
Topologial manifolds



Chapter X

Manifolds

47. Loally Eulidean Spaes

⌈47′1⌋ De�nition of Loally Eulidean Spae

Let n be a non-negative integer. A topologial spae X is alled a loally

Eulidean spae of dimension n if eah point of X has a neighborhood home-

omorphi either to R
n
or R

n
+. Reall that R

n
+ = {x ∈ R

n : x1 ≥ 0}, it is
de�ned for n ≥ 1.

47.A. The notion of 0-dimensional loally Eulidean spae oinides with

the notion of disrete topologial spae.

47.B. Prove that the following spaes are loally Eulidean:

(1) Rn,

(2) any open subset of Rn,

(3) the n-sphere Sn = {x ∈ Rn+1 | |x| = 1},
(4) real projetive spae RPn = Sn/x ∼ −x,
(5) omplex projetive spae CPn = Cn+1 r 0/x ∼ y if ∃ζ ∈ C : y = ζx,

(6) R
n
+,

(7) any open subset of R
n
+,

(8) the n-ball Dn = {x ∈ R
n | |x| ≤ 1},

(9) torus S1 × S1
,
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(10) a handle (a torus with a hole),

(11) a sphere with holes,

(12) a sphere with handles,

(13) the Klein bottle S1 × I/(z, 0) ∼ (z̄, 1),

(14) the n-ube In,

47.1. Prove that an open subspae of a loally Eulidean spae of dimension n is

a loally Eulidean spae of dimension n.

47.2. Prove that a bouquet of two irles is not loally Eulidean.

47.C. If X is a loally Eulidean spae of dimension p and Y is a loally

Eulidean spae of dimension q then X × Y is a loally Eulidean spae of

dimension p+ q.

⌈47′2⌋ Dimension

47.D. Can a topologial spae be simultaneously a loally Eulidean spae

of dimension both 0 and n > 0?

47.E. Can a topologial spae be simultaneously a loally Eulidean spae

of dimension both 1 and n > 1?

47.3. Prove that any nonempty open onneted subset of a loally Eulidean

spae of dimension 1 an be made disonneted by removing two points.

47.4. Prove that any nonempty loally Eulidean spae of dimension n > 1 on-

tains a nonempty open set, whih annot be made disonneted by removing any

two points.

47.F. Can a topologial spae be simultaneously a loally Eulidean spae

of dimension both 2 and n > 2?

47.F.1. Let U be an open subset of R2
and a p ∈ U . Prove that π1(U r {p})

admits an epimorphism onto Z.

47.F.2. Dedue from 47.F.1 that a topologial spae annot be simultaneously

a loally Eulidean spae of dimension both 2 and n > 2.

We see that dimension of loally Eulidean topologial spae is a topologial

invariant at least for the ases when it is not greater than 2. In fat, this

holds true without that restrition. However, one needs some tehnique to

prove this. One possibility is provided by dimension theory, see, e.g., W.

Hurewiz and H. Wallman, Dimension Theory Prineton, NJ, 1941. Other

possibility is to generalize the arguments used in 47.F.2 to higher dimensions.

However, this demands a knowledge of high-dimensional homotopy groups.

47.5. Dedue that a topologial spae annot be simultaneously a loally Eu-

lidean spae of dimension both n and p > n from the fat that πn−1(S
n−1) = Z.

Cf. 47.F.2
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⌈47′3⌋ Interior and Boundary

A point a of a loally Eulidean spae X is said to be an interior point of X
if a has a neighborhood (in X) homeomorphi to Rn. A point a ∈ X, whih

is not interior, is alled a boundary point of X.

47.6. Whih points of R
n
+ have a neighborhood homeomorphi to R

n
+?

47.G. Formulate a de�nition of boundary point independent of a de�nition

for interior point.

Let X be a loally Eulidean spae of dimension n. The set of all interior

points of X is alled the interior of X and denoted by intX. The set of all

boundary points of X is alled the boundary of X and denoted by ∂X.

These terms (interior and boundary) are used also with di�erent meaning.

The notions of boundary and interior points of a set in a topologial spae and

the interior part and boundary of a set in a topologial spae are introdued

in general topology, see, e.g., Setion 6 in the �rst volume [?℄ of this textbook.

