УДК 513.83

Пересечения петель в двумерных многообразиях. II. Свободные петли

Тураев В. Г., Виро О. Я.

§ 1. Введение

Настоящая работа является продолжением статьи первого автора [6], но может читаться независимо.

1.1. Предмет работы. В настоящей работе рассматривается следующая задача: каково наименьшее число точек пересечения и самопересечения петель, входящих в данные гомотопические классы отображений окружности S^1 в двумерное многообразие A (разумеется, с учетом кратностей этих точек)? Важными специальными случаями этой задачи являются следующие вопросы: при каких условиях данные гомотопические классы отображений $S^1 \rightarrow A$ представляются попарно непересекающимися петлями? при каких условиях такие классы представляются простыми (т. е. несамопересекающимися) петлями?

Решение аналогичных задач, относящихся к отображениям n-мерной сферы в 2n-мерное многообразие, сыграло важную роль в топологии многообразий больших размерностей. Это решение было получено Кервером [2] в случае n>2 в терминах введенных им эрмитовых форм, обобщающих классические формы индексов пересечения (см. также Уолл [7]). В случае n=2 подобные задачи, насколько нам известно, пока не решены.

Сформулированные выше вопросы о гомотопических классах отображений окружности в двумерное многообразие А допускают 3 модификации. В первой речь идет о свободных гомотопических классах, во второй — об элементах группы $\pi_1(A, a)$ в случае $a \in Int A$ и в третьей — об элементах группы $\pi_1(A, a)$ в случае $a \in \partial A$. (В старших размерностях подобные модификации равносильны.) Настоящая работа посвящена первой из этих модификаций. О второй модификации нам известно только то, что в вопросе о самопересечениях она эквивалентна первой: если представляемый элементом α группы $\pi_i(A, a)$ с $a \in \operatorname{Int} A$ свободный гомотопический класс отображений $S^1 \rightarrow A$ представляется петлей с l самопересечениями, то и α представляется петлей с l самопересечениями. Это следует из того, что в случае $a\in \operatorname{Int} A$ внутренние автоморфизмы группы $\pi_1(A, a)$ реализуются гомеоморфизмами $(A, a) \to (A, a)$. Третья из указанных модификаций (случай $a \in \partial A$) впервые была рассмотрена в [6]. Данный там ответ аналогичен ответу, найденному Кервером в многомерной ситуации и формулируется в терминах введенной в [6] для случая $a \in \partial A$ формы

$$\mathbf{Z}[\pi_{i}(A, a)] \times \mathbf{Z}[\pi_{i}(A, a)] \rightarrow \mathbf{Z}[\pi_{i}(A, a)],$$

являющейся двумерным аналогом упомянутых выше эрмитовых форм Кервера. В случае $a \in Int A$ в [6] построено аналогичное спаривание и в его терминах сформулированы необходимые условия реализуемости

свободного гомотопического класса отображений $S^1 \rightarrow A$ простой петлей и необходимые условия реализуемости нескольких таких классов непересекающимися петлями.

В настоящей работе доказывается, что эти условия являются и достаточными. Более того, здесь показывается, что в широком классе случаев в терминах этого же спаривания можно сформулировать ответ на вопрос о минимальном числе точек пересечения и самопересечения петель, входящих в данные свободные гомотопические классы петель в A. Подчеркнем, что хотя для введения используемого здесь спаривания необходимо зафиксировать точку a в A, это спаривание оказывается хорошо приспособленным для изучения гомотопических классов свободных петель.

В заключение этого пункта отметим, что алгоритмическое решение части изучаемых здесь задач хорошо известно: в работах Рейнхарта [5], Цишанга [8], [9] и Чиллингуорса [1] построены алгоритмы, определяющие содержат ли данные свободные гомотопические классы петель в А непересекающиеся простые петли. По-видимому, небольшим видоизменением их методов можно получить и алгоритмы, определяющие наименьшее число точек пересечения и самопересечения петель, входящих в данные свободные гомотопические классы. В настоящей работе алгоритмические проблемы не рассматриваются.

1.2. Терминология и обозначения. Терминология статьи — дифференциально-топологическая. Всюду в дальнейшем через A обозначается связное двумерное многообразие, через a — его точка и через π — фундаментальная группа $\pi_1(A, a)$. В касательном пространстве T_aA раз и навсегда фиксируется ориентация.

Для $\alpha \in \pi$ через $fr(\alpha)$ обозначается свободный гомотопический класс отображений $S^4 \rightarrow A$, определяемый классом α . Положим $w(\alpha) = 1$, если петли класса α являются дезориентирующими, и $w(\alpha) = 0$ в противном случае (так что $\alpha \mapsto w(\alpha) \mod 2$: $\pi \mapsto \mathbb{Z}/2\mathbb{Z}$ — гомоморфизм, определяемый первым классом Штифеля — Уитни многообразия A). Для инволюции кольца $\mathbb{Z}[\pi]$, определяемой формулой

$$\sum_{\alpha\in\pi} n_{\alpha}\alpha \mapsto \sum_{\alpha\in\pi} (-1)^{w(\alpha)} n_{\alpha}\alpha^{-1},$$

будем употреблять обозначение $\beta\mapsto\overline{\beta}$. Для $\beta=\sum_{\alpha\in\pi}n_{\alpha}\alpha\in\mathbf{Z}[\pi]$ через $|\beta|$

обозначается число $\sum_{\alpha \in \pi} |n_{\alpha}|$. Для петель $x, y \colon S^1 \to A$ через k(x, y) обозначается число $\operatorname{card}\{(t_1, t_2) \in S^1 \times S^1 | x(t_1) = y(t_2)\}$ и через l(x) — число таких неупорядоченных пар $t, t' \in S^1$, что $t \neq t'$ и x(t) = x(t').

