m : (l,i,m)∈adm,
(m,r,k)∈adm,
(j,k,l)∈adm

w2
kw

2
l w

2
m

∣∣∣∣ l i mr k j

∣∣∣∣ ∣∣∣∣ r i jl k m

∣∣∣∣
=

∑
m,k : (m,r,k)∈adm

w2
mw

2
k

( ∑
l : (l,i,m)∈adm,
(j,k,l)∈adm

w2
l

∣∣∣∣ l i mr k j

∣∣∣∣ ∣∣∣∣ r i jl k m

∣∣∣∣).
Formula (2) with interchanged indicesl,m and j, r permits to replace the expression in the
brackets byw−2

r . This gives the desired result.2
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Fig. 1.

1.2 Colored tetrahedra. By a colored tetrahedron we will mean a 3-dimensional simplex
with an element of the setI attached to each edge (see Fig. 1).

The element attached to an edgeE is called thecolor of E. A colored tetrahedron is said to be
admissibleif for any its 2-faceA the colors of the three edges ofA form an admissible triple. Now
we can explain geometrically the notion of admissible 6-tuple. A 6-tuple(i, j, k, l,m,n) ∈ I6 is
admissible iff the colored tetrahedron presented in Fig. 1 is admissible.

Each admissible colored tetrahedronT gives rise to a set of admissible 6-tuples. Namely,
choose a 2-faceA of T and write down the colors of the edges ofA followed by the colors of the
opposite edges ofT . This gives an admissible 6-tuple, which depends, of course, on the choice of
A and on the choice of order in the set of edges ofA. Clearly the resulting 24 admissible 6-tuples
may be obtained from each other by the obvious action of the symmetry group ofT , which is the
symmetric groupS4. Equalities (1) ensure that the symbols of these 6-tuples are equal to each
other. Denote the common value of these symbols by|T |. Note that to define|T | ∈ K we have
not used an orientation ofT .

1.3 State model for closed 3-manifolds.LetM be a closed triangulated 3-manifold. Leta
be the number of vertices ofM, let E1, . . . ,Eb be the edges ofM, and letT1, . . . , Td be the
3-simplexes ofM.

By a coloring of M we mean an arbitrary mapping

ϕ : {E1,E2, . . . ,Eb}→ I.

A coloring is said to beadmissibleif for any 2-simplexA of M the colors of the three edges of
A form an admissible triple. Denote the set of admissible colorings ofM by adm(M).

Each admissible coloringϕ of M induces an admissible coloring of each 3-simplexTi of M.
Denote the resulting colored tetrahedron byT ϕi .

Forϕ ∈ adm(M) put

|M|ϕ =w−2a
b∏
r=1

w2
ϕ(Er)

d∏
t=1

∣∣T ϕt ∣∣ ∈K. (3)

Put

|M| =
∑

ϕ∈adm(M)

|M|ϕ. (4)
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1.3.A THEOREM. If initial data satisfy the conditions(∗), (∗∗) and(∗∗∗), then|M| does not
depend on the choice of triangulation ofM.

The proof of 1.3.A is given below in Section 5.
Theorem 1.3.A gives a scheme to define topological invariants of 3-manifolds. To realize it,

one needs concrete initial data. Some initial data are given below in Section 7.

1.4 Relative case. Let M be a compact triangulated 3-manifold. Leta be the number of
vertices ofM. Suppose thate of them lie on the boundary∂M. LetE1, . . . ,Eb be the edges of
M, and letT1, . . . , Td be the 3-simplexes ofM. Let exactly the firstf of the edges lie on∂M.

By a coloring and admissible coloring ofM we shall mean just the same as in 1.3. By a
coloring of∂M we mean an arbitrary mapping

α : {E1,E2, . . . ,Ef }→ I.

A coloring of ∂M is said to beadmissibleif for any 2-simplexA of ∂M the colors of the three
edges ofA form an admissible triple. Denote the set of admissible colorings of∂M by adm(∂M).

For any admissible coloringϕ : {E1,E2, . . . ,Eb}→ I of M set

|M|ϕ =w−2a+e
f∏
r=1

wϕ(Er)

b∏
s=f+1

w2
ϕ(Es)

d∏
t=1

∣∣T ϕt ∣∣ ∈K. (5)

For α ∈ adm(∂M) denote byadm(α,M) the set of all admissible colorings ofM which extend
α. Put

�M(α)=
∑

ϕ∈adm(α,M)

|M|ϕ.

If adm(α,M)=∅, i.e,α has no extension toM, then�M(α) = 0 (as the sum of the empty set
of summands).

1.4.A THEOREM. If the initial data satisfy the conditions(∗), (∗∗) and (∗∗∗), then for any
compact3-manifold M with triangulated boundary and any admissible coloringα of ∂M all
extensions of the triangulation of∂M toM yield the same�M(α).

This Theorem generalizes Theorem 1.3.A and is proven below in Section 5.

2. FUNCTORIAL NATURE OF THE INVARIANTS

2.1 Operator version of the invariant.For each triangulated closed surfaceF we define a
K-moduleC(F) to be the module freely generated overK by admissible colorings ofF . One
may equipC(F) with the scalar productC(F)×C(F)→K which makes the set of admissible
colorings an orthonormal basis ofC(F).

If F =∅, then we putC(F)=K (in accordance with the generally accepted convention that
there exists exactly one map∅→ I ).

Let W = (M; i+, i−) be a cobordism between triangulated surfacesF+ andF−, i.e.M is a
compact 3-manifold,i+ :F+ → ∂M and i− :F− → ∂M are embeddings with∂M = i+(F+) ∪
i−(F−) andi+(F+)∩ i−(F−)=∅. Define a homomorphism

8W :C(F+)→ C(F−)

by the formula

8W(α)=
∑

β∈adm(F−)

�M(i+(α) ∪ i−(β))β
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where α is an admissible coloring ofF+ and i+(α) ∪ i−(β) ∈ adm(∂M) is the coloring
determined byα andβ . In other words,8W is the homomorphism which has, with respect to the
natural bases of the spacesC(F+),C(F−), the matrix with elements�M(i+(α) ∪ i−(β)).

The operator8W can be considered as a generalization of the preceding invariants. Indeed,
for a closedM, considered as a cobordism between empty surfaces,8W acts inK(= C(∅)) as
multiplication by|M|. As for�M(α), with α ∈ adm(∂M), they are the matrix elements for8W

whereW = (M; id : ∂M→ ∂M,∅→ ∂M).

2.1.A COROLLARY OF 1.4.A. For any cobordismW = (M; i+, i−) between triangulated
surfaces, the homomorphism8W :C(F+) → C(F−) does not depend on the extension of
triangulations ofF+ andF− toM involved in the definition of8W .

2.2 Multiplicativity of the invariants. It is well known that cobordisms can be considered
as morphisms of a category. Objects of this category are closed manifolds. Each cobordism
W = (M; i+, i−) between surfacesF+ andF− is a morphism of this category fromF+ toF−. The
composition of cobordismsW1 = (M1; i1 :F1→ ∂M, i2 :F2→ ∂M) andW2 = (M2; j2 :F2→
∂M,j3 :F3→ ∂M) is the cobordismW2 ◦W1= (M1 ∪M2; i1, j3) obtained fromW1 andW2 by
gluing alongF2.

The following theorem is a straightforward corollary of definitions.

2.2.A THEOREM. 8W2◦W1 =8W2 ◦8W1.

2.3 Topological3-dimensional quantum field theory.Theorem 2.2.A looks as the main con-
dition for the correspondenceF 7→ C(F),W 7→8W to be a covariant functor from the category
of cobordisms of triangulated surfaces to the category ofK-modules. But it is not a functor
since the other condition is not satisfied: for the unit cobordism [which is(F × [0,1];F × 0,
F × 1)] the induced homomorphism sometimes is not identity.

However Theorem 2.2.A allows to improve this construction producing a functor. To do that,
consider, for any triangulated closed surfaceF , the cobordismidF = (F × [0,1]; i0, i1) where
it :F → ∂(F × [0,1]) are defined byit (x) = (x, t). Define a moduleQ(F) = Coim(8idF ) =
C(F)/Ker8idF . By 2.1.A it is well defined. Furthermore, any cobordismW = (M; i+ :F+ →
∂M, i− :F− → ∂M) is homeomorphic to the compositionW ◦ idF+ . Therefore8W = 8W ◦
8idF+ and Ker8W ⊃ Ker8idF+ . Consequently8W :C(F+) → C(F−) induces aK-linear
homomorphismQ(F+)→Q(F−). We will denote it by9 .

The identity8W2◦W1 = 8W2 ◦8W1 implies that9W1◦W2 = 9W2 ◦ 9W1. Furthermore,9idF =
idQ(F), since9idF is monomorphism (by the definition ofQ(F)) and9idF ◦9idF =9idF . Thus

F →Q(F),W 7→9W

is a functor from the category of cobordisms of triangulated surfaces to the category ofK-
modules.

(Remark.This argument is fairly general. Let us call a mapping of a category℘ to a category
D a semifunctor, if it satisfies the first condition of the definition of a functor: namely, it sends a
composition of morphisms℘ to the composition of their images inD. Suppose thatD is abelian.
Assign to each object of℘ the coimage of the identity morphism of the image of this object in
D. This operation is extended naturally to an honest functor from℘ toD.)
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Although Q(F) is defined in terms of a triangulation ofF , it does not depend on the
triangulation in the following sense. For any two triangulations ofF there exists a triangulation
of F × [0,1] coinciding onF × 0 andF × 1 with these given triangulations. It determines an
isomorphism between theQ(F)’s which are defined via these triangulations ofF . By 2.2.A, this
isomorphism does not depend on the choice of the triangulation ofF × [0,1]. We will identify
the spacesQ(F) defined via different triangulations ofF by these isomorphisms.

Thus we have, for any initial data, the functorF 7→Q(F),W 7→ 9W from the category of
cobordisms of (topological, i.e. non-triangulated) surfaces to category ofK-modules. Following
to a modern terminology (see [2]), it can be called atopological(2+ 1)-dimensional quantum
field theory. Note however that originally this term is applied to a functor from the category of
orientedcobordisms (oforientedsurfaces).

2.4 Actions of modular groups.The functor of the preceding Subsection determines
naturally representations of modular groups (= mapping class groups of closed surfaces=
groups of isotopy classes of homeomorphisms of surfaces).

Let F be a closed surface,h :F → F homeomorphism. Fix some triangulation ofF . Define
a homomorphismh# :C(F)→C(F) by

h#(α)=
∑

β∈adm(F )

�F×[0,1](i0(β)∪ i1h(α))β

whereit :F → ∂(F × [0,1]) are defined byit (x) = (x, t) andα is an admissible coloring of
the triangulation ofF . In other words,h# is the homomorphism8(F×[0,1];i0,i1◦h) induced by the
cobordism(F × [0,1]; i0, i1 ◦ h).

As follows from 2.2.A,(h ◦ g)#= h# ◦ g#.
By the same reason as for8W above,h# induces a homomorphismQ(F)→Q(F). We denote

this induced homomorphism byh#. The identity(h ◦ g)# = h# ◦ g# implies (h ◦ g)∗ = h∗ ◦ g∗.
Furthermore,id∗ =9idF = id. Therefore(h−1)∗ ◦ h∗ = (h−1 ◦ h)∗ = id∗ = id, and thush∗ is an
isomorphism for any homeomorphismh.