They have almost nothing to do with the notions disussed here. In both

senses the terminology is lassial, whih is impossible to hange. This does

not reate usually a danger of onfusion.

Notations are not as ommonly aepted as words. We take an easy op-

portunity to selet unambiguous notations: we denote the interior part of

a set A in a topologial spae X by IntX A or IntA, while the interior of

a loally Eulidean spae X is denoted by intX; the boundary of a set in

a topologial spae is denoted by symbol Fr, while the boundary of loally

Eulidean spae is denoted by symbol ∂.

47.H. For a loally Eulidean spae X the interior intX is an open dense

subset of X, the boundary ∂X is a losed nowhere dense subset of X.

47.I. The interior of a loally Eulidean spae of dimension n is a loally Eu-

lidean spae of dimension n without boundary (i.e., with empty boundary;

in symbols: ∂(intX) = ∅).

47.J. The boundary of a loally Eulidean spae of dimension n is a loally

Eulidean spae of dimension n − 1 without boundary (i.e., with empty

boundary; in symbols: ∂(∂X) = ∅).

47.K. intRn+ ⊃ {x ∈ Rn : x1 > 0} and

∂Rn+ ⊂ {x ∈ R
n : x1 = 0}.

47.7. For any x, y ∈ {x ∈ R
n : x1 = 0}, there exists a homeomorphism f : Rn

+ →
R

n
+ with f(x) = y.

47.L. Either ∂Rn+ = ∅ (and then ∂X = ∅ for any loally Eulidean spae

X of dimension n), or ∂Rn+ = {x ∈ R
n : x1 = 0}.
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In fat, the seond alternative holds true. However, this is not easy to prove

for all dimensions. Let us start with the lowest ones.

47.M. Prove that ∂R1
+ = {0}.

47.N. Prove that ∂R2
+ = {x ∈ R2 : x1 = 0}. (Cf. 47.F.1.)

47.8. Dedue that a ∂Rn
+ = {x ∈ R

n : x1 = 0} from πn−1(S
n−1) = Z. (Cf. 47.N,

47.5)

47.O. Dedue from ∂Rn+ = {x ∈ Rn : x1 = 0} for all n ≥ 1 that

int(X × Y ) = intX × intY

and

∂(X × Y ) = (∂(X) × Y ) ∪ (X × ∂Y ).

The last formula resembles Leibniz formula for derivative of a produt.

47.P. Riddle. Can this be just a oinidene?

47.Q. Prove that

(1) ∂(I × I) = (∂I × I) ∪ (I × ∂I),

(2) ∂Dn = Sn−1
,

(3) ∂(S1 × I) = S1 × ∂I = S1 ∐ S1
,

(4) the boundary of Möbius strip is homeomorphi to irle.

47.R Corollary. Möbius strip is not homeomorphi to ylinder S1 × I.
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48. Manifolds

⌈48′1⌋ De�nition of Manifold

A topologial spae is alled a manifold of dimension n if it is

• loally Eulidean of dimension n,

• seond ountable,

• Hausdor�.

48.A. Prove that the three onditions of the de�nition are independent (i.e.,

there exist spaes not satisfying any one of the three onditions and satisfying

the other two.)

48.A.1. Prove that R ∪i R, where i : {x ∈ R : x < 0} → R is the inlusion, is

a non-Hausdor� loally Eulidean spae of dimension one.

48.B. Chek whether the spaes listed in Problem 47.B are manifolds.

A ompat manifold without boundary is said to be losed. As in the ase

of interior and boundary, this term oinides with one of the basi terms of

general topology. Of ourse, the image of a losed manifold under embedding

into a Hausdor� spae is a losed subset of this Hausdor� spae (as any

ompat subset of a Hausdor� spae). However absene of boundary does

not work here, and even non-ompat manifolds may be losed subsets. They

are losed in themselves, as any spae. Here we meet again an ambiguity

of lassial terminology. In the ontext of manifolds the term losed relates

rather to the idea of a losed surfae.

⌈48′2⌋ Components of Manifold

48.C. A onneted omponent of a manifold is a manifold.

48.D. A onneted omponent of a manifold is path-onneted.

48.E. A onneted omponent of a manifold is open in the manifold.

48.F. A manifold is the sum of its onneted omponents.

48.G. The set of onneted omponents of any manifold is ountable. If the

manifold is ompat, then the number of the omponents is �nite.