1.3. Формулировки результатов. В [6, добавление 2] описана конструкция (воспроизводящаяся ниже в § 2), которая относит упорядоченной паре (α, β) элементов группы π некоторый элемент фактор-группы аддитивной группы кольца $\mathbf{Z}[\pi]$ по подгруппе

$$(\alpha-1)\mathbf{Z}[\pi]+\mathbf{Z}[\pi](\overline{\beta}-1),$$

обозначаемый через $\Lambda(\alpha, \beta)$ и называемый пересечением классов α и β . Указанная фактор-группа обозначается через $P_{\alpha,\beta}$, а проекция $\mathbf{Z}[\pi] \rightarrow P_{\alpha,\beta}$ — через $\mathrm{pr}_{\alpha,\beta}$. Для $\gamma \in P_{\alpha,\beta}$ через $|\gamma|$ обозначается число min $\{|\delta|, \delta \in \mathrm{epr}_{\alpha,\beta}^{-1}(\gamma)\}$.

Теорема І. Пусть $\alpha, \beta \in \pi$, $x \in \operatorname{fr}(\alpha)$ и $y \in \operatorname{fr}(\beta)$. Тогда

$$k(x, y) \geqslant |\Lambda(\alpha, \beta)|,$$
 (1)

$$l(x) \geqslant \frac{1}{2} (|\Lambda(\alpha, \alpha)| - w(\alpha)). \tag{2}$$

Теорема I доставляет оценки снизу чисел пересечений и самопересечений петель через гомотопические инварианты этих петель. Отметим, что оценка (1) числа k(x,y) существенно сильнее стандартной оценки через индекс пересечения целочисленных гомологических классов петель x и y в случае ориентируемого A и через индекс пересечения тех же классов mod 2 в случае неориентируемого A. Однако, оценка (1) не является точной. Например, если A — лист Мебиуса, α — куб образующей его фундаментальной группы и β — пятая степень образующей, то, как легко вычислить, $|\Lambda(\alpha,\beta)|=1$. В то же время, прямые геометрические рассуждения (основывающиеся на подсчете индексов пересечения и чисел Бетти) показывают, что петли, входящие в α и β , имеют не менее трех точек пересечения. Как видно из формулируемой ниже теоремы II, если исключить ситуации, сходные с этим примером, то оценка (1) уже окажется точной (неулучшаемой).

Что касается числа самопересечений петли x: $S^1 \rightarrow A$, то, наряду с (2), имеет место следующая гомологическая оценка. Допустим, что класс петли x в группе $H_1(A;\mathbf{Z})/\mathrm{Tors}\,H_1(A;\mathbf{Z})$ отличен от 0, и пусть n— наибольшее натуральное число, на которое делится этот класс. Тогда: а) если A ориентируемо и компактно, то $l(x) \geqslant n-1$; в) если A неориентируемо и замкнуто, то $l(x) \geqslant [(n-1)/2]$, где квадратные скобки обозначают взятие целой части. Если в условиях утверждения в) x— характеристическая петля (т. е. ее индекс пересечения с дезориентирующими петлями равен 1 mod 2, а с остальными —0 mod 2), то в последнем неравенстве правую часть можно увеличить на 1. Эти оценки вытекают очевидным образом из результатов Микса и Патруски [3], [4], касающихся минимального числа компонент одномерного подмногообразия многообразия A, реализующего данный гомологический класс.

Указанная гомологическая оценка и оценка (2) независимы в том смысле, что ни одна из них не следует за другой. Например, если A — цилиндр и x — петля в A, гомотопная n-й степени средней линии, то утверждение а) дает неравенство $l(x) \geqslant n-1$, а оценка (2) дает в данном случае тривиальное неравенство $l(x) \geqslant 0$. Если исключить подобную ситуацию, предположив, что гомотопический класс петли x не представляется в виде β^n с $n \geqslant 2$ и $\beta \in w^{-1}(0) \subset \pi$, то как показывает следующая теорема, оценка (2) уже окажется точной.

Для $\alpha \in \pi$ через $e(\alpha)$ обозначим наибольшее из таких натуральных n, что α представляется в виде β^n с $\beta \in \pi$ и $w(\beta) = w(\alpha)$. Такое наибольшее число не существует только в 2 случаях: когда $\alpha = 1$ и когда A — проективная плоскость. В этих случаях положим $e(\alpha) = 1$. Для α , $\beta \in \pi$ в случае, когда $w(\alpha) = w(\beta) = 1$, числа $e(\alpha)$ и $e(\beta)$ нечетны и классы $\alpha^{e(\beta)}$, $\beta^{e(\alpha)}$ сопряжены, положим

$$n(\alpha, \beta) = \min(e(\alpha), e(\beta))$$
 — н. о. д. $(e(\alpha), e(\beta))$,

где н. о. д. — наибольший общий делитель. В остальных случаях положим $n(\alpha,\beta) = 0$

Теорема II. Если $\alpha_1, \ldots, \alpha_r \in \pi$, то существуют такие погружения x_1, \ldots, x_r : $S^1 \rightarrow A$ с трансверсальными пересечениями и самопересечениями, входящие соответственно в $\operatorname{fr}(\alpha_1), \ldots, \operatorname{fr}(\alpha_r)$, что:

(i) $\partial \Lambda R \Lambda H O O O O I \neq i$

$$k(x_i, x_j) = |\Lambda(\alpha_i, \alpha_j)| + n(\alpha_i, \alpha_j);$$

(ii) для любого i

$$l(x_i) = \frac{1}{2} \left(|\Lambda(\alpha_i, \alpha_i)| - w(\alpha_i) \right) + (1 - w(\alpha_i)) \left(e(\alpha_i) - 1 \right).$$

Заметим, что если A ориентируемо, то $n(\alpha, \beta) = 0$ для любых α , $\beta \in \pi$. Таким образом, теорема II показывает, что для ориентируемых многообразий оценка (1) неулучшаема. Как уже было сказано, для неориентируемых многообразий это не так. Стоит отметить, что для выполнения равенства $n(\alpha, \beta) = 0$ достаточно (но не необходимо) выполнения любого из следующих условий: $w(\alpha) = 0$; $w(\beta) = 0$; элементы группы $H_1(A; \mathbf{Z}/2\mathbf{Z})$, представляемые классами α и β , различны; гомологический mod 2 индекс пересечения классов α и β равен 0.