If homeomorphismsh andg are isotopic, thenh#= g# and thereforeh∗ = g∗. Indeed,

�F×[0,1](i0(β)∪ i1h(α))=�F×[0,1](i0(β)∪ i1g(α))

since using an isotopy betweenh andg it is easy to define a self-homeomorphism ofF × [0,1]
which is identity onF × 0 and mapsi1h(α) to i1g(α).

Thus for any closed surfaceF we have a representation of the mapping class group ofF

in Q(F).

Fig. 2.
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2.5 A refinement of the theory.Assume that there exists a functionc : I → Z2 such that for
any admissible triple(i, j, k)

c(i)+ c(j)+ c(k)= 0.

Then each coloring of a 3-manifoldM composed withc is a 1-cocycle ofM. For anyh ∈
H 1(M;Z2) one can define a state sum invariant ofh summing up our state sum terms (5) over
all colorings which induce cocycles representingh. This refines the theory introduced above.

3. TRANSFORMATIONS OF A TRIANGULATION AND ITS DUAL

3.1 Alexander Theorem.To prove independence of the results of contructions of Sections 1
and 2 on triangulations (Theorems 1.3.A, 1.4.A and 2.1.A) we use the technique of Alexander [1]
relating different triangulations of a manifold.

LetX be a polyhedron with a triangulationT , letE be its (open) simplex andb ∈E. Remind
that the (closed) star of a simplexE is the union of all closed simplexes containingE, it is
denoted byStT E. The transformation ofT which replaces the starStT E by the cone over the
boundary ofStT E centered inb is called astar subdivisionof T alongE. (Simplexes of the
initial triangulation which do not belong to the star ofE also belong to the new triangulation of
X.) Star subdivisions were introduced by Alexander [1]. We will call themthe Alexander moves.
Figure 2 shows a star subdivision along an edge in the 2-dimensional situation.

J.W. Alexander [1] used previous results of M.H.A. Newman [12] to prove the following
theorem.

3.1.A THEOREM. For any polyhedronP , which is dimensionally homogeneous(i.e. is a
union of some collection of closed simplexes of the same dimension), any two triangulations ofP
can be transformed one to another by a finite sequence of Alexander moves and transformations
inverse to Alexander moves.

3.2 Relative version. To prove 1.4.A we need the following relative version of the
Alexander theorem.

3.2.A THEOREM. Let P be a dimensionally homogeneous polyhedron andQ its subpoly-
hedron. Any two triangulations ofP coinciding onQ can be transformed one to another by
a sequence of Alexander moves and transformations inverse to Alexander moves, which do not
change the triangulation ofQ.

The proof of 3.2.A is given in Appendix 1.

3.3 Dual picture of the Alexander move.The local picture of the Alexander move along a
simplexE of a triangulated spaceP is determined by the combinatorics of the star ofE in P .
In particular, ifP is a 3-manifold anddimE = 1 then this local picture is determined by the
position ofE with respect to the boundary:E may be contained in∂P or not, and by the number
of 3-simplexes containingE. Thus the number of the moves is actually infinite, which makes it
rather difficult to verify directly the invariance of our state sums under the Alexander moves.

In the frameworks of triangulations we can not factorize the Alexander moves into more
elementary ones, which would be finite in number. (How to do this for a kind of singular
triangulations, is discussed in Appendix 2.)
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To circumphere this problem, we pass to the dual picture for the moves. Recall that each
combinatorial triangulation of a manifoldM induces a relative cell subdivision of the pair
(M,∂M). This subdivision is said to be dual to the original triangulation. It is constructed
as follows. With each strictly increasing sequenceA0 ⊂ A1 ⊂ · · · ⊂ Am of simplexes ofM
one associates anm-dimensional linear simplex[A0,A1, . . . ,Am] in M whose vertices are the
barycenters ofA0,A1, . . . ,Am. For a simplexA of M denote byA∗ the union of all simplexes
[A0,A1, . . . ,Am] with A0 = A. It is well known (and easy to visualize ifdimM = 3) thatA∗
is a combinatorial cell of dimensiondimM − dimA. This cell is called thebarycentric starof
A. It intersectsA transversally in the barycenter ofA. The cells{A∗}A, whereA runs over all
simplexes ofM, form a relative cell subdivision of the pair(M,∂M).

A reader whose topological background does not contain these notions, can just look at
Fig. 3, where the pieces of barycentric stars contained in one tetrahedron are drawn boldface.
As the whole 3-manifold is a union of tetrahedra, its barycentric star subdivision is the union of
subdivisions of Fig. 3.

Now let us visualize the transformation of the barycentric star subdivision corresponding to
the Alexander move along an edgeE not contained in the boundary of the manifold. Consider,
first, a simpler 2-dimensional picture shown in Fig. 4. The barycentric starE∗ of the edgeE is
replaced by a quadrangle. In the 3-dimensional case shown in Fig. 5.1 the barycentric starE∗ of
the edgeE is a plaque. In result of the Alexander move the halvesE1 andE2 of E come up. The
corresponding plaquesE∗1 andE∗2 have the same number of sides asE∗ and are positioned on
both sides of it. ExceptE1 andE2, the only new edges emerging under the Alexander move are
the edges connecting the new vertexE1∩E2 with the vertices of the link ofE. Their barycentric
stars are quadrangles joining the corresponding sides ofE∗1 andE∗2. Together withE∗1 andE∗2
they constitute a prism. Thus the Alexander move replaces a plaqueE∗ by a prism. This is the
only change.

Fig. 3.

Fig. 4.
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Fig. 5.1.

Fig. 5.2.

Fig. 5.3.

As we mentioned above the Alexander moves in dimension 3 along edges form an infinite
series of moves. In our dual picture the members of this series differ from each other in the
number of sides ofE∗.

In the case of 3-manifolds whenE does not lie in the boundary anddimE = 2 or dimE = 3
the dual pictures of the star subdivisions are shown in Figs 5.2 and 5.3.

3.4 Factorizing the Alexander move.LetE be an edge of a triangulation of a 3-manifoldM
and letE do not lie on∂M. Consider the dual picture of the Alexander move alongE. It is easy
to imagine a process which creates gradually from the old barycentric star subdivision the new
one. In Fig. 6.1 such a process is shown. It starts with creating a small bubble in the center ofE∗.
Then we puff up this bubble. In some moment it reaches the boundary ofE∗. This happens in
an internal point of some side ofE∗. Then the base circle of the bubble crosses vertices, one by
one. Stop when the bubble engulfs the wholeE∗. At this moment our prism is ready: it consists
of the oldE∗, the bubble surface and the parts of the old 2-strata adjacent toE∗ contained inside
the bubble.

The similar processes corresponding to the casesdimE = 2,dimE = 3 are shown in Figs 6.2
and 6.3.

It is clear that the processes shown in Fig. 6 may be decomposed into sequences of elementary
(local) events shown in Figs 7, 8, and 9. However these local modifications do not proceed inside
the class of barycentric star subdivisions of triangulations. Thus to appeal to these processes we
have to enlarge the class of objects on which our state sums are defined. We shall do that in the
next Section.
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Fig. 6.1.

Fig. 6.2.

Fig. 6.3.

Fig. 7.
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Fig. 8.

Fig. 9.

Fig. 10.

4. SIMPLE 2-POLYHEDRA AND A STATE SUM MODEL

4.1 Simple graphs and simple 2-polyhedra.By a simple graphwe mean a finite graph (=
finite 1-dimensionalCW -complex) such that each point of it has a neighborhood homeomorphic
either toR or to the union of 3 half-lines meeting in their common end point. Each simple
graph is naturally stratified with strata of dimension 1 being the connected components of the
set of points which have neighborhoods homeomorphic toR. The 0-strata of a simple graph0
are the (3-valent) vertices of0. The 1-strata homeomorphic toR are callededgesand 1-strata
homeomorphic toS1 loopsof 0. (Thus some components of our simple graphs eventually contain
no vertex.)

A 2-dimensional polyhedronX is calledsimple2-polyhedron(with boundary), if each point
of X has a neighborhood homeomorphic either to

(1) the planeR2, or
(2) the union of 3 halfplanes meeting each other in their common boundary line (see

Fig. 10), or
(3) the cone over the 1-skeleton of a tetrahedron (see Fig. 11), or
(4) the halfplaneR2+, or
(5) the union of 3 copies of the quadrant{(x, y) ∈ R2: x > 0, y > 0} meeting each other in

the copies of the halflinex = 0 (see Fig. 12).
The set of points of a simple polyhedronX which have no neighborhoods of types (l), (2), (3) is
called theboundaryof X and denoted by∂X. It is a simple graph.
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Fig. 11.

Fig. 12.

Each simple 2-dimensional polyhedron is naturally stratified. In this stratification each stratum
of dimension 2 (a 2-face) is a connected component of the set of points having neighborhoods
homeomorphic toR2. Strata of dimension 1 are of the following two types: internal 1-strata
which are connected components of the set of points without neighborhood homeomorphic to
R2, but with neighborhoods as in Fig. 10, and 1-strata of the boundary. Strata of dimension 0 are
of two types also: internal 0-strata which are the points without neighborhoods of the types (1),
(2), (4) and (5), but with neighborhoods as in Fig. 11, and the vertices of the boundary.

Simple 2-polyhedra appear naturally as 2-skeletons of those cell subdivisions of compact 3-
manifolds which are dual to triangulations.

Remark.Simple 2-polyhedra are also called fake surfaces. This class of 2-polyhedra is
interesting from many viewpoints. For example, they are generic in the following senses:

(1) They are obtained by gluing surfaces with boundary to other surfaces or simple 2-
polyhedra by generic mappings of boundary components.

(2) They make a dense subset in the space of all metric 2-polyhedra (with respect to the
Hausdorff metric).

(3) By local operations, preserving simple homotopy type, one can transform any compact
2-polyhedron into a simple one (which, in the metric case, can be made arbitrarily close
to the original 2-polyhedron).

4.2 State model for simple 2-polyhedra.LetX be a simple 2-dimensional polyhedron (may
be with non empty boundary). Letx1, . . . , xd be the vertices ofX − ∂X, let E1, . . . ,Ef be the
edges of∂X and let01, . . . ,0b be the 2-strata ofX. By a coloring ofX we mean an arbitrary
mapping

ϕ : {01,02, . . . ,0b}→ I.

The coloring is said to beadmissible, if for any edgeE of X− ∂X the colors of the three 2-strata
incident toE form an admissible triple. Denote the set of admissible colorings ofX by adm(X).
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Fig. 13.

By a coloring of a simple graph0 we shall mean any mapping of the set of its 1-dimensional
strata toI . A coloring of a simple graph is said to beadmissible, if for each vertex the colors of
the edges adjacent to it make an admissible triple. The set of admissible colorings of a simple
graph0 will be denoted byadm(0). Any coloring of a simple 2-polyhedronX induces in a
natural way a coloring of its boundary∂X: a 1-stratum of∂X takes the color of the 2-stratum of
X in whose boundary this 1-stratum is contained. Evidently, if the coloring ofX is admissible,
then the induced coloring of∂X is admissible too. The mapadm(X)→ adm(∂X) defined by
this construction will be denoted by∂ .

