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ABSTRACT. An infinite family of homeomorphic, but pairwise non-diffeomorphic
smooth compact simply-connected four-dimensional manifolds with the second Betti
number 2 bounded by the Poincare homology sphere is constructed. Also it is con-
structed an infinite family of spheres embedded into CP2#2CP2 such that each of
them has only one point where it is not smooth, and they are ambiently homeo-
morphic (via homeomorphisms smooth on some their neighbourhoods), but are not
ambiently diffeomorphic. It is proved that some pairs of topological logarithmic
transformations, which chainge smooth type of CP2#9CP2 without changing its
topological type, do preserve the smooth type of S? x S2.

1. EXOTIC OBJECTS

In this paper the word “exotic” means “homeomorphic but not diffeomorphic”.
It has been known (since Moise’s work in the early fifties) that such phenomena
do not occur in dimensions < 4. Although in higher dimensions the existence of
exotic objects had been known also for a long time (since Milnor’s exotic 7-spheres,
constructed in the fifties), in dimension four it had only been discovered in the
eighties. The first examples of four-dimensional exotic manifolds were either non
compact or not simply-connected. Their construction and the proof of non-existence
of a diffeomorphism rely on these properties. On the other hand the specific effects
of dimension 4 seem to appear in the most distilled form for compact simply-
connected manifolds without boundary. Examples of this kind of exotica have
appeared recently: Donaldson [D1], [D2] proved that many well known simply-
connected compact complex algebraic surfaces provide exotica: some of them are
homeomorphic, but not diffeomorphic to each other, some are homeomorphic, but
not diffeomorphic to corresponding connected sums of copies of CP?, CP?, and the
K3-surface.

For simply-connected closed 4-manifolds a natural rough measure of their size
and complexity is the second Betti number, i.e. the rank of the intersection form
(this form is the only homeomorphism invariant for manifolds of this type). Now
the lowest known value of the second Betti number for exotic simply-connected
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compact 4-manifolds is 9: Kotschick [K] proved that the Barlow surface (which
was constructed by Barlow [B] in 1985 and was known to be homeomorphic to
CP2#8CP?) is not diffeomorphic to CP2#8CP2. For the next value 10 there
is an infinite family of homeomorphic, but pairwise not diffeomorphic compact
simply-connected complex algebraic surfaces. These are the Dolgachev surfaces
homeomorphic to CP2#9CP2.

Four-dimensional objects of another kind, which can be exotic, are knottings,
i.e. pairs consisting of a smooth 4-manifold and a smooth 2-submanifold. Finashin,
Kreck and Viro [FKV] constructed an infinite family of homeomorphic but not
diffeomorphic knottings of the connected sum of g copies of RP? in the 4-sphere
for each g > 9.

2. NEW EXOTICA

In this work there are no new exotic objects of the two types described above
(namely closed manifolds and smooth knottings). The exotic objects constructed
here are compact simply-connected 4-manifolds with non empty boundary,'knot-
tings of surfaces in manifolds with boundary and knottings in closed manifold but
with one point of non-smoothness where the surface is locally knotted with a pre-
scribed local knot. However these objects have smaller homology and are closely
related to the previous ones. Perhaps they give an opportunity for better under-
standing of the phenomena of being exotic.

Theorem 1. There exists an infinite family of smooth simply-connected compact
4-manifolds V), , where p,q are relatively prime integers such that:

(1) the boundary of Vp 4 is homeomorphic to the Poincare homology sphere,

(2) the intersection form of V,, 4 is isomorphic to < +1 > 4+ < —1 >,

(3) ifp=r =2 and q # s, then the manifolds V, ; and V,. 5 are not diffeomor-
phic,

(4) all the V,, 4 are homeomorphic.

Theorem 2. There exists an infinite family of subsets S, of CP?#2CP? with p
any integer > 1 such that:

1) S, is homeomorphic to the 2-sphere,

2) S, has only one point where it is not a smooth submanifold,

3) at its singular point Sy is locally knotted as a cone over the trefoil knot,

4) S, has the self-intersection number -1,

5) for any p,q there exists a homeomorphism of CP? #2CP? which is smooth
on some neighbourhood of S, and sends S, onto S,

(6) for p # q there is no diffeomorphism of CP? #2CP? mapping Sp onto Sy,

(7) the complement of an open reqular neighbourhood of S, in CP? #2CP? is

diffeomorphic to the manifold V2 2py1 of Theorem 1.