Следствие І. Если $\alpha_1, \ldots, \alpha_r \in \pi$, то для того чтобы классы $\operatorname{fr}(\alpha_1), \ldots, \operatorname{fr}(\alpha_r)$ содержали попарно непересекающиеся петли, необходимо и достаточно, чтобы для любых $i, j = 1, \ldots, r$ с $i \neq j$ выполнялось равенство $\Lambda(\alpha_i, \alpha_j) = 0$.

Следствие II. Если а€п, то следующие условия равносильны:

- (i) $\kappa nacc fr(\alpha) codepжит простую петлю;$
- (ii) $e(\alpha) = 1 u \Lambda(\alpha, \alpha) = \operatorname{pr}_{\alpha,\alpha}(w(\alpha));$
- (iii) $e(\alpha) = 1 u |\Lambda(\alpha, \alpha)| = w(\alpha)$.

Как уже говорилось в п. 1.1, в случае, когда отмеченная точка a лежит в Int A, условие (i) равносильно тому, что α представляется простой петлей. Если $a \in \partial A$, то (i), разумеется, равносильно тому, что для некоторого $\beta \in \pi$ класс $\beta \alpha \beta^{-1}$ представляется простой петлей. Заметим также, что условие $e(\alpha) = 1$ выполняется тогда и только тогда, когда или $\alpha = 1$, или A — проективная плоскость, или α не представляется в виде β^n с $\beta \in \pi$ и $n \ge 2$, или $\alpha = \beta^2$, где $\beta \in \pi$, $w(\beta) = 1$ и β не представляется в виде γ^n с $\gamma \in \pi$ и $n \ge 2$.

Доказательство теорем I, II и вывод из них следствий I и II излагаются в \S 3. В \S 2 воспроизводится определение пересечения и устанавливается ряд его свойств.

§ 2. Формы пересечений

2.1. Случай $a \in \partial A$. Пусть α , $\beta \in \pi$. Пусть $f: (I, 0) \to (\partial A, a)$ (где I = [0, 1]) — такое гладкое вложение, что пара, состоящая из вектора f'(0) и вектора, направленного внутрь A, задает в T_aA выделенную ориентацию. Пусть $x: (I, \partial I) \to (A, a)$ и $y: (I, \partial I) \to (A, f(1))$ — такие трансверсальные петли, что x представляет α и петля $(fy)f^{-1}$ представляет β . Положим

$$T = \{(t_1, t_2) \in I \times I \mid x(t_1) = y(t_2)\}.$$

В силу трансверсальности петель x и y множество T конечно. Для $t=(t_1,t_2)\in T$ обозначим через γ_t элемент группы π , представляемый петлей $x|_{[0,t_1]}(y|_{[0,t_2]})^{-1}f^{-1}$. Положим $\varepsilon_t=1$, если ориентация пространства $T_\alpha A$, перенесенная вдоль пути $f(y|_{[0,t_2]})$, задается парой $(x'(t_1),y'(t_2))$,

и положим $\epsilon_t \! = \! -1$ в противном случае. Сумма $\sum_{t \in T} \epsilon_t \gamma_t$ зависит лишь от

 α и β (см. [6]); отображение $(\alpha,\beta) \rightarrow \sum_{t \in T} \varepsilon_t \gamma_t$: $\pi \times \pi \rightarrow \mathbf{Z}[\pi]$ обозначается через λ_A или, короче, через λ . Отображение

$$(\alpha, \beta) \mapsto \operatorname{pr}_{\alpha,\beta}(\lambda(\alpha, \beta)) : \pi \times \pi \to \bigoplus_{\alpha,\beta \in \pi} P_{\alpha,\beta}$$

и есть (в случае $a \in \partial A$) отображение Λ , о котором шла речь в \S 1.

Ниже потребуются следующие свойства формы $\lambda = \lambda_A$, установленные в [6]. Для любых γ , δ , $\eta \in \pi$

$$\lambda(\gamma\delta, \eta) = \lambda(\gamma, \eta) + \gamma\lambda(\delta, \eta), \tag{3}$$

$$\lambda(\gamma^{-1}, \eta) = -\gamma^{-1}\lambda(\gamma, \eta), \tag{4}$$

$$\lambda(\gamma, \eta) + \overline{\lambda(\eta, \gamma)} = (\gamma - 1)(\overline{\eta} - 1). \tag{5}$$

Если λ' : $\pi \times \pi \to \mathbf{Z}[\pi]$ — форма, отвечающая ориентации пространства $T_{\alpha}A$, противоположной заданной, то

$$\lambda'(\gamma, \eta) = \overline{\lambda(\eta, \gamma)}. \tag{6}$$

2.2. Случай $a\in Int\ A$. Пусть D — содержащийся в $Int\ A$ замкнутый диск с $a\in \partial D$. Положим $B=A\setminus Int\ D$. Обозначим через i гомоморфизм включения $\pi_1(B,\ a)\to \pi$ и через i' — индуцированный им гомоморфизм $\mathbf{Z}[\pi_1(B,\ a)]\to \mathbf{Z}[\pi]$. Пусть $\lambda=\lambda_B$: $\pi_1(B,\ a)^2\to \mathbf{Z}[\pi_1(B,\ a)]$ — пересечение в $\pi_1(B,\ a)$, отвечающее выделенной ориентации пространства $T_aB=T_aA$. Для α , $\beta\in \pi$ положим $\widetilde{\Lambda}(\alpha,\ \beta)=\{i'(\lambda(\delta,\eta))\mid \delta\in i^{-1}(\alpha),\ \eta\in i^{-1}(\beta)\}$. Очевидно, что $\widetilde{\Lambda}(\alpha,\ \beta)$ не зависит от выбора диска D.