With each vertexx of X − ∂X we associate a tetrahedronTx whose vertices and edges
correspond respectively to germs of 1-strata and 2-strata ofX incident tox (see Fig. 13). The
1-skeleton ofTx is nothing but the polyhedral link ofx in X. Let T̂x , be the dual tetrahedron,
i.e. the tetrahedron whose vertices, edges and faces correspond respectively to faces, edges and
vertices ofTx . Thus edges and faces ofT̂x , correspond to germs of 2-strata and 1-strata ofX

incident tox. Each admissible coloringϕ of X induces an admissible coloring ofT̂x : the color
of the edge ofT̂x corresponding to a 2-stratum0 of X is defined to beϕ(0) ∈ I . Denote the
resulting admissibly colored tetrahedron byT̂ ϕx . Forϕ ∈ adm(X) put

|X|ϕ =w−2χ(X)+χ(∂X)
b∏
r=1

w
2χ(0r )
ϕ(0r )

f∏
s=1

w
χ(Es)

∂ϕ(Es)

d∏
t=1

∣∣T̂ ϕxt ∣∣ ∈K (6)

whereχ is the Euler characteristic, andw2χ(0r )
ϕ(0r )

,w
χ(Es)

∂ϕ(Es)
meanwϕ(0r) ∈K to degree 2χ(0r) and

w∂ϕ(Es) to degreeχ(Es) respectively. (Strata are thought to be open, so ifEs is homeomorphic
toR1 thenχ(Es)=−1 and ifEs is homeomorphic toS1 thenχ(Es)= 0.) Put

|X| =
∑

ϕ∈adm(X)

|X|ϕ. (7)

For any admissible coloringα of ∂X put

�X(α)=
∑

ϕ : ∂(ϕ)=α
|X|ϕ. (8)

If {ϕ: ∂(ϕ)= α} =∅, then�X(α)= 0.

4.2.A LEMMA . Let a simple2-polyhedronX be the union of simple2-polyhedraY and
Z and let each component ofT = Y ∩ Z be a component of both∂Y and ∂Z. Then for any
admissible coloringβ of ∂X

�X(β)=
∑

α∈adm(T )

�Y (α ∪ (β |Y∩∂X))�Z(α ∪ (β |Z∩∂X)) (9)

whereα ∪ (β |Y∩∂X) andα ∪ (β |Z∩∂X) are the colorings of∂Y and ∂Z induced byα,β (note
that ∂Y = T ∪ (Y ∩ ∂X) and∂Z = T ∪ (Z ∩ ∂X)).

Proof. Lemma 4.2.A is a direct consequence of the equality

|X|ϕ = |Y |ϕ|Y |Z|ϕ|Z (10)

which holds for anyϕ ∈ adm(X). Formula (10) follows straightforwardly from the definition
of |X|ϕ and additivity of Euler characteristic. Indeed, a face0 of X is the union of some faces
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0′1, . . . ,0
′
m of Y , some faces0′′1, . . . ,0

′′
v of Z, and some 1-strataEi1, . . . ,Eiw of T . Therefore

χ(0) is the sum of Euler characteristics of these pieces, and

2χ(0)= 2χ
(
0′1
)+ · · · + 2χ

(
0′u
)+ χ(Ei1)+ · · · + χ(Eiw )+ 2χ

(
0′′1
)+ · · · + 2χ

(
0′′v
)

+χ(Ei1)+ · · · + χ(Eiw).
For similar reasons,

−2χ(X)+ χ(∂X)= (−2χ(Y )+ χ(∂Y ))+ (−2χ(Z)+ χ(∂Z)). 2
4.3 Local moves on simple 2-polyhedra.In the second half of eighties Matveev [10] and

Piergallini [21] introduced several transformations of simple 2-dimensional polyhedra. Each
of these transformations replaces a standard fragment of a simple polyhedron by some other
standard fragment. In Figs 8 and 9 above we show two Matveev–Piergallini transformations.
The transformation shown in Fig. 8 will be called thelune moveand denoted byL. The
transformation shown in Fig. 9 will be calledthe Matveev moveand denoted byM. Note
that these transformations do not change homotopy (and even simple homotopy) type of 2-
polyhedron.

We also need the transformation shown in Fig. 7. This move adds two new disk 2-strata and
one circle 1-stratum and punctures one old 2-stratum. We shall call this move abubble moveand
denote it byB.

Note that the movesM,L,B preserve the boundary.

4.4 Invariance of the state sum with respect to local moves

4.4.A LEMMA . LetX be a simple 2-polyhedron andα be an admissible coloring of∂X. If
the initial data satisfies the condition(∗) then|X| and�X(α) are invariant underL.

Proof. Let X′ be a polyhedron obtained fromX by L. ThenX = Y ∪ Z andX′ = Y ′ ∪ Z
whereY ∩Z = ∂Y = ∂Z, Y ′ ∩Z = ∂Y ′ = ∂Z andY,Y ′ are simple 2-polyhedra with boundary
shown in Fig. 14.

By Lemma 4.2.A it is sufficient to prove that

�Y(β)=�Y ′(β) (11)

for anyβ ∈ adm(∂Y )= adm(∂Y ′).
Let 0,0′,0′′ be the faces ofY ′ andE′,E′′ the edges of∂Y ′ pointed out in Fig. 14. Denote

by x and y the vertices ofY ′ which appear in Fig. 14. Fix someβ ∈ adm(∂Y ) and put
j4= β(E′), j6= β(E").

Fig. 14.
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Consider the casej4 6= j6. Letϕ ∈ adm(Y ′) with ∂ϕ = β . Denote byj1, j2, j3, j5 theϕ-colors
of the faces ofY ′ which appear in Fig. 14. The element|Y ′|ϕ is the product of a certain factor
which does not depend on the choice ofϕ and the factor

w2
ϕ(0)

∣∣T̂ ϕx ∣∣∣∣T̂ ϕy ∣∣=w2
ϕ(0)

∣∣∣∣ j2 j1 ϕ(0)

j3 j5 j4

∣∣∣∣ ∣∣∣∣ j3 j1 j6

j2 j5 ϕ(0)

∣∣∣∣.
Summing up these expressions over allϕ ∈ ∂−1(β) we get zero because of condition (∗) and

the assumptionj4 6= j6. Thus

�Y ′(β)=
∑

ϕ : ∂(ϕ)=β
|Y ′|ϕ = 0.

On the other hand,�Y(β)= 0, sincej4 6= j6 implies that no coloring ofY inducesβ .
Assume now thatj4= j6. In this case there is a unique coloringψ of Y which inducesβ . See

Fig. 14. By the definition

�Y(β)= |Y |ψ =w−4wj1wj2wj3wj5.

On the other hand,

�Y ′(β)=
∑

ϕ : ∂(ϕ)=β
|Y ′|ϕ

=w−4wj1wj2wj3wj5w
2
j4

∑
ϕ : ∂(ϕ)=β

w2
ϕ(0)

∣∣T̂ ϕx ∣∣ ∣∣T̂ ϕy ∣∣
=w−4wj1wj2wj3wj5

∑
j

w2
j4
w2
j

∣∣∣∣ j2 j1 j

j3 j5 j4

∣∣∣∣ ∣∣∣∣ j3 j1 j6

j2 j5 j

∣∣∣∣.
By the condition (∗) the sum in the latter expression equalsδj4j6 = 1. Thus�Y ′(β) = �Y(β).
This finishes the proof. 2

4.4.B LEMMA . LetX be a simple 2-polyhedron andα be an admissible coloring of∂X. If
the initial data satisfies the condition(∗∗) then|X| and�X(α) are invariant under the moveM.

The proof of 4.4.B is quite similar to the proof of 4.4.A. Here five tetrahedra are involved
into play: two tetrahedra correspond to the two vertices ofX and three tetrahedra correspond to
the three vertices ofX′. In Fig. 15 we present a convenient notation for colors of faces which
converts (∗∗) into an equality similar to (11). 2

4.4.C LEMMA . LetX be a simple 2-polyhedron andα be an admissible coloring of∂X. If
the initial data are irreducible and satisfies the condition(∗∗) then|X| and�X(α) are invariant
under the moveB.

Fig. 15.
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Proof. Let X′ be a polyhedron obtained fromX by the bubble more. ThenX = Y ∪Z and
X′ = Y ′ ∪ Z whereY ∩ Z = ∂Y = ∂Z, Y ′ ∩ Z = ∂Y ′ = ∂Z andY,Y ′ are simple 2-polyhedra
with boundary shown in Fig. 16. By 4.2.A it is sufficient to prove that�Y(β)=�Y ′(β) for any
β ∈ adm(∂Y )= adm(∂Y ′). If the color of the boundary circle∂Y with respect toβ is j , then

�Y(β)=w−2w2
j and�Y ′(β)=

∑
k,I : (j,k,l)∈adm

w−4w2
kw

2
l .

The result follows from the condition(∗∗∗). 2
4.5 Digression: a two-dimensional polyhedral quantum field theory.A cobordism between

simple graphs0 and1 is a simple 2-polyhedronX with embeddingsi :0→ ∂X, j :1→ ∂X

suchi(0) ∪ j (1) = ∂X, i(0) ∩ j (1) = ∅, andi(0), j (1) are unions of components of∂X.
It is easy to see that any two simple graphs are cobordant in this sense; so the corresponding
cobordism group is trivial.

There is an obvious composition operation for cobordisms of simple graphs: if(X, i, j) is a
cobordism between0 and1 and(Y, k, l) a cobordism between1 and6, then(X∪kj−1 : j (1)→k(1)
Y ; i, l) is a cobordism between0 and6. Simple graphs are objects and their cobordisms
(considered up to homeomorphisms identical on the boundary) are morphisms of a category
called thecategory of simple2-polyhedraand denoted byS.

For each simple graph0 we define theK-moduleC(0) to be the module freely generated
over K by the admissible colorings of0. One may equipC(0) with the scalar product
C(0)×C(0)→K which makes the set of admissible colorings an orthonormal basis ofC(0).
If 0 =∅, thenC(0)=K.

For any simple 2-polyhedronX the mappingα 7→ �X(α) uniquely extends to aK-linear
homomorphismC(∂X)→K, which will be denoted also by�X.

To each cobordismU = (X; i, j) between simple graphs0 and 1 we associate a
homomorphism8U :C(0)→C(1) defined on the generators by the formula

8U(α)=
∑

β∈adm(1)

�X(i(α)∪ j (β))β. (12)

The identity morphisms in the categoryS of simple 2-polyhedra are trivial cobordismsid0 =
(0 × [0,1]; i0, i1) whereit :0→ 0 × [0,1]: x 7→ (x, t). As follows directly from definition,
8id0=id . This observation together with the following Theorem 4.5.A mean that we have a functor
0 7→ C(0),U 7→8U from the categoryS to the categoryK-Mod of K-modules. In analogy to
topological quantum field theories it can be calleda polyhedral2-dimensional quantum field
theory.