Theorem 1 will be proved in Section 4 and Theorem 2 in Section 9.

Remark. Removing a small 4-ball centered at the singular point of S, one obtains
an obvious reformulation of Theorem 2 for smooth knottings, but in the manifold
with boundary.

L Added in proof R.Gompf informed me that he had constructed a family of exotic manifolds
containing the manifolds V) 4 which are constructed below. S.Akbulut sent me his preprint where
he constructed exotic manifolds with boundary having even smaller Betti numbers than Vj, 4.
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3. TOPOLOGICAL LOGARITHMIC TRANSFORMATIONS

The Dolgachev surfaces mentioned above are obtained from each other (and
in particular from CP? #9@) by constructions belonging to algebraic geometry
in nature. These constructions are called Kodaira logarithmic transformations.
From the topological point of view ( i.e. ignoring complex algebraic structures)
this transformation is a regluing of a tubular neighbourhood of a torus smoothly
embedded into the manifold which is the object of the transformation.

Consider more carefully this topological version of the Kodaira logarithmic trans-
formation. Let X be a smooth 4-manifold, T' a smooth submanifold of X home-
omorphic to the 2-torus. Let T have trivial normal bundle. Let U be a tubular
neighbourhood of T'. Fix some trivialization

0:8'xS'xD? = U

of U. Let j,k,I,m be integers with jm — kl = 1. Denote by h the diffeomorphism
of the boundary of U defined by

h(0(z,y,2)) = 0(z,y 2%, y'2™)

Denote by Y the 4-manifold obtained from X — Int(U) and U by gluing by h. It
is called the result of the topological logarithmic transformation of X along T with
multiplicity m. To define Y up to diffeomorphism, it is sufficient to fix X, T, 6,
m, k and the homology class d of the circle 8(1 x (circle) x 0) in T. The integer
k is called the supplementary multiplicity and d the direction of the logarithmic
transformation.

The Dolgachev surfaces are organized into families D), , with p, ¢ relatively prime
numbers (there are also families D, , with g.c.d.(p,q) > 1, but they consist of non
simply-connected manifolds, and we will not consider them). The D; ;-surfaces are
diffeomorphic to CP2#9CP2. The homology class in CP2 #9CP? with coordinates
(3,1,1,1,1,1,1,1,1,1) in the natural basis has the zero self-intersection number and
is realized naturally by a smoothly embedded torus. The D, ,-surfaces are obtained
from CP?#9CP? by pairs of logarithmic transformations with multiplicities p and
q respectively along a pair of disjoint tori smoothly isotopic to the torus above. As
it was proved by Friedman and Morgan [FM], if p = r = 2 and ¢ # s, then no
D, ,-surface is diffeomorphic to a D, s-surface.

If one takes a simply-connected smooth 4-manifold X with a smoothly embedded
torus T' with T oT = 0 and if the complement of T in X is simply-connected then a
pair of topological logarithmic transformations with relatively prime multiplicities
p, q along T and some non zero section of its tubular neighbourhood gives a new
smooth 4-manifold, which is simply-connected. Varying the supplementary multi-
plicities and directions of the transformations, the result of the transformations can
be made homeomorphic to X.

For X in this construction one can take a 4-manifold with the second Betti
number considerably smaller than 10. In fact one can take for X the manifolds
52 x §% and CP?#CP? with the second Betti number 2. But it is unknown whether
this gives exotica or not. Unfortunately the proofs in the case of the Dolgachev
surfaces rely heavily on methods of algebraic geometry and hence on the fact that
the manifolds under consideration are complex algebraic surfaces. For X with the
second Betti number < 10 the transformations can not be done respecting any
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complex analytic structure and there is no obvious way for introducing such a
structure in the result of the transformations.