 Π е м м а. Для любых $\alpha,\beta\in\pi$ множество $\Lambda(\alpha,\beta)$ является классом смежности аддитивной группы кольца $\mathbf{Z}[\pi]$ по подгруппе $(\alpha-1)\mathbf{Z}[\pi]+\mathbf{Z}[\pi](\overline{\beta}-1)$.

Доказательство. Обозначим через v класс в $\pi_1(B, a)$ петли $g: (I, \partial I) \rightarrow (\partial A, a)$, которая параметризует окружность ∂A и для которой пара (g'(0), направленный внутрь A вектор) задает выделенную в $T_a A$ ориентацию. Из формул (3) и (4) следует, что для любых γ , δ , $\eta \in \mathfrak{T}_1(B, a)$ имеем

$$\lambda(\gamma \nu \gamma^{-1} \delta, \eta) = \lambda(\gamma, \eta) + \gamma \lambda(\nu, \eta) -$$

$$- \gamma \nu \gamma^{-1} \lambda(\gamma, \eta) + \gamma \nu \gamma^{-1} \lambda(\delta, \eta).$$

Поэтому $i'(\lambda(\gamma v \gamma^{-1}\delta, \eta)) = i'(\gamma \lambda(v, \eta) + \lambda(\delta, \eta))$. Непосредственно проверяется, что $\lambda(v, \eta) = 1 - \overline{\eta}$, и, значит,

$$i'(\lambda(\gamma \nu \gamma^{-1}\delta, \eta)) = i'(\lambda(\delta, \eta)) + i'(\gamma(1-\overline{\eta})). \tag{7}$$

Аналогичным образом имеем

$$i'(\lambda(\delta, \gamma v \gamma^{-1} \eta)) = i'(\lambda(\delta, \eta)) + i'((\delta - 1)\overline{\gamma}). \tag{8}$$

Поскольку v порождает Ker i как нормальный делитель, из (7) и (8) следует утверждение леммы.

В силу этой леммы образ множества $\widetilde{\Lambda}(\alpha, \beta)$ при проекции $\mathbf{Z}[\pi] \to P_{\alpha,\beta}$ представляет собой элемент группы $P_{\alpha,\beta}$. Этот элемент обозначается

через $\Lambda(\alpha, \beta)$. Отображение

$$(\alpha, \beta) \mapsto \Lambda(\alpha, \beta) : \pi^2 \to \bigoplus_{\alpha, \beta \in \pi} P_{\alpha, \beta}$$

будем называть пересечением в π.

2.3. Свойства пересечения Λ . Пусть α , $\beta \in \pi$.

(i) Очевидно, что инволюция $x \mapsto \overline{x}$ в $\mathbf{Z}[\pi]$ индуцирует изоморфизм $P_{\alpha,\beta} \to P_{\beta,\alpha}$. Для его обозначения тоже используется черта. Тогда

$$\Lambda(\alpha, \beta) + \overline{\Lambda(\beta, \alpha)} = 0.$$

Это следует из формулы (5).

(ii). Группы $P_{\alpha,\beta}$, $P_{\alpha^{-1},\beta}$, $P_{\alpha,\beta^{-1}}$ и $P_{\alpha^{-1},\beta^{-1}}$ канонически изоморфны друг другу, так как $(\alpha^{-1}-1)\mathbf{Z}[\pi] = (\alpha-1)\mathbf{Z}[\pi]$ и $\mathbf{Z}[\pi]$ ($\overline{\beta}^{-1}-1$) = $=\mathbf{Z}[\pi](\overline{\beta}-1)$. Если отождествить эти группы посредством канонических изоморфизмов, то будут выполняться равенства

$$\Lambda(\alpha, \beta) = -\Lambda(\alpha^{-1}, \beta) = -\Lambda(\alpha, \beta^{-1}) = \Lambda(\alpha^{-1}, \beta^{-1}).$$

Докажем, например, первое равенство. В силу формулы (4), $\lambda(\delta^{-1}, \eta) = -\delta^{-1}\lambda(\delta, \eta)$. Поэтому

$$\begin{array}{l} \lambda(\delta^{-1}, \eta) = (\delta - 1) \delta^{-1} \lambda(\delta, \eta) - \lambda(\delta, \eta) = \\ = -\lambda(\delta, \eta) \operatorname{mod}(\delta - 1) \mathbf{Z}[\pi]. \end{array}$$

(iii). Для ү \in л аддитивный гомоморфизм х \mapsto үх: $\mathbf{Z}[\pi] \to \mathbf{Z}[\pi]$ индуцирует гомоморфизм $P_{\alpha,\beta} \to P_{\gamma\alpha\gamma^{-1},\beta}$, так как

$$\gamma[(\alpha-1)\mathbf{Z}[\pi]+\mathbf{Z}[\pi](\bar{\beta}-1)] = (\gamma\alpha\gamma^{-1}-1)\mathbf{Z}[\pi]+\mathbf{Z}[\pi](\bar{\beta}-1).$$

Обозначим этот гомоморфизм через $L_{\rm r}$. Тогда для любого $\gamma \in \pi$

$$\Lambda(\gamma\alpha\gamma^{-1}, \beta) = L_{\tau}(\Lambda(\alpha, \beta)).$$

Это следует из равенств

$$\lambda(\gamma\delta\gamma^{-1}, \eta) = \lambda(\gamma, \eta) + \gamma\lambda(\delta, \eta) - \gamma\delta\gamma^{-1}\lambda(\gamma, \eta) =$$

$$\equiv \gamma\lambda(\delta, \eta) \mod(1 - \gamma\delta\gamma^{-1}) \mathbf{Z}[\pi].$$

(iii)'. Аналогично, гомоморфизм $x\mapsto x\gamma$: $\mathbf{Z}[\pi]\to\mathbf{Z}[\pi]$ индуцирует гомоморфизм $P_{\alpha,\eta}\to P_{\alpha,\eta}=\iota_{\xi\eta}$, который мы будем обозначать через R_{τ} . При этом

$$\Lambda(\alpha, \gamma \beta \gamma^{-1}) = (-1)^{w(\gamma)} R_{\gamma^{-1}}(\Lambda(\alpha, \beta)).$$

(iv). Если Λ' — пересечение, отвечающее ориентации пространства $T_a A$, противоположной заданной, то

$$\Lambda'(\alpha, \beta) = -\Lambda(\alpha, \beta).$$

Это следует из формул (5) и (6).