48.1. Prove that a manifold is onneted, i� its interior is onneted.

48.H. The fundamental group of a manifold is ountable.
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⌈48′3⌋ Making New Manifolds out of Old Ones

48.I. Prove that an open subspae of a manifold of dimension n is a manifold

of dimension n.

48.J. The interior of a manifold of dimension n is a manifold of dimension

n without boundary.

48.K. The boundary of a manifold of dimension n is a manifold of dimension

n− 1 without boundary.

48.2. The boundary of a ompat manifold of dimension n is a losed manifold

of dimension n− 1.

48.L. If X is a manifold of dimension p and Y is a manifold of dimension q
then X × Y is a manifold of dimension p+ q.

48.M. Prove that a overing spae (in narrow sense) of a manifold is a

manifold of the same dimension.

48.N. Prove that if the total spae of a overing is a manifold then the base

is a manifold of the same dimension.

48.O. Let X and Y be manifolds of dimension n, A and B omponents of

∂X and ∂Y respetively. Then for any homeomorphism h : B → A the spae

X ∪h Y is a manifold of dimension n.

48.O.1. Prove that the result of gluing of two opy of Rn
+ by the identity map

of the boundary hyperplane is homeomorphi to Rn
.

48.P. Let X and Y be manifolds of dimension n, A and B losed subsets

of ∂X and ∂Y respetively. If A and B are manifolds of dimension n − 1
then for any homeomorphism h : B → A the spae X ∪h Y is a manifold of

dimension n.

⌈48′4⌋ Double

48.Q. Can a manifold be embedded into a manifold of the same dimension

without boundary?

Let X be a manifold. Denote by DX the spae X ∪id∂X X obtained by

gluing of two opies of X by the identity mapping id∂X : ∂X → ∂X of the

boundary.

48.R. Prove thatDX is a manifold without boundary of the same dimension

as X.

DX is alled the double of X.

48.S. Prove that a double of a manifold is ompat, i� the original manifold

is ompat.
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⌈48′5x⌋ Collars and Bites

Let X be a manifold. An embedding c : ∂X × I → X suh that c(x, 0) = x
for eah x ∈ ∂X is alled a ollar of X. A ollar an be thought of as a

neighborhood of the boundary presented as a ylinder over boundary.

48.Tx. Every manifold has a ollar.

Let U be an open set in the boundary of a manifold X . For a ontinuous

funtion ϕ : ∂X → R+ with ϕ−1(0,∞) = U set

Bϕ = {(x, t) ∈ ∂X × R+ : t ≤ ϕ(x)}.
A bite on X at U is an embedding b : Bϕ → X with some ϕ : ∂X → R+ suh

that b(x, 0) = x for eah x ∈ ∂X .

This is a generalization of ollar. Indeed, a ollar is a bite at U = ∂X with

ϕ = 1.

48.Tx.1. Prove that if U ⊂ ∂X is ontained in an open subset of X homeo-

morphi to Rn
+, then there exists a bite of X at U .

48.Tx.2. Prove that for any bite b : B → X of a manifold X the losure of

X r b(B) is a manifold.

48.Tx.3. Let b1 : B1 → X be a bite ofX and b2 : B2 → Cl(Xrb1(B1)) be a bite
of Cl(Xrb1(B1)). Construt a bite b : B → X ofX with b(B) = b1(B1)∪b2(B2).

48.Tx.4. Prove that if there exists a bite of X at ∂X then there exists a ollar

of X .

48.Ux. For any two ollars c1, c2 : ∂X × I → X there exists a homeomor-

phism h : X → X with h(x) = x for x ∈ ∂X suh that h ◦ c1 = c2.

This means that a ollar is unique up to homeomorphism.

48.Ux.1. For any ollar c : ∂X × I → X there exists a ollar c′ : ∂X × I → X
suh that c(x, t) = c′(x, t/2).

48.Ux.2. For any ollar c : ∂X × I → X there exists a homeomorphism

h : X → X ∪x 7→(x,1) ∂X × I

with h(c(x, t)) = (x, t).
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49. Isotopy

⌈49′1⌋ Isotopy of Homeomorphisms

Let X and Y be topologial spaes, h, h′ : X → Y homeomorphisms. A

homotopy ht : X → Y , t ∈ [0, 1] onneting h and h′ (i.e., with h0 = h,
h1 = h′) is alled an isotopy between h and h′ if ht is a homeomorphism for

eah t ∈ [0, 1]. Homeomorphisms h, h′ are said to be isotopi if there exists

an isotopy between h and h′.