4.5.A THEOREM. If U is a cobordism between simple graphs0 and1 andV a cobordism
between simple graphs1 and6, then

8V ◦8U =8V ◦U :C(0)→ C(6)

whereV ◦U is the composition of cobordismsU andV .

Fig. 16.
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Theorem 4.5.A follows straightforwardly from Lemma 4.2.A.
None of the movesM,L,B (see Section 4.3 above) changes the boundary of a simple 2-

polyhedron. Therefore application of these moves to a cobordism between two simple graphs
gives cobordisms between the same graphs. Denote byQ the quotient category ofS constructed
by identifying morphisms ofS which can be obtained one from another by some sequence of
movesL±1,M±1, andB±1. The objects ofQ are the objects ofS (simple graphs) though a
morphism ofQ is a class of cobordisms convertible to each other by movesL±1,M±1, andB±1.

From lemmas of the preceding Subsection it follows

4.5.B. The functor0 7→ C(0),U 7→ 8U from the categoryS of simple 2-polyhedra to the
categoryK-Mod ofK-modules induces a functorQ→K-Mod.

5. PROOF OF INVARIANCE THEOREMS

5.1 Dual colorings. Let M be a compact triangulated 3-manifold,X be the union of the
(closed) barycentric stars of all edges ofM. It is obvious thatX is a simple 2-polyhedron with
boundary∂X =X ∩ ∂M. Each coloringϕ ofM induces a dual coloringϕ∗ of X by the formula

ϕ∗(E∗)= ϕ(E)

where E is an edge ofM and E∗ is the dual 2-cell ofX. This establishes a bijective
correspondence between colorings ofM and those ofX.

It is straightforward to observe thatϕ is admissible if and only ifϕ∗ is admissible. Therefore,
the formulaϕ 7→ ϕ∗ induces a bijectionadm(M)→ adm(X).

5.1.A LEMMA . For anyϕ ∈ adm(M)

|M|ϕ = |X|ϕ∗ .

Proof. The Lemma follows directly from the definitions. One should take into account that
all 2-strata ofX are open 2-cells and all 1-strata ofX are open edges (not loops). Thusχ(0)= 1
for any 2-strata0 of X, andχ(E)=−1 for any 1-strataE of X. Furthermore, ifa (respectively,
e) is the number of vertices ofM (respectively, of∂M) then

χ(∂X)= χ(∂M)− e
= 2χ(M)− e,

χ(X)= χ(M)+ a − e.

Thus

χ(∂X)− 2χ(X)=−2a + e. 2
5.2 Proof of Theorems 1.3.A and 1.4.A.We have just to combine the results obtained above.

By the Alexander Theorem 3.1.A and its relative version 3.2.B, it is sufficient to prove that state
sums of 1.3.A and 1.4.A are not changed by the Alexander moves along simplexes not lying on
the boundary of the manifold. By 5.1.A these sums coincide with the ones defined in Section 4
for the 2-skeletons of the barycentric star subdivisions. By 3.4 it is sufficient to prove that these
sums are not changed by movesB,L andM applied to these 2-skeletons. And this has been
proved in 4.4.
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6. DUAL APPROACH TO THE INVARIANTS OF 3-MANIFOLDS

6.1 Spines and simple stratifications of 3-manifolds.A polyhedronX is called aspineof
a compact manifoldM with non-empty boundary if there exists an embeddingi :X→M such
thatM collapses toi(X). †

In the case of closedM a polyhedronX is called a spine ofM if it is a spine ofM with an
open ball removed.

A spine of a compact 3-manifold which is a simple polyhedron with empty boundary is called
a simple spine of this 3-manifold.

A 2-dimensional polyhedron is said to becellular if each stratum of its natural stratification
is homeomorphic to Euclidean space of dimension 2, 1 or 0.

Remark.Casler [4] who first considered simple cellular 2-polyhedra called themstandard
polyhedra. Matveev [10,11] used the termspecial polyhedron. Note that his definition slightly
differs from that of Casler: he omitted the condition that the 1-strata are cells. However he meant
the same notion, as follows from the fact that the main theorem of [11] is not valid for the lens
spaceL(3,1) if one admits simple spines with disk 2-strata and closed 1-strata.

6.1.A THEOREM (Casler [4]).Any compact 3-manifold has a simple cellular spine.

Note that a regular neighborhoodU of any polyhedronX embedded in a 3-manifoldM with
∂M ∩X =∅ is homeomorphic to the cylinder of some mapπ : ∂U → X. It is easy to see that
in the case whenX is a simple polyhedron without boundary, the mapπ can be taken to be a
(topological) immersionin the sense that each point of∂U has a neighborhood in∂U mapping
homeomorphically onto its image inX. As a summary we formulate the following assertion.

6.1.B. Any compact 3-manifoldM with non empty boundary is homeomorphic to the
cylinder of a topological immersion of∂M onto an arbitrary simple spine ofM.

(Here the condition∂M ∩X =∅ does not appear since any spine can be pushed off a collar
of ∂M.)

Note that 6.1.B gives a way of description of 3-manifolds, which is related to the simple spine
presentations. It is outlined in Appendix 2.

A simple spine of a 3-manifoldM and a simple spine ofM with several open balls removed
will be called asimple2-skeletonof M. For example, for any compact 3-manifoldM the union
of the barycentric stars of allr-simplexes ofM − ∂M with r > 0 is a simple 2-skeleton ofM.

Another important special class of simple 2-skeletons is related with Heegaard diagrams.
Namely, for any Heegaard surfaceF in a closed 3-manifoldM and any complete systems
{m1, . . . ,mg}, {m′1, . . . ,m′g} of meridian disks of the handlebodies bounded byF in M such that
the boundaries of these disks are transversal to each other (i.e. constitute a Heegaard diagram
of M), the union

F ∪m1 ∪ · · · ∪mg ∪m′1 ∪ · · · ∪m′g
is a simple 2-skeleton ofM.

† Remind the notion of collapse of a polyhedron to a subpolyhedron. SupposeK is a polyhedron andσ is a (closed)
simplex ofK with faceτ . If τ is the proper face of no simplex inK exceptσ (and in particularσ is a face of no simplex
in K anddimτ = dimσ − 1), then one says that there is an elementary collapse fromK to K − (Intσ ∪ Int τ ) [where
Intα meansα− (faces ofα)]. If L is a subpolyhedron of a polyhedronK and there are polyhedraK =K0 ⊃K1⊃ · · · ⊃
Kn =L such that there is an elementary collapse fromKi−1 toKi, i = 1,2, . . . , n, then one says thatK collapsesto L.



STATE SUM INVARIANTS OF 3-MANIFOLDS 885

6.2 Matveev–Piergallini theorem and its corollaries.Local movesM,L on simple 2-

polyhedra were introduced by Matveev and Piergallini with a view towards investigation of

simple cellular spines of 3-manifolds.‡

6.2.A. Any two simple 2-skeletons of a compact 3-manifold can be transformed one to

another by a sequence of the movesM±1,L±1 andB±1.

To prove 6.2.A we use the following theorem of Matveev [11] and Piergallini [21].

6.2.B THEOREM. Any two simple cellular spines of a 3-manifold can be transformed one to

another by a sequence of movesM±1 andL±1.

Reduction of 6.2.A to 6.2.B.Take any two simple 2-skeletons of a 3-manifold. By several

bubble moves make them to be spines of the same manifold (the initial manifold with some

collection of open balls removed). Furthermore make, if necessary, bubble moves to produce 1-

strata. Then applyingL several times, transform thesimplespines obtained intosimple cellular

spines. Now we are in the situation of 6.2.B.

6.3 Digression: gluing simple polyhedra.LetX be a simple polyhedron without boundary,

0 be a simple graph. A topological immersionϕ :0→X is said to begeneric, if the following

conditions are fulfilled:

(1) all vertices of0 are mapped to 2-strata ofX,

(2) no vertex ofX is contained inϕ(0),

(3) the restrictions ofϕ to 1-strata of0 are transversal to 1-strata ofX. i.e. the inverse image

of any 1-stratum ofX is finite and at each point of itϕ goes from one germ of 2-stratum

of X to another,

(4) ϕ has no triple points,

(5) each double points of ϕ is a transversal intersection of 1-strata of0 and lies in a 2-stratum

of X.

All these conditions obviously are conditions of general position. In particular any map

0→X can be approximated by generic topological immersion.

6.3.A. Let X be a simple polyhedron without boundary,K a simple polyhedron,L a

component of∂K and ϕ :L→ X a generic topological immersion. Then the spaceX ∪ϕ K
is a simple polyhedron with the boundary∂K −L.

It is clear that any simple polyhedron without boundary can be obtained from a closed surface

by successive gluing of surfaces with boundary along generic immersions of their boundary

curves.

‡ The bubble move applied to a simple cellular polyhedron gives a simple polyhedron, which is however not cellular.
That is why Matveev and Piergallini did not consider this move.



886 V.G. Turaev and O.Y. Viro

6.4 Spines in relative situation.Let M be a compact 3-manifold with some simple graph
0 embedded in∂M. A simple polyhedronX with boundary is called asimple spine of the
pair (M,0), if there exists an embeddingi :X → M such thatM collapses toi(X) and
i(∂X)= 0 = i(X) ∩ ∂M. A simple spine of(M,0) or (M − (several open balls),0) is called a
simple2-skeleton of(M,0).

6.4.A THEOREM. For any compact 3-manifold M and any simple graph0 ⊂ ∂M there exists
a simple spine of(M,0).

Proof. LetX be a simple spine ofM. By 6.1.B there exists an immersionπ : ∂M→X such
thatM is homeomorphic to the cylinder ofπ . As it follows from 6.3.A and the fact thatπ is a
topological immersion, after some small isotopy of0 in ∂M, the spaceX∪π |0 : 0×1→X 0×[0,1]
is a simple polyhedron. It is obviously a simple spine of(M,0). 2

The simple spines constructed in the proof of 6.4.A have an additional property. If one
removes from a simple spine of this kind all the strata whose closure intersects with∂M, then
the result will be a simple spine ofM. Let us call a spine of(M,0) of this type acollar spine of
(M,0). For each such spine the union of strata whose closure intersects∂M is a cylinder over0.
It is clear that each collar spine can be obtained by the construction of the proof of 6.4.A. Collar
spines of(M,0) and (M − (several open balls),0) are calledcollar 2-skeletonsof (M,0).

6.4.B THEOREM. Any two collar spines of a pair(M,0), whereM is a compact 3-manifold
and0 ⊂ ∂M is a simple graph, can be transformed one to another by a sequence of movesM±1

andL±1 with the intermediate results also being collar spines.

Proof. Let S1 andS2 be collar spines of(M,0), andX1,X2 be the corresponding simple
spines ofM. So

S1= xi ∪πt |0×1 0 × [0,1]
whereπi : ∂M → Xi are the corresponding topological immersions (with∂M × [0.1] ∪πi Xi
homeomorphic toM). By 6.2.B there exists a sequence of movesM±1,L±1 transformingX1 to
X2. This sequence can be easily realized insideM in the following obvious sense: there exists
a family of spinesXt with t ∈ [1,2] of M embedded inIntM such that for all but finite set
t1, t2, . . . , tq of values oft the polyhedronXt is simple, the familyXt with t ∈ (ti , ti+1) is an
isotopy and the passing byt through each ofti gives a Matveev–Piergallini move ofXt .