The Finashin - Kreck - Viro exotic knottings mentioned above are closely re-
lated with the Dolgachev surfaces. Namely they are obtained as a pair ( orbit
space, fixed point set ) for some antiholomorphic involutions acting in Dolgachev
surfaces. These involutions appear since the logarithmic transformations can be
done equivariantly with respect to the standard complex conjugation involution
of CP?2#9CP2. The corresponding transformation of the pair (orbit space, fixed
point set) is the knotting construction of Finashin - Kreck - Viro [FKV]. The ex-
otic knottings of [FKV] are obtained from each other by such constructions. The
constructions can be applied in considerably simpler situations. But as in the case
of manifolds there is no proof of non existence of diffeomorphisms. Thus we have
constructions, which at least sometimes give exotic objects. This work appeared
as a result of attempts to investigate effects of these constructions in some other
cases.

4. MANIFOLDS V), 4

All the manifolds V}, , are obtained from V; ; by pairs of topological logarithmic
transformations. Thus let us begin with constructing V; ;. It is a regular neigh-
bourhood of the 2-dimensional CW-complex K which is a wedge sum of a 2-sphere
S and a torus R with two disc membranes P, (), spanning a meridian and a lon-
gitude of R. S and R are smoothly embedded into V;; with the self-intersection
numbers SoS = —1, Ro R = 0, they have exactly one common point and intersect
each other transversally. The membranes P and () are also smooth, have indices
-1, have only one common point (on their boundaries) and are pairwise transversal.
They do not meet S and meet R only along their boundaries. These properties
determine V7 ; up to diffeomorphism. This manifold was constructed by Matumoto
[M] and Guillou and Marin [GM, Appendice D, p.47]. They proved that it admits
a smooth embedding into CP? #9CP? which maps R to one of the usual repre-
sentatives of the class (3,1,1,1,1,1,1,1,1,1). They also proved that the closure
of the complement of the image of this embedding can be obtained by plumbing
according to the graph Fjg weighted by -2, and therefore the boundary of V; ; is
homeomorphic to the Poincare homology sphere.

To construct V), , take R and a non-zero section R’ of its tubular neighbourhood
and make the pair of topological logarithmic transformations of V; ; along R and
R’ of multiplicities p, ¢, supplementary multiplicities 1, 1 and with coinciding (in
the obvious sense) directions.

The Matumoto - Guillou - Marin embedding of V; ; into CP? #9CP? gives ob-
viously an embedding of V,, , into one of the simplest D, ,-surfaces. The closure
of the complement of the image of this embedding does not depend on p, g since
it is the same plumbing. Thus the D, ,-surface is presented as a result of gluing
of V,,, and this constant part independent of p, ¢. As it was proved by Boileau
and Otal [BO], any two homeomorphisms of the Poincare homology sphere are iso-
topic. Therefore the result of gluing is determined up to diffeomorphism by the
parts which are glued. Thus the assertion (3) of Theorem 1 above follows from the
known results on diffeomorphism types of the Dolgachev surfaces stated above.

To finish off the proof of Theorem 1, note that assertion (2) follows immediately
from the construction of V,, and (4) follows from (2), (1) and triviality of the
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fundamental group of V,, , by the homeomorphism classification of compact simply-
connected 4-manifolds bounded by homology spheres. This classification theorem
is essentially due to Freedman [F], see Vogel [V] and Boyer [Br].

5. INACTIVE TOPOLOGICAL LOGARITHMIC TRANSFORMATIONS

The known results on the Dolgachev surfaces and Theorem 1 show that some-
times a pair of topological logarithmic transformations can change the differential
type of a 4-manifold without changing its topological type. Here is a result in the
opposite direction.

Theorem 3. Let T be a torus smoothly embedded in S® x S? and obtained by
adding a trivial handle to a fibre S? x (pt), and T' a non-zero section of a tubular
neighbourhood of T. For any relatively prime p, q let Y be the result of the pair of
topological logarithmic transformations of S? x S? along T and T' with multiplicities

p and q, supplementary multiplicities 1 and 1 and directions being along the handle
adjoined to the S? x (pt) to form T. Then'Y is diffeomorphic to the S? x S2.

Note that the same pair of the topological logarithmic transformations changes
the differential types of CP?#9CP?and V;; without changing their topological
types.