49.A. Being isotopi is an equivalene relation on the set of homeomor-

phisms X → Y .

49.B. Find a topologial spae X suh that homotopy between homeomor-

phisms X → X does not imply isotopy.

This means that isotopy lassi�ation of homeomorphisms an be more re-

�ned than homotopy lassi�ation of them.

49.1. Classify homeomorphisms of irle S1
to itself up to isotopy.

49.2. Classify homeomorphisms of line R
1
to itself up to isotopy.

The set of isotopy lasses of homeomorphisms X → X (i.e. the quotient

of the set of self-homeomorphisms of X by isotopy relation) is alled the

mapping lass group or homeotopy group of X.

49.C. For any topologial spae X, the mapping lass group of X is a group

under the operation indued by omposition of homeomorphisms.

49.3. Find the mapping lass group of the union of the oordinate lines in the

plane.

49.4. Find the mapping lass group of the union of bouquet of two irles.

⌈49′2⌋ Isotopy of Embeddings and Sets

Homeomorphisms are topologial embeddings of speial kind. The notion

of isotopy of homeomorphism is extended in an obvious way to the ase of

embeddings. Let X and Y be topologial spaes, h, h′ : X → Y topologial

embeddings. A homotopy ht : X → Y , t ∈ [0, 1] onneting h and h′ (i.e.,
with h0 = h, h1 = h′) is alled an (embedding) isotopy between h and h′ if ht
is an embedding for eah t ∈ [0, 1]. Embeddings h, h′ are said to be isotopi

if there exists an isotopy between h and h′.

49.D. Being isotopi is an equivalene relation on the set of embeddings

X → Y .
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A family At, t ∈ I of subsets of a topologial spae X is alled an isotopy

of the set A = A0, if the graph Γ = {(x, t) ∈ X × I |x ∈ At} of the

family is �brewise homeomorphi to the ylinder A × I, i. e. there exists a
homeomorphism A× I → Γ mapping A× {t} to Γ ∩X × {t} for any t ∈ I.
Suh a homeomorphism gives rise to an isotopy of embeddings Φt : A→ X,

t ∈ I with Φ0 = in, Φt(A) = At. An isotopy of a subset is also alled a

subset isotopy. Subsets A and A′
of the same topologial spae X are said

to be isotopi in X, if there exists a subset isotopy At of A with A′ = A1.

49.E. It is easy to see that this is an equivalene relation on the set of

subsets of X.

As it follows immediately from the de�nitions, any embedding isotopy deter-

mines an isotopy of the image of the initial embedding and any subset isotopy

is aompanied with an embedding isotopy. However the relation between

the notions of subset isotopy and embedding isotopy is not too lose beause

of the following two reasons:

(1) an isotopy Φt aompanying a subset isotopy At starts with the

inlusion of A0 (while arbitrary isotopy may start with any embed-

ding);

(2) an isotopy aompanying a subset isotopy is determined by the

subset isotopy only up to omposition with an isotopy of the iden-

tity homeomorphism A → A (an isotopy of a homeomorphism is a

speial ase of embedding isotopies, sine homeomorphisms an be

onsidered as a sort of embeddings).

An isotopy of a subset A in X is said to be ambient, if it may be aompanied

with an embedding isotopy Φt : A→ X extendible to an isotopy Φ̃t : X → X
of the identity homeomorphism of the spae X. The isotopy Φ̃t is said to

be ambient for Φt. This gives rise to obvious re�nements of the equivalene

relations for subsets and embeddings introdued above.

49.F. Find isotopi, but not ambiently isotopi sets in [0, 1].

49.G. If sets A1, A2 ⊂ X are ambiently isotopi then the omplements

X rA1 and X rA2 are homeomorphi and hene homotopy equivalent.

49.5. Find isotopi, but not ambiently isotopi sets in R.

49.6. Prove that any isotopi ompat subsets of R are ambiently isotopi.

49.7. Find isotopi, but not ambiently isotopi ompat sets in R3
.

49.8. Prove that any two embeddings S1 → R
3
are isotopi. Find embeddings

S1 → R
3
that are not ambiently isotopi.
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⌈49′3⌋ Isotopies and Attahing

49.Hx. Any isotopy ht : ∂X → ∂X extends to an isotopy Ht : X → X.