Topological immersionsπ1,π2 can be obviously included into a continuous familyπt : ∂M→
Xt with t ∈ [1,2] of topological immersions such that for anyt ∈ [1,2] the space

∂M × [0,1] ∪πt : ∂M×1→Xt Xt

is homeomorphic toM. By a small isotopy of0 ⊂ ∂M, which does not change the topological
types of spaces

Xi ∪πt |0×1 0 × [0,1]
with i = 1,2, the family of 2-polyhedra

St =Xt ∪πt |0×1 0 × [0,1]
can be made such that for all but finite sett ′1, t

′
2, . . . , t

′
r of values oft the polyhedronSt is simple,

the familySt with t ∈ (ti , ti+1) is an isotopy and passing byt through each ofti , gives a Matveev–
Piergallini move ofSt . 2
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6.4.C COROLLARY. Any two collar 2-skeletons of a pair(M,0), whereM is a compact 3-
manifold and0 ⊂ ∂M is a simple graph, can be transformed one into another by a sequence
of movesM,L andB (and their inverses), with the intermediate results also being collar 2-
skeletons.

6.5 Semifunctor “Skeleton”. A closed (topological) surface with an embedded simple graph
will be called amarked surface. A marked surface is said to becompletely markedif each
component of the complement of the graph is homeomorphic toR2.

Define the categoryMC whose objects are completely marked surfaces and morphisms are
(compact 3-dimensional) cobordisms between the underlying (non-marked) surfaces. Denote by
C the category of nonmarked surfaces and cobordisms between them.

Assign to a marked surface its simple graph and to a cobordism between two marked surfaces
a collar simple 2-skeleton of this cobordism. It determines a semifunctorSke : MC→Q where
Q is the quotient category of the categoryS of cobordisms of simple graphs introduced in 4.5
above. Composition of this skeleton semifunctor with the functorQ→K-Mod introduced in 4.5
can be factorized through the forgetful functorMC→ C. The semifunctorC→K-Modobtained
is a functor, which coincides with the functor (topological quantum field theory) defined in 2.3.

We obtain thus a new description of this functor: it assigns to a closed surfaceF a K-
moduleQ(F) which can be obtained as a quotient module ofC(0) where0 is any simple graph
embedded intoF in such a way that each component of its complement inF is homeomorphic
to R2. The factorization should be done by the kernel of the homomorphism induced by the
trivial cobordism. To each cobordism it assigns the homomorphism induced by a collar simple 2-
skeleton of this cobordism. In particular, to any closed 3-manifoldM it assigns a homomorphism
K→K (sinceQ(∅)=K) acting as multiplication by number|M| which can be calculated by
formulae (7), (6) applied to any simple skeletonX of M.

6.6 Non-functorial generalization.The condition that surfaces arecompletelymarked has
appeared in the definition ofMC to define afunctor. But in some situations noncomplete marking
naturally arise. For example, ifM is the complement of a regular neighborhood of a link. Then
with each framing of the link one associates a graph0 on∂M consisting of the longitudes of the
link components. Then the state sum invariant of a simple 2-skeleton of(M,0) is an invariant of
the initial framed link.

7. QUANTUM 6j -SYMBOLS

The 6j -symbols play an important role in the representation theory of semi-simple Lie
algebras. Theq-analogs (orq-deformations) of 6j -symbols for the Lie algebrasl2(C) were
introduced in [3] and related to the representation theory of the algebraUq(sl2(C)) in [9]. Here
we present certain results of [9] specialized to the case whenq is a complex root of unity.

7.1 Introduction of the “initial data”. Fix an integerr > 3 and denote byI the set of
integers and half-integers{0,1/2,1,3/2, . . ., (r − 3)/2, (r − 2)/2}. Fix a root of unityq0 of
degree 2r such thatq2

0 = q is a primitive root of unity of degreer. For an integern> 1 set

[n] = q
n
0 − q−n0

q0− q−1
0

∈R.
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Set

[n]! = [n][n− 1] . . . [2][1].
In particular,[1]! = [1] = 1 ∈ R. Put also[0]! = [0] = 1. Note that[r] = 0 and [n] 6= 0 for
n= 0,1, . . . , r − 1.

A triple (i, j, k) ∈ I will be calledadmissibleif i + j + k is an integer and

i 6 j + k, j 6 i + k, k 6 i + j, i + j + k 6 r − 2.

For an admissible triple(i, j, k) put

1(i, j, k)=
( [i + j − k]! [i + k − j ]! [j + k − i]!

[i + j + k + 1]!
)1/2

.

Note that the expression in the round brackets presents a real number. By the square rootx1/2 of
a real numberx we will mean the positive root of|x| multiplied by

√−1 if x < 0.
For any admissible 6-tuple(i, j, k, l,m,n) ∈ I6 one defines(q − 6j)-symbol and Rakah–

Wigner(q − 6j)-symbol denoted respectively by{
i j k

l m n

}
and

{
i j k

l m n

}RW
.

These symbols are related by the following formula{
i j k

l m n

}
= [2k+ 1]1/2[2n+ 1]1/2√−12(l+m+2k−i−j)

{
i j k

l m n

}RW
.

The Rakah–Wigner symbol is computed by the following formula{
i j k

l m n

}RW
=1(i, j, k)1(i,m,n)1(j, l, n)1(k, l,m)

×
∑
z

(−1)z[z+ 1]!{[z− i − j − k]! [z− i −m− n]! [z− j − l − n]!
× [z− k − l −m]!
× [i + j + l +m− z]! [i+ k + l + n− z]! [j + k +m+ n− z]!}−1

.

Herez runs over non-negative integers such that all expressions in the square brackets are non-
negative i.e.

min(i + j + l +m, i + k + l + n, j + k +m+ n)> z,
z>max(i + j + k, i +m+ n, j + l + n, k + l +m).

We define ∣∣∣∣ i j k

l m n

∣∣∣∣=√−1
−2(i+j+k+l+m+n)

{
i j k

l m n

}RW
. (15)

The equalities (1) follow directly from definitions.
For i ∈ I putwi = (

√−1)2i[2i+ 1]1/2. It is easy to show that{
i j k

l m n

}
=wkwn

∣∣∣∣ i j k

l m n

∣∣∣∣. (16)

Our initial data consists of the setI , the functioni 7→ wi : I → C− 0, the admissible triples
and the symbol| | described above, andw equal to either

√
2r/|q0− q−1

0 | or−√2r/|q0− q−1
0 |.
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7.2 THEOREM. The initial data just described is irreducible and satisfy the conditions(∗),
(∗∗) and(∗∗∗) of Section1.1.

Proof. It is easy to check that for anyj ∈ {0,1/2,1, . . . , (r − 3)/2, (r − 2)/2} the triple
j, |j − k|, k) is admissible. Therefore the initial data is irreducible. The substitution (16)
transforms the formulas 6.16 and 6.18 of [9] (formulated in terms of the(q − 6j)-symbols{ })
respectively into (*) and (**). Now let us check (***) withj = 0 i.e. prove that

w2=w2
0

∑
k,l: (0,k,l)∈adm

w2
kw

2
l . (17)

Clearly,w0= 1. Further, by the definition ofadmabove,{
(k, l): (0, k, l) ∈ adm

}= {(k, k): k = 0,1/2,1, . . . , (r − 2)/2
}
.

Thus we have to prove that

w2=
r−1∑
l=1

w4
(l−1)/2. (18)

By the definition ofwk above,

w4
(l−1)/2=

(
ql0− q−l0

)2(
q0− q−1

0

)2 .
Sinceq2r

0 = 1,

r−1∑
l=1

q2l
0 =

r−1∑
l=1

q−2l
0 =−1.

Therefore the right hand side of (18) equals

−2r/
(
q0− q−1

0

)2=w2. 2
In certain special cases one may simplify the right hand side of (15). Consider for instance a

6-tuple(i, j, k, l,m,n) ∈ I6 with n= 0. Such a 6-tuple is admissible if and only ifi =m,j = l
and the triple(i, l, k) is admissible. One easily computes{

i j k

j i 0

}RW
= (−1)i+j+k

[2i + 1]1/2[2j + 1]1/2

and ∣∣∣∣ i j kj i 0

∣∣∣∣= √−1
−2(i+j)

[2i + 1]1/2[2j + 1]1/2 . (19)

Remark.The initial data introduced in 7.1 may be equipped with a functionc : I → Z2

satisfying the condition of Section 2.5. Namelyc(i) = 2i(mod 2). Thus the corresponding
topological quantum field theory can be refined along the lines of Section 2.5.

8. CALCULATIONS FOR SIMPLEST CLOSED 3-MANIFOLDS

8.1 Summary of results.In this section we calculate|M| for several closed manifoldsM,
which allow simple skeleton without 0-dimensional strata. Since the calculation in those cases
does not involve 6j -symbols, we are able to formulate results in terms ofw andwi , and, for the
initial data of Section 7, to find|M| for all values ofq0.
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8.1.A. For any initial data

∣∣S3
∣∣=w−4

∑
i∈I
w4
i , (20)

∣∣RP 3
∣∣=w−2

∑
i∈I
w2
i , (21)

|L(3,1)| =w−2
∑
i∈I :

(i,i,i)∈adm

w2
i , (22)

∣∣S1× S2
∣∣=w−2

∑
i∈I :

N(i)w2
i , (23)

whereN(i) is the number ofj ∈ I such that(i, j, j) ∈ I .

8.1.B. For the initial data of Section 7∣∣S3
∣∣=w−2=−(q0− q−1

0

)2
/2r, (24)∣∣RP 3

∣∣= { (q0− 1)(q−1
0 − 1)

r
, if (−q0)

r =−1,

0, if (−q0)
r = 1,

(25)

|L(3,1)| =
(
q
[(r−2)/3]+1
0 − q−[(r−2)/3]−1

0

)2
−2r

, (26)∣∣S1× S2
∣∣= 1. (27)

Theorem 8.1.B shows that|S3|, |RP 3| and|L(3,1)| considered as functions ofq0 on the set of
complex roots of unity are not continuous. Indeed for anyζ ∈C with |ζ | = 1 andM = S3,RP 3

orL(3,1) limq0→ζ |M|q0 = 0. Therefore these functions are not restrictions of rational functions.
Simple renormalization by constant can not improve the situation, as the case ofS1× S2 shows.

The rest of Section 8 is devoted to proof of 8.1.A and 8.1.B.

8.2 Sphere. One can take sphereS2 as a simple skeleton ofS3. The colorings ofS2

correspond to colorsi ∈ I : the only 2-stratum can be colored with any color. For coloringϕi
corresponding toi formula (6) gives|S2|ϕi = w−4w4

i . That proves formula (20). Formulae (18)
and (20) imply (24).

8.3 Real projective space.A projective planeRP 2 can be taken as a simple skeleton of
RP 3. The colorings ofRP 2 correspond to colorsi ∈ I : the only 2-stratum can be colored with
any color. For coloringϕi corresponding toi, formula (6) gives|RP 2|ϕi = w−2w2

i . The only
difference with the case of 8.2 is thatχ(RP 2)= 1 whileχ(S2)= 2. That proves (21).