- (v). Очевидно, что суммирование коэффициентов по модулю два $\mathbf{Z}[\pi] \rightarrow \mathbf{Z}/2\mathbf{Z}$ определяет гомоморфизм $P_{\alpha,\beta} \rightarrow \mathbf{Z}/2\mathbf{Z}$ и что образ пересечения $\Lambda(\alpha, \beta)$ классов α и β при этом гомоморфизме равен индексу пересечения гомологических классов, определяемых α и β . В случае ориентируемого A этот результат усиливается очевидным образом.
- (vi). Пусть $s: I \rightarrow A$ путь в A с s(0) = a. Положим b = s(1). Обозначим через Λ' пересечение в $\pi_1(A, b)$, отвечающее ориентации пространства T_bA , получающейся переносом вдоль s из выделенной ориентации пространства T_aA . Обозначим через u гомоморфизм переноса

 $\pi \to \pi_1(A, b)$ вдоль s и через U — индуцированный им изоморфизм $P_{\alpha,\beta} \to P_{u(\alpha),u(\beta)}.$ Тогда

$$\Lambda'(u(\alpha), u(\beta)) = U(\Lambda(\alpha, \beta)). \tag{9}$$

Доказательство. Достаточно доказать это предложение в случае, когда s — простой путь и хотя бы один из его концов лежит в Int A, так как любой путь гомотопен произведению таких путей. В указанном случае α и β можно представить петлями, не пересекающимися с s(I). С помощью этих петель равенство (9) проверяется прямым вычислением.

2.4. Расширение пересечения Λ до эрмитовой формы 4 . Обозначим прямую сумму $\bigoplus_{\alpha,\beta\in\pi} P_{\alpha,\beta}$ через Q и введем в Q структуру $\mathbf{Z}[\pi]$ -бимодуля, положив для $\gamma\in\pi$ и $\xi\in P_{\alpha,\beta}$

$$\gamma \xi = L_{\tau}(\xi)$$
 и $\xi \gamma = R_{\tau}(\xi)$

(см. п. 2.3, (iii) и (iii)'). Инволюция $\xi \mapsto \overline{\xi}$: $Q \to Q$ (переводящая $P_{\alpha,\beta}$ в $P_{\beta,\alpha} = \text{см. п. 2.3, (i)}$) связана с этой структурой очевидным соотношением $\overline{\gamma\xi} = \overline{\xi\gamma}$.

Продолжим пересечение Λ : $\pi \times \pi \to Q$ до **Z**-билинейной формы

$$\mathscr{L}: \mathbf{Z}[\pi] \times \mathbf{Z}[\pi] \rightarrow Q.$$

Относительно структуры левого $\mathbf{Z}[\pi]$ -модуля в $\mathbf{Z}[\pi]$, определяемой формулой $\gamma \cdot \alpha = \gamma \alpha \gamma^{-1}$, и инволюции $\xi \mapsto \overline{\xi}$ в Q форма $\mathscr L$ является косоэрмитовой, т. е.

$$\mathscr{L}(\gamma \cdot \alpha, \beta) = \gamma \mathscr{L}(\alpha, \beta), \ \mathscr{L}(\alpha, \gamma \cdot \beta) = \mathscr{L}(\alpha, \beta) \overline{\gamma}, \ \mathscr{L}(\alpha, \beta) + \overline{\mathscr{L}(\beta, \alpha)} = 0.$$
 Это следует из утверждений (iii), (iii)' и (i) предыдущего пункта.

2.5. Гомологическая интерпретация пересечения. Обозначим через θ локальную систему коэффициентов на A со слоем Z, определяемую действием $(\gamma, n) \mapsto (-1)^{w(\gamma)} n$: $\pi \times Z \to Z$. Как хорошо известно, в двумерной гомологической группе пары $(A, \partial A)$ с коэффициентами в θ и замкнутыми носителями существует такой класс $[A, \partial A]$, что для любой локальной системы коэффициентов ξ на A гомоморфизм

$$[A, \partial A] \cap : H^*(A, \partial A; \xi) \longrightarrow H_{2-*}(A; \theta \otimes \xi)$$
 (10)

является изоморфизмом. С элементом α группы π свяжем локальную систему коэффициентов ξ_{α} на A со слоем $\mathbf{Z}[\pi]/(\alpha-1)\mathbf{Z}[\pi]$, определяемую действием π на $\mathbf{Z}[\pi]/(\alpha-1)\mathbf{Z}[\pi]$, которое паре $(\gamma, \delta \operatorname{mod}(\alpha-1)\mathbf{Z}[\pi])$, где $\gamma \in \pi$, $\delta \in \mathbf{Z}[\pi]$, относит $\delta \gamma \operatorname{mod}(\alpha-1)\mathbf{Z}[\pi]$. Легко проверить, что если $A_{\alpha} \rightarrow A$ — накрытие, отвечающее подгруппе $\{\alpha^n\}_{n \in \mathbf{Z}}$ группы π , то градуированная группа $H_{\bullet}(A; \xi_{\alpha})$ канонически изоморфна $H_{\bullet}(A_{\alpha}; \mathbf{Z})$. В частности, $H_{\bullet}(A; \xi_{\alpha}) = H_{\bullet}(A_{\alpha}; \mathbf{Z})$ — циклическая группа с канонической образующей (отвечающей элементу α группы $\{\alpha^n\}_{n \in \mathbf{Z}}$).