This theorem has an analog (Theorem 4 below) for knottings, since everything
in it can be taken to be invariant with respect to the involution which acts in each
factor of S2 x S? as the reflection in a plane. That involution can be interpreted
as the non-identity covering transformation of the two-fold covering of the 4-sphere
branched over the standardly embedded torus. Thus the counterpart of Theorem 3
states that some Finashin - Kreck - Viro knotting construction does not change the
smooth type of the torus standardly embedded into the 4-sphere. In fact a special
case of Theorem 3 had been obtained in the first version of this paper as a corollary
of Theorem 4 below. The proof of Theorem 3 presented below uses a result by
Moishezon [Mo] instead (this result had been pointed out to me by Gompf).

6. KNOTTING ALONG AN ALMOST DISC ANNULUS MEMBRANE

Now I recall the Finashin-Kreck-Viro knotting construction from [FKV]. Let X
be a smooth 4-manifold and F' a smooth closed 2-submanifold of X. Let M be
a smooth annulus membrane in X on F intersecting F' only along the boundary
and having index zero. In other words, M is a smooth 2-submanifold of X home-
omorphic to an annulus and having a regular neighbourhood N in X such that
there exists a diffeomorphism f : N — S' x D? mapping the intersection of N and
F onto S' x (0-tangle), where the O-tangle is a pair of segments unknotted and
unlinked in D3. For any relatively prime p, ¢ denote by K(F, M, f,p,q) the new
submanifold of X obtained from F by replacing the 0-tangle by the sum of (1/p)-
and (1/q)-tangles.

In Theorem 3 each of the tori which are the cores of the topological logarithmic
transformations is obtained from an embedded sphere by an embedded surgery
of index 1. Consider corresponding knotting constructions. Let F' be again a
smooth closed 2-submanifolds of a smooth 4-manifold X and let D be a smooth
disc membrane in X on F with zero index. Let C be a product D? x [0, 1] smoothly
embedded into X in such a way that its intersection with D is the image of D% x 0
and lies near the center of D and its intersection with F' is the image of D? x 1.



6 0. YA. VIRO

O-tangle (Up)-tangle + (1/g)-tangle

FIGURE 1

Denote by Z the image of dD? x [0,1]. Denote by M an annulus membrane on F'
obtained from the union of Z and D \ (image of D? x 0) by smoothing the corner
along the image of S x 0.

In this situation the knotting construction along M can be decomposed (up to
diffeomorphism) into some knotting construction along D (or, more precisely, a
kind of embedded knotted surgery of index 2 or 0) and an embedded surgery of
index 1 along C. The knotting along D is also a composition: first, it creates a
new unknotted 2-sphere near the center of D intersected D in a circle and adjoins
it to F' (i.e. makes an embedded surgery of index 0 of F), and second, it makes the
knotting construction along the annulus which is the part of D between the new
sphere and the old F. Without this second step, the first 0-surgery would cancel
with the subsequent 1-surgery. The isotopy making this cancellation moves the
result of the composition of the knotting along D and the 1-surgery into the result
of the knotting along M.

7. KNOTTING THE STANDARD TORUS IN THE 4-SPHERE

The torus T' standardly embedded into the 4-sphere can be considered as the
trace of an unknotted circle lying in a 3-hemisphere under rotation of this 3-
hemisphere around its boundary i.e. around the 3-space intersecting the 4-sphere
in this boundary (the trace of the whole 3-hemisphere under this rotation is just the
4-sphere). Let D be a disc traced by an unknotted arc connecting a point on the
circle and a point P on the boundary of the 3-hemisphere under the same rotation.
It is a disc membrane on 7" with index 0.