49.Ix. Let X and Y be manifolds of dimension n, A and B omponents of

∂X and ∂Y respetively. Then for any isotopi homeomorphisms f, g : B →
A the manifolds X ∪f Y and X ∪g Y are homeomorphi.

49.Jx. Let X and Y be manifolds of dimension n, let B be a ompat

subset of ∂Y . If B is a manifold of dimension n−1 then for any embeddings

f, g : B → ∂X ambiently isotopi in ∂X the manifolds X ∪f Y and X ∪g Y
are homeomorphi.

⌈49′4⌋ Conneted Sums

49.K. Let X and Y be manifolds of dimension n, and ϕ : Rn → X, ψ :
R
n → Y be embeddings. Then

X r ϕ(IntDn) ∪ψ(Sn)→Xrϕ(IntDn):ψ(a)7→ϕ(a) Y r ψ(IntDn)

is a manifold of dimension n.

This manifold is alled a onneted sum of X and Y .

49.L. Show that the topologial type of the onneted sum of X and Y
depends not only on the topologial types of X and Y .

49.M. Let X and Y be manifolds of dimension n, and ϕ : Rn → X, ψ :
Rn → Y be embeddings. Let h : X → X be a homeomorphism. Then the

onneted sums of X and Y de�ned via ψ and ϕ, on one hand, and via ψ
and h ◦ ϕ, on the other hand, are homeomorphi.

49.9. Find pairs of manifolds onneted sums of whih are homeomorphi to

(1) S1
,

(2) Klein bottle,

(3) sphere with three rossaps.

49.10. Find a disonneted onneted sum of onneted manifolds. Desribe,

under what irumstanes this an happen.
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Proofs and Comments

47.A Eah point in a 0-dimensional loally Eulidean spae has a neighbor-

hood homeomorphi to R
0
and hene onsisting of a single point. Therefore

eah point is open.

47.D No. In a loally Eulidean spae of dimension 0 eah point is open,

see 47.A. In a loally Eulidean spae of dimension n there are points whih

have a neighborhood homeomorphi to R
n
, and in Rn with n > 0 points are

not open.

47.E No. Assume there exists a loally Eulidean spae X of dimensions 1

and n > 1. Let a ∈ X. It has a neighborhood homeomorphi to R1
or R1

+. In

R
1
+ eah point exept 0 has a neighborhood homeomorphi to R

1
. Therefore

without loss of generality we may assume that a has a neighborhood, say U ,
homeomorphi to R

1
. Notie that for any point of U , U is a neighborhood,

therefore any point in U has a neighborhood homeomorphi to R1
.

Sine X is loally Eulidean of dimension n > 0, there exists a neighbor-

hood of a homeomorphi either R
n
or R

n
+. In R

n
+ any point whih does not

belong to the boundary hyperplane has a neighborhood {x ∈ Rn | x1 > 0}
homeomorphi to Rn. Therefore without loss of generality we may assume

that a has a neighborhood homeomorphi to Rn.

In Rn open balls for a base of neighborhoods. Therefore any neighborhood

of a ontains a neighborhood homeomorphi to R
n
. Hene there exists a

neighborhood V ⊂ U of a homeomorphi to R
n
. In turn, in U whih is

homeomorphi to R1
there is a base of neighborhoods homeomorphi to R1

.

There exists an element W of this base whih is ontained in V .

Now onsider U r a ⊃ V r a ⊃ W r a. The set U r a has two onneted

omponents, V r a is onneted. Therefore V r a is ontained in one of

the onneted omponents of U r a. On the other hand, W r a has two

onneted omponents, and a homeomorphism U → R
1
maps them to open

intervals adjaent to the image of a from opposite sides. The omponent of

W r a do not �t to a single onneted omponent of U r a. However, being
subsets of a onneted V r a ⊂ U r a, they must �t in a singleonneted

omponent of U r a. Contradition.

Another proof isindiated in problems 47.3 and 47.4.