Если α , $\beta \in \pi$, то спаривание

$$\mathbf{Z}[\pi]/(\alpha-1)\mathbf{Z}[\pi]\times\mathbf{Z}[\pi]/(\beta-1)\mathbf{Z}[\pi]\rightarrow P_{\alpha,\beta}$$

определяемое формулой

$$(\delta \bmod (\alpha - 1) \mathbf{Z}[\pi], \eta \bmod (\beta - 1) \mathbf{Z}[\pi]) \mapsto \delta \overline{\eta} \bmod ((\alpha - 1) \mathbf{Z}[\pi] + \mathbf{Z}[\pi] (\overline{\beta} - 1)),$$

¹ Результаты этого и следующего пунктов в § 3 не используются.

задает спаривание локальных систем коэффициентов $\theta \otimes \xi_{\alpha}$ и $\theta \otimes \xi_{\beta}$ в $\theta \otimes P$, где P обозначает постоянную локальную систему на A со слоем $P_{\alpha,\beta}$. Последнее спаривание определяет форму

$$[]: H^1(A, \partial A; \theta \otimes \xi_{\alpha}) \times H^1(A, \partial A; \theta \otimes \xi_{\beta}) \rightarrow H^2(A, \partial A; \theta \otimes P).$$

Компонуя эту форму с изоморфизмами (10), получаем спаривание

$$H_1(A; \xi_{\alpha}) \times H_1(A; \xi_{\beta}) \rightarrow H_0(A; P) = P_{\alpha,\beta}.$$

Непосредственно проверяется, что паре, составленной из канонических образующих групп $H_1(A; \xi_{\alpha})$ и $H_1(A; \xi_{\beta})$, отвечает при этом спаривании элемент $\Lambda(\alpha, \beta)$ группы $P_{\alpha,\beta}$.

Данная интерпретация пересечения Λ подсказывает его обобщение на случай двумерного комплекса Пуанкаре над произвольной областью коэффициентов.

§ 3. Доказательство теорем I, II и следствий I, II

3.1. Лемма. Пусть $b \in A$ и Λ' — пересечение в $\pi_1(A, b)$, отвечающее некоторой ориентации пространства $T_b A$. Пусть α , $\beta \in \pi$ и α' , $\beta' \in \pi_1(A, b)$ и пусть $\operatorname{fr}(\alpha) = \operatorname{fr}(\alpha')$ и $\operatorname{fr}(\beta) = \operatorname{fr}(\beta')$. Тогда $|\Lambda'(\alpha', \beta')| = |\Lambda(\alpha, \beta)|$.

Доказательство. В силу утверждения (vi) п. 2.3, число $|\Lambda(\alpha, \beta)|$ не меняется при перенесении классов α , β вдоль пути в A. Поэтому можно считать, что b=a. При этом либо $\Lambda'=\Lambda$, либо $\Lambda'=-\Lambda$. Так как $\mathrm{fr}(\alpha)=\mathrm{fr}(\alpha')$ и $\mathrm{fr}(\beta)=\mathrm{fr}(\beta')$, классы α и β сопряжены соответственно с α' и β' . Таким образом, в силу утверждений (iii), (iii)', (iv) п. 2.3,

$$|\Lambda'(\alpha', \beta')| = |\pm \Lambda(\alpha, \beta)| = |\Lambda(\alpha, \beta)|.$$

3.2. Доказательство теоремы І. Докажем неравенство (1). Если $k(x, y) = \infty$, то это неравенство очевидно. Поэтому будем считать, что $k(x, y) < \infty$, т. е. что число точек пересечения петель x и y (с учетом кратностей) конечно. Зафиксируем для каждой точки множества $x(S^1) \cap y(S^1)$ замкнутую круговую окрестность. Будем считать, что эти круги попарно не пересекаются, и обозначим через E их объединение. Снабдим E плоской римановой метрикой. Очевидно, что x^{-1} (Int E) представляет собой объединение открытых попарно непересекающихся дуг в S^i . Пусть x' — такое непрерывное отображение $S^i \rightarrow A$, что x^\prime отображает каждую из указанных дуг биективно на прямолинейный интервал в Int E, а в дополнении множества $x^{-1}(Int E)$ отображения x и x' совпадают. Определим $y': S^1 \rightarrow A$ по y таким же способом. Очевидно, что x гомотопно x', y гомотопно y', петли x' и y' трансверсальны и $k(x, y) \geqslant k(x', y)$. Поэтому при доказательстве неравенства (1) можно считать, что x и y пересекаются трансверсально.

Пусть теперь D — замкнутый диск в $A \setminus (x(S^1) \cup y(S^1))$, пересекающийся с каждым из множеств $x(S^1)$, $y(S^1)$ в одной точке. Обозначим единственную точку множества $D \cap x(S^1) = \partial D \cap x(S^1)$ через b, пересечение в $\pi_1(A,b)$ через Λ' и элементы группы $\pi_1(A,b) = \pi_1(A,D)$, представляемые петлями x и y, соответственно через α' и β' . Непосредственно из определения пересечения следует, что $k(x,y) \geqslant |\Lambda'(\alpha',\beta')|$. В силу леммы 3.1 отсюда следует неравенство (1).

Докажем (2). Как и выше, можно считать, что самопересечения петли x трансверсальны. Пошевелив x, легко получить такую петлю x', что x и x' трансверсальны и $k(x \ x') = 2l(x) + w(\alpha)$. По доказанному,

 $k(x, x') \geqslant |\Lambda(\alpha, \alpha)|$. Значит,

$$l(x) \geqslant \frac{1}{2} (|\Lambda(\alpha, \alpha)| - w(\alpha)).$$

3.3. Лемма. Пусть α , $\beta \in \pi$ и $\delta = \sum_{\gamma \in \pi} n_{\gamma} \gamma \in \mathbb{Z}[\pi]$. Если $|\delta| > |\operatorname{pr}_{\alpha,\beta}(\delta)|$, то либо $|n_{\gamma}| \geqslant 2$ для некоторого $\gamma \in \pi$, либо найдутся такие различные γ , $\eta \in \pi$, что $n_{\gamma} \neq 0$, $n_{\eta} \neq 0$ и $\gamma = \alpha^m \eta \beta^n$ для некоторых целых m и n.