The knottings along it of the type described in the preceding section give the
Artin spun-knots and links, i.e. 2-knots and 2-links which are traces of sets of
arcs and circles under the rotation above. Actually, the 0-surgery can be presented
as the result of adding a small unknotted arc with the end-points near P on the
boundary of the 3-hemisphere to the rotating circle tracing 7. The subsequent
knotting construction along an annulus membrane is equivalent to inserting the
tangle which defines this knotting into the 3-hemisphere between the circle and the
arc to join them, see the picture:

It is clear that if the inserting tangle is a sum of (1/p)-tangle and (1/¢)-tangle
with odd p+q then the result is the 2-knot obtained by the Artin construction
applied to the torus (p + ¢,2)-knot. In the case of ¢ = 1 — p, since this torus knot
is the unknot, the result of the knotting along D of the standardly embedded torus
T is an unknotted 2-sphere.
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FIGURE 2

Theorem 4. Let T and D be the simplest torus embedded into the 4-sphere and
disc membrane on it as above, let M be any annulus membrane obtained from D
in the way described in Section 6 above and f be an appropriate trivialization of its
reqular neighbourhood. Then K(T, M, f,p,1— p) is smoothly isotopic to T.

Proof. As it was shown in Section 6 the knotting along M is the composition of
the knotting along D and the subsequent 1-surgery. As it was shown above, the
first one gives the 2-unknot. The second is unique up to diffeomorphism since it
preserves the orientation and any two arcs which can be cores of such a surgery
are isotopic (because their interiors, lying in the complement of the 2-unknot, are
homotopic). It is clear that the simplest of such 1-surgeries gives a torus smoothly
isotopic to T'.

Thus the Finashin - Kreck - Viro knotting construction applied to the torus
standardly embedded into the 4-sphere and the simplest annulus membrane with
zero index gives a torus of the same smooth isotopy class, if the knotting tangle is
the sum of 1/p-tangle and (1/1 — p)-tangle. Note that the same knotting tangles in
the case of the connected sum of 10 copies of RP? give exotic knottings, see [FKV].

8. PROOF oF THEOREM 3

The manifold Y of Theorem 3 is the 2-fold covering space of the 4-sphere
branched over the torus which is obtained from the standardly embedded torus
by the surgeries described in the preceding section. Since the 2-fold covering space
of the 3-sphere branched over the torus (p+g¢, 2)-link is the lens space L(p+q, 1), the
2-fold covering space of the 4-sphere branched over link, which is obtained from the
(p + q, 2)-torus link by the Artin construction, is diffeomorphic to L(p + ¢,1) x S*
surgered along pt x S!'. This 2-dimensional link is transformed into the torus
K(T,M, f,p,q) by a surgery of index 1. The corresponding surgery of index 2 of
the 2-fold branched covering gives Y. Thus Y can be obtained from L(p+g¢, 1) x S*
by two surgeries of index 2, one of which is along pt x S'. Since Y is simply-
connected and spin (the latter follows from orientability of the branch locus), then
it is diffeomorphic to S? x S2, as Moishezon has proved [ Mo, Lemma 13, p. 208 ].

9. PROOF OF THEOREM 2

Lemma 1. If X is a smooth 4-manifold with boundary obtained by adjoining sev-
eral 2-handles to the 4-ball, then the double of it (i.e. the result of gluing two copies
of X by the identity map of the boundary) is diffeomorphic to a connected sum of
several copies of S? x S% or CP2#CP2.
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Proof. The natural framed link presentation of the double of X is obtained from a
framed link presentation of X by adding new components with zero framing which
are meridians of components of the previous part of the link, one meridian for each
component. By isotopies and adding of these new components to the old ones it is
easy to make the old components to be unknotted and unlinked. After these moves
the new components have indices 0 and are meridians of the old ones as before.
Now the link becomes a disjoint sum of the Hopf links. It is well known that the
Hopf link with framing, which is 0 on one of the components determines S? x S
or CP24CP? depending on the framing of the other component. O

It is well known that the Poincare homology sphere bounds a compact simply
connected 4-manifold with the second Betti number 1. This manifold is obtained
for example as a result of adjoining of one 2-handle to the 4-ball along a trefoil knot
with framing 1. Denote this manifold by W. It can be presented also as a regular
neighbourhood of a smoothly embedded torus .J together with two disc membranes
spanning meridian and longitude where the torus has self-intersection +1 and the
membranes have indices -1. Cf. [M] and [GM]. It is clear that V; 1 is obtained from
W by one blow up and that W contains a deformation retract homeomorphic to the
2-sphere and smoothly embedded everywhere except at a point where it is locally
knotted as a cone over trefoil. This deformation retract can easily be seen in the
first presentation of W : it is the union of a core of the 2-handle and a cone over
the boundary of the core with the center inside the 4-ball. Denote it by S.