For the initial data of Section 7 from (21) it follows that

|RP 3| =w−2
r−1∑
l=1

w2
(l−1)/2=

(q0− q−1
0 )2

−2r

r−1∑
l=1

(−1)l−1q
l
0− q−1

0

q0− q−l0

= q0− q−1
0

2r

r−1∑
l=1

(
(−q0)

l − (−q0)
−l).

An easy calculation shows that the last sum is equal to[(q0− 1)((−q0)
r − 1)]/(q0+ 1) that is

zero in the case(−q0)
r = 1 and equals 2(1− q0)/(1+ q0) in the case(−q0)

r = −1. Plugging
these values proves (25).
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8.4 Lens spaceL(3,1). ForL(3,1) there is an obvious simple skeletonX homeomorphic
to circle with disk adjoined by three-fold covering. The colorings ofX correspond to colors
i ∈ I with (i, i, i) ∈ adm: the only 2-stratum can be colored with any color such that along the
1-stratum the admissibility condition is fulfilled. As in 8.3, for coloringϕi , corresponding toi,
formula (6) gives|X|ϕi =w−2w2

i and thus (22).
For the initial data of Section 7, from (22) it follows that

|L(3,1)| =w−2
∑
i∈I ,

(i,i,i)∈adm

w2
i =

(q0− q−1
0 )2

−2r

(r−2)/3∑
k=0

q2k+1
0 − q−2k−1

0

q0− q−1
0

= q0− q−1
0

−2r

(r−2)/3∑
k=0

(
q2k+1

0 − q−2k−1
0

)
.

Calculation of the sum gives (26).

8.5 S1×S2. The manifoldS1×S2 can be presented as aprism manifold, i.e.K ∪π S1×D2

whereK is Klein bottle,S1×D2 solid torus, andπ : ∂(S1×D2)→K double covering. Therefore
X = K ∪ 0×D2 is a simple skeleton ofS1 × S2. The meridian 0× ∂D2 of the solid torus is
projected byπ to a simple closed curve onK with complementK−π(0× ∂D2) homeomorphic
to cylinderI × S1. ThereforeX has two 2-strata: this cylinder and the meridian disk. A coloring
of X is determined by the colors of the meridian disk and cylinder. Denote these colors byi

andj respectively and the coloring byϕi,j . Formula (6) gives|X|ϕi,j = w−2w2
i . The right hand

side does not depend onj . The number of colorings with a giveni is equal toN(i), since the
condition(i, j, j) ∈ I is admissibility conditions along the only 1-stratum ofX. It proves (23).

A straightforward calculation shows that for the initial data of Section 7

N(i)=
{

0, if i /∈ Z,
r − 2i − 1, if i ∈ Z.

It follows that

∣∣S1× S2
∣∣= (q0− q−1

0 )2

−2r

(r−2)/2∑
i=0

(r − 2i − 1)
q2i+1

0 − q−2i−1
0

q0− q−1
0

= q0− q−1
0

−2r

(r−2)/2∑
i=0

(r − 2i − 1)
(
q2i+1

0 − q−2i−1
0

)
.

Laborious, but straightforward evaluation shows that this expression equals 1 for all values ofq0.

9. THE CASE r = 3

In this section we explicitly describe the initial data introduced in Section 7 for the caser = 3
and compute the corresponding invariants of simple polyhedra and 3-manifolds.

9.1 The initial data. The setI consists of two elements 0 and 1/2. Up to permutations there
are only two admissible (unordered) triples:(0,0,0) and(0,1/2,1/2).

Let q0 be a root of 1 of degree 6 withq2
0 6= 1. Putε = q0+ q−1

0 . It is easy to check that either
Req0 > 0 andε = 1 orReq0< 0 andε =−1.
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We have

w0= (
√−1)0[1]1/2= 1,

w1/2= (
√−1)[2]1/2=√−1(q0+ q−1

0 )1/2= ε1/2
√−1,

w=±√2.

It is easy to verify that each admissible 6-tuple may be transformed by the action of
the symmetric groupS4 mentioned in Section 1.1 into one of the following three 6-tuples:
(0,0,0,0,0,0), (1/2,1/2,0,1/2,1/2,0) and(0,1/2,1/2,1/2,0,0). The formula (19) implies
that ∣∣∣∣ 0 0 0

0 0 0

∣∣∣∣= 1,

∣∣∣∣ 1/2 1/2 0
1/2 1/2 0

∣∣∣∣= −1

[2] = −ε,

∣∣∣∣ 0 1/2 1/2
1/2 0 0

∣∣∣∣= √−1
−1

[2]1/2 =
−√−1

ε1/2
=
{
−√−1, if ε = 1,
−1, if ε =−1.

Thus we have 4 initial data depending on the choice ofε =±1 andw=±√2. In the caseε =+1
we have

w0= 1, w1/2=
√−1,

∣∣∣∣ 0 0 0
0 0 0

∣∣∣∣= 1,

∣∣∣∣ 1/2 1/2 0
1/2 1/2 0

∣∣∣∣=−1,

∣∣∣∣ 0 1/2 1/2
1/2 0 0

∣∣∣∣=−√−1.

and in the caseε =−1 we have

w0= 1, w1/2=−1,

∣∣∣∣ 0 0 0
0 0 0

∣∣∣∣= 1,

∣∣∣∣ 1/2 1/2 0
1/2 1/2 0

∣∣∣∣= 1,

∣∣∣∣ 0 1/2 1/2
1/2 0 0

∣∣∣∣=−1.

9.2 Interpretation. The state sum invariants of simple 2-polyhedra corresponding to the
initial data described in Section 9.1 admit the following interpretation in a more traditional spirit.

Let X be a simple 2-polyhedron with boundary andα an admissible coloring of∂X. Since
the only admissible triples (up to permutations) are(0,0,0) and (0,1/2,1/2), the closures of
1-strata of∂X whoseα-color equals 1/2 form a closed 1-dimensional manifold lying in∂X.
Denote this 1-manifold byS(α). Note that closed 1-dimensional submanifolds of∂X bijectively
corresponds to elements ofH1(∂X;Z2). Similarly, with each admissible coloringϕ of X we
associate the surfaceS(ϕ) formed by the closures of 2-strata ofX with ϕ-color 1/2. It is obvious
that

∂S(ϕ)= S(∂ϕ).
It is easy to see that the formulaϕ→ S(ϕ) establishes a bijective correspondence between the
admissible colorings ofX extendingα ∈ adm(∂X) on the one hand and the surfaces imbedded
into X formed by (closures of) 2-strata and bounded byS(α) on the other hand. The latter
surfaces correspond bijectively to elementss ∈H2(X, ∂X;Z2) with ∂s ∈H1(∂X;Z2) being the
class ofS(α).
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9.2.A. Letϕ ∈ adm(X). If ε =−1 then

|X|ϕ =wχ(∂X)−2χ(X),

if ε = 1 then

|X|ϕ = (−1)χ(S(ϕ))wχ(∂X)−2χ(X)

whereχ(S) is the Euler characteristic ofS.

Proof. The vertices ofX with respect to the surfaceS = S(ϕ) are of the following four types:
(1) the vertices not lying onS (the corresponding 6-tuple is(0,0,0,0,0,0));
(2) the vertices adjacent to four germs of the 2-strata contained inS (the corresponding 6-

tuple is(1/2,1/2,0,1/2,1/2,0));
(3) the vertices adjacent to three germs of the 2-strata contained inS (the corresponding 6-

tuple is(0,1/2,1/2,1/2,0,0));
(4) the vertices lying in∂S.
Let us denote the numbers of the vertices of these four types byn1, n2, n3 andn4 respectively.
Denote the number of the 1-strata ofX homeomorphic toR1 and contained inS by e. The

obvious relation

n4+ 3n3+ 4n2= 2e

implies thatn4+ n3 is even.
Let ε =−1. The formula (6) implies that

|X|ϕ =wχ(∂X)−2χ(X)(−1)n3+n4 =wχ(∂X)−2χ(X).

Let ε = 1. Then

|X|ϕ =wχ(∂X)−2χ(X)
√−1

2χ−u+2n2
(−√−1)n3

whereχ is the Euler characteristic of the union of the 2-strata contained inS andu is the number
of 1-strata of∂X contained in∂S. Obviouslyu= n4 and

X(S)= χ − e+ n2+ n3= χ − n2− 1
2n3− 1

2n4.

Therefore

√−1
2χ−u+2n2

(−√−1)n3 = (−1)χ(S).

This implies our claim in the caseε = 1. 2
9.2.B COROLLARY. If ε =−1 then

�χ(α)= 2bwχ(∂X)−2χ(X)

whereb is the dimension of theZ2-vector spaceH2(X;Z2). If ε = 1 then

�χ(α)=wχ(∂X)−2χ(X)
∑

S∈H2(X,∂X;Z2),
∂(S)−[S(α)]

(−1)χ(s)

where [S(α)] is the class ofS(α) in H1(∂X;Z2) and χ(s) is the Euler characteristic of the
unique relative cycle realizings.
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9.3 The case of closed 3-manifolds.For a spaceY we denotedimHi(Y ;Z2) by bi(Y ).

9.3.A. LetM be a closed 3-manifold. Ifε =−1 then

|M| = 2b2(M)−b0(M).

If ε = 1 then

|M| = 2−b0(M)
∑

t∈H 1(M;Z2)

(−1)〈t
3+w2

1t[M]〉 (28)

wherew1 ∈H 1(M;Z2) is the first Stiefel–Whitney class ofM.

Proof. The first claim follows from Corollary 9.2.B applied to the 2-skeleton of the dual cell
subdivision of any triangulation ofM and Lemma 5.1.A.

The second claim is proven similarly using the fact that the Euler characteristic of an
embedded closed surfaceS ⊂ M is congruent modulo 2 to〈t3 + w2

1t, [M]〉 where t is the
cohomology class dual to[S] ∈H2(M;Z2). 2

9.3.B Remark.If M is orientable andt3 = 0 for all t ∈ H 1(M;Z2) then the right hand side
of (20) obviously equals 2b1(M)−b0(M). If M is orientable and there existst ∈ H 1(M;Z2) with
t3 6= 0 then the right hand side of (20) is equal to zero. This follows from the fact that for
orientableM the mapping

t 7→ 〈
t3, [M]〉 :H 1(M;Z2)→ Z2

is a linear homomorphism. Indeed ifu, t ∈H 1(M;Z2) then

u2t + ut2= Sq1(ut)=w1ut = 0.

9.4 The case of3-manifold with boundary. Let M be a compact 3-manifold with
triangulated boundary andα an admissible coloring of∂M. Let S(α) be the 1-cycle in∂M
formed by barycentric stars of the edges of∂M with α-color 1/2.

9.4.A. Let ε = −1. If the cycleS(α) presents a non-trivial element ofH1((M;Z2) then
�M(α) = 0. If S(α) is null-homologous inM then�M(α) does not depend on the choice of
α and equalsw−c2b2(M)−b3(M) wherec is the number of vertices of∂M.