Доказательство. Разобьем группу π на попарно непересекающиеся классы следующим образом: элементы γ и η группы π входят в один класс, если $\gamma = \alpha^m \eta \beta^n$ для некоторых целых m и n. Для каждого такого класса, скажем, Γ составим сумму $\sum_{\gamma \in \Gamma} n_{\gamma}$; обозначим через $\|\delta\|$ число тех классов, для которых такая сумма нечетна. Очевидно, что $\|\delta\| \ge \|\delta\|$ и что если $\delta' - \delta \in (\alpha - 1) \mathbf{Z}[\pi] + \mathbf{Z}[\pi](\overline{\beta} - 1)$, то $\|\delta'\| = \|\delta\|$. Поэтому

$$|\operatorname{pr}_{\alpha,\beta}(\delta)| = \min\{|\delta'|, \delta' - \delta \in (\alpha - 1) \mathbb{Z}[\pi] + \mathbb{Z}[\pi](\overline{\beta} - 1)\} \geqslant ||\delta||.$$

Значит, если $|\delta| > |\operatorname{pr}_{\alpha,\beta}(\delta)|$, то $|\delta| > ||\delta||$. Отсюда следует утверждение леммы.

3.4. Доказательство теоремы II. Как и в [6], общий случай легко редуцируется к случаю компактного A. Будем считать, что классы $\alpha_1, \ldots, \alpha_r$ нетривиальны и что A не гомеоморфно ни сфере, ни проективной плоскости (для этих двух многообразий утверждение теоремы проверяется непосредственно). Зафиксируем в A риманову метрику постоянной неположительной кривизны, относительно которой край ∂A является вполне геодезическим подмногообразием. Как известно, каждый нетривиальный свободный гомотопический класс петель в A представляется замкнутой геодезической (единственной, если кривизна отрицательна). Обозначим через $x_1: I \rightarrow A, \ldots, x_r: I \rightarrow A$ геодезические петли, представляющие соответственно $\mathrm{fr}(\alpha_1), \ldots, \mathrm{fr}(\alpha_r)$. (Здесь $x_i(0) = x_i(1)$ и $x_i'(0) = x_i'(1)$ при всех i.) Допустим, что эти петли имеют только трансверсальные пересечения и самопересечения и докажем, что они удовлетворяют условиям теоремы.

Докажем (i) в случае i=1 и j=2. Пусть D — замкнутый диск в A, пересекающийся с каждым из множеств $x_1(I)$, $x_2(I)$ в одной точке, не лежащей в пересечении этих множеств. Изменив при необходимости точку отсчета на $x_i(I)$, можем считать, что

$$D \cap x_i(I) = \partial D \cap x_i(I) = x_i(0)$$
 при $i = 1, 2$.

В силу леммы 3.1, можем также считать, что $x_1(0) = a$ и что петли x_1, x_2 представляют в $\pi_1(A, D) = \pi$ соответственно α_1 и α_2 .

Положим $T = \{(t_1, t_2) \in I \times I \mid x_1(t_1) = x_2(t_2)\}$. Для $t = (t_1, t_2) \in T$ обозначим через γ_t элемент группы $\pi_1(A, D) = \pi$, представляемый произведением $(x_1|_{[0,t_1]}) (x_2|_{[0,t_2]})^{-1}$. По определению пересечения

$$\Lambda\left(\alpha_{1},\alpha_{2}\right)=\operatorname{pr}_{\alpha_{1},\alpha_{2}}\left(\sum_{t\in T}\pm\gamma_{t}\right)$$

при некотором выборе знаков \pm . Отсюда, в силу леммы 3.3, следует, что если $k(x_1, x_2) = \operatorname{card} T > |\Lambda(\alpha_1, \alpha_2)|$, то для некоторых t, $t' \in T$ и m, $n \in \mathbf{Z}$

$$\gamma_{t'} = \alpha_1^m \gamma_t \alpha_2^n. \tag{11}$$

Пусть $t = (t_i, t_i)$ і и $t' = (t_i', t_i')$. Из (11) следует, что пути

$$(x_1\left|_{[0,t_1]}\right)^{-1}x_1^{-m}\left(x_1\left|_{[0,t_1^{'}]}\right)\text{ M }\left(x_2\left|_{[0,t_2]}\right)^{-1}x_2^{n}\left(x_2\left|_{[0,t_2^{'}]}\right)^{-1}\right)$$

с общим началом $x_1(t_1) = x_2(t_2)$ и общим концом $x_1(t_1') = x_2(t_2')$ гомотопны. Первый из этих путей проходит по $x_1(I)$ и потому гомотопен геодезической $I \rightarrow A$, образ которой лежит в $x_1(I)$. Аналогично, второй путь гомотопен геодезической, образ которой лежит в $x_2(I)$. В частности, эти две геодезические различны. Однако, как хорошо известно, в многообразии с метрикой постоянной неположительной кривизны две различные геодезические с общими концами не могут быть гомотопны. Полученное противоречие доказывает, что $k(x_1, x_2) = |\Lambda(\alpha_1, \alpha_2)|$.

Утверждение (ii) доказывается аналогичным образом с учетом того, что, поскольку самонересечения геодезической x_i трансверсальны, $e(\alpha_i) = 1$ (см. также $[6, \S 3]$).