Lemma 2. The 4-manifold obtained by gluing the manifolds V11 and —W by
the identity map of the boundary Poincare homology sphere is diffeomorphic to
CPZ#2CPz2.

Proof. Since W is not a Spin-manifold, its double is not Spin too. Therefore by
Lemma 1, the double of W is diffeomorphic to CP?2#CP2. Now the result follows
from the fact that Vi1 can be obtained from W by a blow up (i.e. by adding
Cp2). O

Lemma 3. There exists a smooth embedding of the complement of a point in S? x
S? into the result of gluing of V1,1 and —W along the boundary such that a torus
obtained from a fiber S% x pt by adding a trivial handle is mapped by this embedding
onto the torus R in Vi ;.

Proof. The complement of a point in S? x S? is a regular neighbourhood of the
bouquet of S x pt and pt x S2. A tubular neighbourhood of S? x pt can be obtained
from a tubular neighbourhood of the torus T which is the fibre S% x pt with a small
trivial handle adjoined by adding a tubular neighbourhoods of the small membranes
spanning a meridian and a longitude of the handle. The indices of these membranes
are zero. Thus the complement of a point in S? x S? can be presented as a regular
neighbourhood of the two- dimensional C'W-complex which is a bouquet sum of a
2-sphere D and a torus C' with two disc membranes A and B spanning meridian
and longitude of C'. Each of A, B, C, D is smoothly embedded, C and D have
exactly one common point and are pairwise transversal, A, B have exactly one
common point (on their boundaries) and intersect at this point transversally, all
the self-intersections and indices are 0. The membranes A, B do not intersect
D and intersect C only along their boundaries. These properties of A, B, C, D
determine a regular neighbourhood of their union up to diffeomorphism. Thus to
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define a smooth embedding of the complement of a point in S? x $? into some 4-
manifold (up to smooth isotopy) it is sufficient to find in this manifold a collection
of embedded surfaces with these properties.

To construct the desired embedding, one should take the torus R for C. For D let
us take a sphere H which is the union of a fibre of the tubular neighbourhood of R
in V4,1 and the corresponding fibre of the tubular neighbourhood of .J in W. (Now
we consider the tubular neighbourhoods which participate in the constructing V; ;
and W above; their boundaries intersect with the boundaries of V; 1 and W.) The
membranes P and () (see the construction of V; ; in Section 4) can not be taken
for A and B, since the indices of P, (Q are -1. To make an appropriate membranes,
let us take two disjoint non-zero section H' and H" of the tubular neighbourhood
of H (remember H o H = 0), produce two disc membranes from H' and H" by
flattening small discs on H' and H" to R in such a way that the indices of the
new membranes be +1 (there are two ways of the flattening - one gives index +1,
the other one -1, see [R]), and then add the new membranes by connected sums
along the boundary to P and @ . It is easy to check that the resulting membranes,
together with R and H satisfy all the conditions posed above on A, B, C, D. O

Lemma 4. 2For any relatively prime p, q the {-manifold obtained by gluing the
manifolds Vp, , and —W by the identity map of the boundary Poincare homology
sphere is diffeomorphic to CP?#2CP?2.

Proof. The result of gluing of V), , and —W is obtained from the result of gluing of
Vi1 and —W by a pair of topological logarithmic transformations along two torus
closed to R. By Lemma 3 these transformations are produced in an embedded
punctured S? x S? in such a way that by Theorem 3 they do not change the
smooth type of it. Thus the results of gluing of V,,, and —W is diffeomorphic to
the result of gluing of V1 ;1 and —W. The latter is diffeomorphic to CP? #2CP? by
Lemma 2. O

To finish the proof of Theorem 2, denote by S, the image of the sphere S (re-
member that it is a deformation retract of W) under the diffeomorphism of the
result of gluing of V}, , and —W onto CP?#2CP2. The assertions (1)-(4) and (7)
are the straightforward consequences of the construction of S,. The assertions (5)
and (6) follow from the assertions (4) and (3) of Theorem 1 respectively.
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