Proof. The proof is similar to that of 9.3.A.2
9.4.B. Let ε = 1. If the cycleS(α) presents a non-trivial element ofH1(M;Z2) then

�M(α)= 0. If M is orientable and there existst ∈H 1(M,∂M;Z2) with t3 6= 0 then�M(α)= 0
for anyα. If M is orientable andt3= 0 for all t ∈H 1(M,∂M;Z2) andS(α) is null-homologous
in M then

�M(α)=w−c2b2(M)−b0(M)(−1)χ

whereχ is the residue modulo2 of the Euler characteristic of any compact surface embedded
in M and bounded byS(α). (Under our assumptionsχ does not depend on the choice of the
surface.)
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Proof. The proof is similar to that of 9.3.A, cf. also Remark 9.3.B.2
9.5 The topological quantum field theory.Let F be a closed surface. It is easy to compute

the vector spaceQ(F) defined in Section 2.3. For anyε =±1 the spaceQ(F) is C[H1(F ;Z2)]
(i.e. the linear space overC freely generated by elements ofH1(F ;Z2)). This follows from 9.2.A
and the fact that the Euler characteristic of an annulus equals zero. The morphisms induced by
cobordisms are easily computable via theorems of Section 9.4.

9.6 Remarks on possible generalizations.The results of 9.2 suggest to consider state sums
for which colorings are 2-cycles of simple 2-polyhedra. It is not difficult to prove that the state
sums of Section 9.2 are the only (up to linear combinations) state sums based on initial data
with two colors such that the colorings of simple 2-polyhedra are 2-cycles overZ2. For cycles
with Z2⊗Z2 coefficients, all state sums of such kind (with 4 colors) are linear combinations of
the state sums corresponding toZ2 coefficients. One can consider alsoZ3-cycles (this urges to
involve orientations of 2-strata and thus to reduce the class of 2-polyhedra). In this case there is
essentially only one state sum, and its value equals the number of elements ofH2(X;Z3) (for the
information on state sums related toZ2⊗Z2 andZ3 we are indebted to G. Mikhalkin).

Acknowledgements—Parts of this work were done during our visits to University Paris-Sud at
Orsay and Max-Planck-Institute für Mathematik in June and November 1989. We are indebted
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APPENDIX 1
RELATIVE ALEXANDER THEOREM

Here we prove Theorem 3.2.A above. Recall its statement.

3.2.A THEOREM. Let P be a dimensionally homogeneous polyhedron andQ its subpoly-
hedron. Any two triangulations ofP coinciding onQ can be transformed one to another by
a sequence of Alexander moves and transformations inverse to Alexander moves, which do not
change the triangulation ofQ.

First, remind some results of Alexander [1] and Newman [12].
Recall that the boundary∂P of a dimensionally homogeneous polyhedronP of dimensionn

is defined to be the union of the closed(n−1)-simplexes ofP which are faces of an odd number
of n-simplexes. For manifolds this notion coincides with the usual notion of boundary. A star
subdivision ofP along a simplexE is said to beinternal if E does not lie in∂P .

A triangulated polyhedron is called aformal cell if one can transform it into a simplex by a
series of star subdivisions and inverse operations.

A.1.A NEWMAN’ S THEOREM. Any linearly triangulated convex compact subset of an
Euclidean space is a formal cell.

A short proof of A.1.A see in [1, Section VI].

A.1.B ALEXANDER’ S THEOREM [1, Section [13:2]].Any formal cell can be transformed
into the cone over its(triangulated) boundary by a series of internal star subdivisions and inverse
operations.

Now let us proceed to prove Theorem 3.2.A. It suffices to consider the case when one of the
two triangulations ofP is a subdivision of the other one. Indeed, for any two combinatorially
equivalent triangulations ofP coinciding onQ we can consider the cell subdivision ofP formed
by intersections of their simplexes. Inductively onm= 0,1, . . . we replace eachm-cell not lying
in Q by the cone over its boundary. This produces a triangulation ofP which is finer than the
two initial ones and coincides with them onQ.

We use induction ondimP . FordimP = 0 the claim is obvious. Assume that fordimP < n
the claim holds true. Let us prove it fordimP = n. Let X andY be two triangulations ofP
coinciding onQ and letY be finer thanX. For each closedn-simplexA of X the simplexes
of Y lying in A form a triangulation ofA. By A.1.A this triangulation makesA a formal cell.
Using A.l.B we transform this triangulation ofA into the cone over∂A. Thus the triangulation
Y is transformed to a triangulationZ such that it is finer thanX and on eachn-simplexA of X
it is the cone over the triangulation of∂A induced byZ.

Consider the triangulated pair(Xn−1,Xn−1 ∩Q), whereXn−1 is the(n− 1)-skeleton ofX.
The triangulationZ induces a subdivision ofXn−1 identical onXn−1 ∩ Q. By the inductive
assumption this subdivision can be “Alexander” transformed identically onXn−1 ∩ Q to the
triangulation induced byX. Because of the cone structure ofZ on n-simplexes ofX, these
transformations can be extended to a chain of Alexander transformations identical onQ and
convertingZ toX.
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Remark.In fact Alexander [1] refined Theorem 3.1.A. He proved that it is sufficient to use
the Alexander transformations along edges (and their inverses) only. This refinement can not
be directly extended to the relative case. For example, letP be a simplex andQ = ∂P . The
canonical triangulation ofP can be converted into any of its non-trivial subdivisions identical on
Q by no chain of internal Alexander moves along edges and their inverses. This follows from the
fact that the canonical triangulation ofP has no internal edges.

Under certain assumptions onQ one may use Alexander’s arguments to show that any two
combinatorially equivalent triangulations of a polyhedronP ⊃Q coinciding onQ can be related
by a sequence of Alexander transformations along edges not lying inQ and inverses of such
transformations. Here is an example of such an assumption onQ: any 3 edges ofQ forming a
triangle bound a 2-simplex ofQ. This assumption is not restrictive since each triangulation has
a subdivision satisfying it. For example one may take the first barycentric subdivision.

APPENDIX 2
STRATIFICATIONS, SPINES AND PRESENTATIONS OF MANIFOLDS

A.2.1 Stratifications.By a stratification of a (piecewise linear) manifoldX we mean a
partition ofX on disjoint parts (which are calledstrata) with the following properties:

(1) each stratum is a submanifold of eitherIntX or ∂X;
(2) as a manifold each stratum has empty boundary;
(3) the closure of each stratum is a subpolyhedron ofX which is the union of a finite number

of strata.

We consider only stratifications which satisfy an additional property of “local triviality”
along strata. An arbitrary stratification can be canonically subdivided to satisfy this property.
A stratification of a manifoldX is said to belocally trivial if each point of any stratumS has a
neighborhoodU in X such that there exists a homeomorphismU→ V ×R4, whereV is Rp or
Rp+, mappingU ∩S ontopt ×R4 and the intersection ofU with any stratum ontoC×R4, where
C is a submanifold ofV . TheseC ’s constitute a stratification ofV .

A locally trivial stratification ofX is said to besimple, if for each point ofX the stratification
of V mentioned above is homeomorphic to the cone over the standard stratification (by faces) of
the boundary of thep-dimensional simplex, in the caseV =Rp , and, in the caseV =Rp+, to the
same stratification, but with onep-dimensional stratum removed.

If each stratum is homeomorphic to an Euclidean space, then the stratification is called a
cellular stratification.

The most classical stratifications of manifolds are triangulations. They are locally trivial
cellular stratifications, but in general they are not simple (in the sense specified above).

Another classical set of locally trivial cellular stratifications are stratifications dual to
triangulations of manifolds without boundary, i.e. partitions of manifolds on barycentric stars
of simplexes of triangulations. These are simple stratifications.

In the case of a manifold with non-empty boundary the corresponding simple stratifications
consist of the intersections of the barycentric stars with the interior and the boundary of the
manifold.

Remark.There is another version of the theory, in some sense dual to the version above,
but coinciding with it in the case of empty boundary. In this variant strata are allowed to
have boundary, but forbidden to lie in∂X. Then a triangulation of a manifold with non-empty
boundary is not a stratification, but the barycentric stars form a stratification in this sense.

A.2.2 Simple polyhedra.Let 5n be then-th skeleton of the standard triangulation of the
boundary of the standard(n+ 2)-dimensional simplex. In particular,50 consists of three points,
51 is the graph homeomorphic to a circle with 3 radii,5−1=∅.

Let 6n
q with 06 q 6 n+ 1 be theq-fold suspension over5n−q . In particular,61

0 =51,61
1

is homeomorphic to a circle with diameter,61
2 is the 2-fold suspension of the empty set, i.e. a

circle.
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A polyhedronX is called asimple polyhedronof dimensionn if the link of each its point is
homeomorphic to6n−1

q for someq, 06 q 6 n. (This condition can be reformulated as follows:
any point ofX has a neighborhood homeomorphic to the cone(5n−2−q)×Rq .) In particular, for
n= 2 this definition is equivalent to the one given in Section 4.1.

Simple polyhedra appear naturally as skeletons of codimension one of simple stratifications
of manifolds. In particular, simple 2-skeletons of 3-manifolds introduced in Section 6.1 are
skeletons of codimension one of the corresponding simple stratifications of the manifolds.

It is obvious that a simplen-dimensional polyhedron has a natural stratification in which the
strata of dimensionq consist of points with links homeomorphic to6n−1

q .
Simple polyhedron is said to becellular if each stratum of the natural stratification is

homeomorphic to Euclidean space. The codimension 1 skeleton of simple cellular stratification
of a manifold is a simple cellular polyhedron.

An (n − 1)-dimensional spine of ann-manifold, which is (as a polyhedron) simple
(respectively simple cellular), is called a simple (respectively simple cellular) spine.

The following generalizes Theorem 6.1.A.

A.2.2.A THEOREM. Any compact manifold has a simple cellular spine.

This theorem, as well as the next one, was proved for 3-dimensional manifolds by Casler [4]
and in the general case by Matveev [10].

A.2.2.B THEOREM. If two compact manifolds have the same simple cellular spine and either
both are closed or both have non-empty boundary, then these manifolds are homeomorphic.

Theorem A.2.2.B can not be extended straightforwardly to the case of simple non-cellular
spines. Indeed, the Klein bottle with a disk adjoined along a circle which is a fiber of the fibration
of the Klein bottle overS1, is a simple spine of both

S2× S1− (open ball)

and (
non orientableD2-bundle overS1)− (open ball).

But this effect is due to existence 2-stratum with more than one end only. Here is an appropriate
generalization of Theorem A.2.2.B:

A.2.2.C THEOREM. If two compact manifolds have the same simple spine, each2-stratum
of which is a surface with at most one end, and either both are closed or both have nonempty
boundary, then these manifolds are homeomorphic.

The proof of A.2.2.C is not difficult. We omit it since we do not use this theorem.
Simple spines of ann-manifoldM and simple spines ofM with several open balls removed

will be called simple (n − 1)-skeletons ofM. For example, for any compactn-manifoldM
the union of the barycentric stars of allr-simplexes ofIntM with r > 0 is a simple(n − 1)-
skeleton ofM. It is clear that each oriented compact connectedn-manifoldM is restored (up
to homeomorphism), if one knows its simple(n − 1)-skeleton and the number of spherical
components of its boundary.