Если некоторые из пересечений или самопересечений петель x_1, \ldots \ldots , x_r не трансверсальны, то это множество петель распадается на такие подмножества, что петли, входящие в одно подмножество, являются степенями некоторой геодезической, а петли, входящие в разные подмножества, трансверсальны. Поэтому общий случай теоремы II дится к рассмотренному выше с помощью следующих утверждений: а) если классы α, β€π представляются трансверсальными замкнутыми геодезическими, то $|\Lambda(\alpha^p, \beta^q)| = |pq| \cdot |\Lambda(\alpha, \beta)|$ для любых целых p и q; b) если αξπ представляется замкнутой геодезической с трансвер- $\Lambda(\alpha^p,$ α^q) | = | pq | (| $\Lambda(\alpha,$ самопересечениями, TO (α) |-w (α))+m, где m — наибольший общий делитель чисел |p| и |q|в случае, когда $w(\alpha) = 1$ и p, q нечетны, и m = 0 в остальных случаях; c) если $x: S^1 \to A$ — петля с трансверсальными самопересечениями и если $p, q \in \mathbb{Z}$, то, пошевелив петли x^p и x^q , можно получить соответственно такие петли y_p и y_q , что: $k(y_p, y_q) = 2|pq|l(x) + M$, где $M = \min(|p|,$ |q|) в случае, когда w(x) = 1 и p, q нечетны, и M = 0 в остальных случаях; при s=p, q

$$l(y_s) = \begin{cases} s^2 l(x) + |s| - 1, & \text{если } w(x) = 0, \\ s^2 l(x) + \left| \frac{|s| - 1}{2} \right|, & \text{если } w(x) = 1. \end{cases}$$

Утверждения а) и b) доказываются так же, как рассмотренные выше частные случаи утверждений (i)и (ii). Утверждение с) проверяется непосредственно.

- 3.5. Вывод следствия I из теорем I, II. Если классы $\operatorname{fr}(\alpha_i)$ и $\operatorname{fr}(\alpha_j)$ с $i\neq j$ содержат непересекающиеся петли, то, в силу теоремы I, $\left|\Lambda(\alpha_i, \alpha_j)\right| = 0$ и потому $\Lambda(\alpha_i, \alpha_j) = 0$. Обратно, если $\Lambda(\alpha_i, \alpha_j) = 0$, то, в силу утверждения (v) п. 2.3, гомологический mod 2 индекс пересечения классов α_i и α_j равен 0, и значит, $n(\alpha_i, \alpha_j) = 0$. Поэтому обратное утверждение следует из теоремы II.
- 3.6. Вывод следствия II из теорем I, II. Докажем импликацию (i) \Rightarrow (ii). Если fr (α) содержит простую петлю, то, во-первых, $e(\alpha) = 1$ (см. [5]), и, во-вторых, для некоторого $\beta \in \pi$ класс $\beta \alpha \beta^{-1}$ представляется простой петлей. Тогда непосредственно проверяется, что

$$\Lambda(\beta\alpha\beta^{-1}, \beta\alpha\beta^{-1}) = -pr_{\beta\alpha\beta^{-1}, \beta\alpha\beta^{-1}}(w(\alpha)).$$

Отсюда, в силу утверждений (iv) и (vi) п. 2.3, следует равенство $\Lambda(\alpha, \alpha) = \pm \operatorname{pr}_{\alpha,\alpha}(w(\alpha))$. Доказываемое утверждение следует теперь из формулы $-\operatorname{pr}_{\alpha,\alpha}(w(\alpha)) = \operatorname{pr}_{\alpha,\alpha}(w(\alpha))$, которая в случае $w(\alpha) = 0$ очевидна, а в случае $w(\alpha) = 1$ следует из равенств

$$\operatorname{pr}_{\alpha,\alpha}(2) = \operatorname{pr}_{\alpha,\alpha}((\alpha-1)\alpha^{-1} - (\overline{\alpha}-1)) = 0.$$

Для доказательства импликации (ii) \Rightarrow (iii) достаточно доказать, что $|pr_{\alpha,\alpha}(1)| = 1$. Очевидно, $0 \leq |\operatorname{pr}_{\alpha,\alpha}(1)| \leq 1.$ что $|\operatorname{pr}_{\alpha,\alpha}(1)| = 0$ невозможно: из него следовало бы равенство $\operatorname{pr}_{\alpha,\alpha}(1) = 0$, а это противоречит тому, что суммирование коэффициентов $P_{\alpha,\alpha} \rightarrow \mathbb{Z}/2\mathbb{Z}$ переводит $pr_{\alpha,\alpha}(1)$ в 1.

Импликация (iii) ⇒ (i) следует из теоремы II.

3.7. Замечание. Еще одно условие, эквивалентное условиям (i) — (iii) следствия II, можно сформулировать в терминах введенной в [6, добавление 2] операции самопересечения μ . Вот оно: $e(\alpha) = 1$ и $\mu(\alpha) = 0.$

Литература

- 1. Chillingworth D. R. J. Winding numbers on surfaces. II.—Math. Ann., 1972, v. 199, p. 131—153.
- 2. Kervaire M. A. Geometric and algebraic intersection numbers.— Comm. Math. Helv.,
- 1965, v. 39, p. 271—280.

 3. Meeks W., Patrusky J. Representing codimension-one homology classes by embedded submanifolds.—Pacif. J. Math., 1977, v. 68, p. 175—176.
- Meeks W. H. Representing codimension-one homology classes on closed nonorientable manifolds by submanifolds. III.—Illinois J. Math., 1979, v. 23, p. 199—210.
- 5. Reinhart B. L. Algorithms for Jordan curves on compact surfaces. Ann. Math., 1962, v. 75, p. 209—222. 6. *Тураев В. Г.* Пересечения петель в двумерных многообразиях.— Матем. сб., 1978,
- T. 106 (148), c. 566—588.

 7. Wall C. T. C. Surgery on compact manifolds. London New York: Academic Press,
- Zieschang H. Algorithmen für einfache Kurven auf Flächen.— Math. Scand., 1965, v. 17, p. 17—40.
 Zieschang H. Algorithmen für einfache Kurven auf Flächen. II.— Math. Scand., 1969,
- v. 25, p. 49—58.

Математический институт им. В. А. Стеклова АН СССР Ленинградское отделение

Поступила в редакцию 14.V.1982