Theorem 6.1.B admits the following high-dimensional generalization.

A.2.2.D. Any compact manifoldM with non empty boundary is homeomorphic to the
cylinder of a topological immersion of∂M onto an arbitrary simple spine ofM.

Remark.Note that 6.1.B gives a convenient way of description of 3-manifolds. (It can be
also generalized to higher dimensions, but in high-dimensional situation it does not give a
visualization of manifolds.) Namely, consider the inverse image of the natural stratification of a
simple spine of a 3-manifold under the topological immersion given by 6.1.B. It is a stratification
with 1-skeleton being a simple graph. Each 0-stratum of it consists of 4 points, and if the simple
spine is in factcellular then each 1-stratum consists of 3 segments and each 2-stratum consists
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of 2 disks. The components of strata are provided with natural identifications. This picture can
be used to describe compact 3-manifolds: any stratification of the boundary of a compact 3-
manifold with the properties listed above and with identifications of components of strata agreed
in the obvious sense on adjacent strata determines a special 2-polyhedron (as the quotient space)
and a topological immersion (the factorization map) and thus the 3-manifold (as the cylinder
of this immersion). The natural version of this construction for the case ofclosed3-manifolds
is essentially the classical presentation via a polyhedron with pairwise identification of faces,
see [14] and Starets [15]. The restrictions on identifications of vertices (4-fold identification as
above) and edges (3-fold identification) are not involved in these classical presentations of closed
3-manifolds. These restrictions guarantee that the quotient space is a 3-manifold, but in the closed
case it is sufficient to put a weaker restriction in terms of Euler characteristic, see [14]. The same
relaxation of restrictions can be done in the case of 3-manifolds with boundary. It leads to the
following type of descriptions.

Fix a cell decomposition of a closed surfaceF , fix a division of the set of 2-cells (faces)
on pairs, and for each of these pairs fix a homeomorphism between the faces involved. The
homeomorphisms are assumed to preserve the natural partitions of the boundaries of the 2-cells.
Denote byM the quotient space ofF ×[0,1] by identification of each point(x,1) of F ×1 with
(h(x),1) for all the fixed homeomorphismsh of faces. Suppose thatχ(M)= χ(F)/2. ThenM
is a manifold with boundaryF .

A.2.3 Remarks on Matveev moves.Matveev and Piergallini considered (together withM and
L) the move shown in Fig. 17. We will denote it byF . It is clear thatF can be considered as a
special case ofL and thatL is simpler thanF . However from some point of viewF is better.
Indeed, applications ofF±1 andM±1 to a simple cellular spine of a compact 3-manifold can
be realized inside this 3-manifold and thus give simple cellular spines of the same 3-manifold.
Moreover Matveev and Piergallini [11,21] proved the following theorem which is more general
than Theorem 6.2.B.

A.2.3.A. Two simple cellular2-dimensional polyhedra, one of which is a simple cellular
spine of some3-manifold, are simple cellular spines of the same3-manifold, if and only if one
of the polyhedra can be obtained from the other one by a sequence of transformationsF±1 and
M±1.

Contrary toT ±1 andM±1, an application ofL to a simple cellular spine of a 3-manifold
can give a simple cellular polyhedron which is a spine of no 3-manifold. Thus one can not just
replaceT ±1 byL±1 in A.2.3.A.

If an application ofL to a spine gives a spine of some 3-manifold, then this 3-manifold is
homeomorphic to the initial one. Further, an application ofL−1 to a simple cellular polyhedron
can give a simple polyhedron, which is not cellular. But any application ofL−1 to some simple
spine of a 3-manifold gives a simple spine of the same 3-manifold.

A.2.4 Moves of high-dimensional simple cellular polyhedra.The system of movesL,M,B
can be generalized straightforwardly to the case of arbitrary simplen-polyhedra in such a way

Fig. 17.

Fig. 18.
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that a generalization of Theorem 6.2.A holds true. Except the analogue ofB, these moves can
be described as follows. One of the highest-dimensional strata, sayR, is moving via isotopy
of its boundary in the complement ofR so that the intersection of∂R with another stratum
undergoes a Morse modification of some index. In Fig. 18 this system of moves is shown for
n= 2. For arbitrary oddn it consists of(n2+ 3)/4 transformations, and for evenn of (n2+ 4)/4
transformations.

In high-dimensional situation combinatorics of a simple stratification of a manifold is not
as rich as in dimensions6 3, since it does not contain an important part of the topological
information on the manifold. This information can be hidden in the topology of strata. Thus it is
more natural to consider simplecellular polyhedra and heir moves.

The system of moves for simple cellularn-polyhedra consists of movesM1, . . . ,Mn+1. The
simplest (however slightly implicit) description ofMi is the following: a simple cellularn-
polyhedronY is obtained from a simple cellularn-polyhedronX byMi , if there exist a simple
(n+ 1)-polyhedronZ and aPL-functionf :Z→R such that

(1) X = f −1(0)
(2) Y = f −1(1),
(3) a restriction off to each stratum ofZ intersectsf−1[0,1] has no critical point,
(4) f −1[0,1] contains only one vertexc of Z,
(5) oni of n+ 2 edges ofZ adjacent to this vertexc the functionf takes values< f (c) and

on the othersn+ 2− i edges it takes values> f (c).
(These conditions mean that in the sense of the Goresky–MacPherson stratified Morse theory

f |f −1[0,1] is a Morse function with only one critical point, which isc, and inc it has indexi
in the sense of Khovansky. Thus one can consider our moveMi , as a kind of stratified Morse
modification of indexi.)

It is easy to see thatMi is inverse toMn+2−i . If i 6= 1, n + 1 it is a replacement of one
(i − 1)-stratum ofX with the closure homeomorphic to simplex by a new(n+ 2− i)-stratum
with the closure homeomorphic to simplex. Ifi = 1 thenMi is an inserting the boundary of the
(n+ 1)-simplex with the canonical stratification instead of a vertex ofX.

In the 2-dimensional case considered in the main text of this paper,M2 is just the Matveev
moveM andM3 =M−1. In Fig. 19 we show the movesM1 andM2 for n = 1 andM1 for
n= 2.

The transformations of simple cellular stratifications ofn-manifolds inducingMi on the
(n− 1)-skeletons will be called alsoMi .

One can show that any two simple cellular stratifications of a closedn-manifold can be
transformed one to another by a series of movesMi . Furthermore one can modify the theory
to the relative case as in Section 6.

A.2.5 Singular triangulations and their dualization.An important property of triangulations
is that each triangulation can be completely described (up to homeomorphism) in a discrete
combinatorial way. Therefore triangulations provide a method of combinatorial description of

Fig. 19.
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Fig. 20.

manifolds. But usually triangulations have so many simplexes that it is hard to use them in
practice when some manifold is to be described. The natural way to avoid this difficulty is to
generalize triangulations. The most usual generalization is the notion ofCW -complex, but it
leads to a loss of the combinatorial character of the theory. The following notion lies between the
notions of triangulation andCW -complex.

LetX be a space. A family of continuous mapsϕα :T dα→Xdα , α ∈A, of standard simplexes
T dα , dα ∈ Z+, is called asingular triangulationof X, if

(1) all ϕα |Int T dα are embeddings,
(2) ϕα(IntT dα ) are open cells of someCW -decomposition ofX,
(3) for any faceF of T dα the restrictionϕα|F can be obtained from someϕβ by composition

with a linear isomorphismF → T dβ .
Note that replacingϕα |intT dα byϕα in (1) and incorporating the condition that the intersection

of any two simplexes is their common face convert this definition into a definition of
triangulation.

The construction of the barycentric star stratification can be generalized in an obvious way
to a construction which assigns to any cellular stratification of a manifold a dual stratification
defined up to ambient isotopy. An application of this construction to a singular triangulation of a
PL-manifold gives a simple cellular stratification. Conversely an application of this construction
to any simple cellular stratification gives a singular triangulation. Thus the construction yields a
1–1 correspondence between singular triangulations and simple cellular stratifications.

Usually one can find for a given manifold singular triangulations and simple cellular
stratifications which are considerably smaller than triangulations. For example it is easy to prove
that any closed connected manifold has a singular triangulation with only one vertex. A closed
orientable surface of genusg has singular triangulations with 4g− 2 triangles.

The movesM,L of simple 2-polyhedra introduced in Section 4.3, being applied to a
simple cellular 2-skeleton of a 3-manifold, induce transformations of the corresponding simple
cellular stratification of the 3-manifold. The corresponding transformations of the dual singular
triangulation are shown in Fig. 20.

A.2.5.A COROLLARY OF 6.2.B. Any two singular triangulations of a compact3-manifold
with the same number of vertices can be transformed one to another by a sequence of
transformations dual toM±1 andL±1.

Since the bubble move transforms a simple cellular stratification of a 3-manifold into a non-
cellular one, it can not have a dual move. The bubble move can be replaced in this situation by the
Alexander move along 3-simplex. It follows from A.2.5.A that this move together with moves
shown in Fig. 20 (and their inverses) enable one to relate any two singular triangulations of a
compact 3-manifold.

Let us describe now the move which is dual to the moveMi of Section A.2.4. Note first that
the move dual toM1, is just the Alexander move along a simplex of dimensionn, wheren is the
dimension of the manifold under consideration. Consider now the case ofMi with i > 1.
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Suppose for a moment for the sake of simplicity that the triangulation is non-singular. Let
the link of one of the(i − 1)-simplexes is strata preserving homeomorphic to the canonically
triangulated boundary of(n− i+1)-simplex. Then the star of this(i−1)-simplex is triangulated
as a join of it with the boundary of(n− i)-simplex and the boundary of the star is triangulated
as a join of boundaries of(i − 1)- and(n− i)-simplexes. It can be span by the join of(n− i)-
simplex with the boundary of(i − 1)-simplex. The transformation dual toMi replaces the star
of the(i − 1)-simplex by this join of(n− i)-simplex with the boundary of(i − 1)-simplex.∗

Consider now the case ofsingulartriangulations. The move dual toMi can be applied iff the
closure of the barycentric star of one of the(i− 1)-simplexes is strata preserving homeomorphic
to the canonically triangulated(n− i+1)-simplex. Note that for any simplexS there is a natural
strata preserving map of the join of the closure ofS and the boundary of its barycentric star
onto the closed star ofS, this map is identity onS and 1-1 on the complement of the boundary
of the barycentric star. In the situation under consideration the move dual toMi replaces the
stratification of the star of the(i − 1)-simplex by the image under this map of the triangulation
of the join above presented as the join of the barycentric star with the boundary of the(i − 1)-
simplex.

Since any two simple cellular stratifications of a closed manifold can be transformed one to
another by a series of movesMi , any two singular triangulations of a closed manifold can be
transformed one to another by a series of the moves dual toMi . ∗∗

∗ Added in proof: Transformations dual toMi for triangulations were introduced by Udo Pachner in [19]. Pachner called
thembistellar transformations. In [20] he proved that any two triangulations of the same PL-manifold can be obtained
from each other by a sequence of bistellar transformations.
∗∗ Added in proof: It follows from Pachner’s results [20].