47.G A point of a loally Eulidean spae of dimension n is a boundary

point if it has no neighborhood homeomorphi to R
n
.
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(A usual mistake is to say that a point is boundary if it has a neighborhood

homeomorphi to R
n
+. Why this is not orret an be seen already in the

ase of R
n
+: in this spae eah point has a neighborhood homeomorphi to

Rn+, the whole spae.)

47.N We have to prove that 0 has no neighborhood homeomorphi to R

in R
1
+. Assume, it has. Let U be suh a neighborhood. Sine [0, ε) is a base

of neighborhoods of 0 in R
1
+, there exists neighborhood V from this base

ontained in U . In turn, there is a neighborhood W ⊂ V whih is homeo-

morphi to R, sine in R (a− ε, a+ ε) onstitute a base of neighborhoods of
a ∈ R.

Consider inlusions W r a ⊂ V r a ⊂ U r a. The middle set is onneted,

hene it is ontained in one of the onneted omponents of U r a. Hene,
both onneted omponents of W r a are ontained in one onneted om-

ponent of U r a. However, a homeomorphism U → R maps W onto an

open interval and onneted omponents of W r a are ontained in di�erent

onneted omponents of U r a. Cf. proof of 47.E.



Chapter XI

Manifolds of Low

Dimensions

In di�erent geometri subjets there are di�erent ideas whih dimensions are

low and whih high. In topology of manifolds low dimension means at most

4. However, in this hapter only dimensions up to 2 will be onsidered, and

even most of two-dimensional topology will not be touhed. Manifolds of

dimension 4 are the most mysterious objets of the �eld. Dimensions higher

than 4 are easier: there is enough room for most of the onstrutions that

topology needs.

50. One-Dimensional Manifolds

⌈50′1⌋ Zero-Dimensional Manifolds

This setion is devoted to topologial lassi�ation of manifolds of dimension

one. We ould skip the ase of 0-dimensional manifolds due to triviality of

the problem.

50.A. Two 0-dimensional manifolds are homeomorphi i� they have the

same number of points.

The ase of 1-dimensional manifolds is also simple, but requires more de-

tailed onsiderations. Surprisingly, many textbooks manage to ignore 1-
dimensional manifolds absolutely.

328
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⌈50′2⌋ Redution to Conneted Manifolds

50.B. Two manifolds are homeomorphi i� there exists a one-to-one orre-

spondene between their omponents suh that the orresponding omponents

are homeomorphi.

Thus, for topologial lassi�ation of n-dimensional manifolds it su�es to

lassify only onneted n-dimensional manifolds.

⌈50′3⌋ Examples

50.C. What onneted 1-manifolds do you know?

(1) Do you know any losed onneted 1-manifold?

(2) Do you know a onneted ompat 1-manifold, whih is not losed?

(3) What non-ompat onneted 1-manifolds do you know?

(4) Is there a non-ompat onneted 1-manifolds with boundary?

⌈50′4⌋ How to Distinguish Them From Eah Other?

50.D. Fill the following table with pluses and minuses.

Manifold X Is X ompat? Is ∂X empty?

S1

R
1

I

R
1
+

⌈50′5⌋ Statements of Main Theorems

50.E. Any onneted manifold of dimension 1 is homeomorphi to one of

the following for manifolds:

• irle S1
,

• line R1
,

• interval I,

• half-line R
1
+.

This theorem may be splitted into the following four theorems:

50.F. Any losed onneted manifold of dimension 1 is homeomorphi to

irle S1
.
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50.G. Any non-ompat onneted manifold of dimension 1 without bound-

ary is homeomorphi to line R
1
.

50.H. Any ompat onneted manifold of dimension 1 with nonempty bound-

ary is homeomorphi to interval I.

50.I. Any non-ompat onneted manifold of dimension one with nonempty

boundary is homeomorphi to half-line R
1
+.

⌈50′6⌋ Lemma on 1-Manifold Covered with Two Lines

50.J Lemma. Any onneted manifold of dimension 1 overed with two

open sets homeomorphi to R1
is homeomorphi either to R1

, or S1
.

Let X be a onneted manifold of dimension 1 and U, V ⊂ X be its open subsets

homeomorphi to R. Denote by W the intersetion U ∩ V . Let ϕ : U → R and

ψ : V → R be homeomorphisms.

50.J.1. Prove that eah onneted omponent of ϕ(W ) is either an open in-

terval, or an open ray, or the whole R.

50.J.2. Prove that a homeomorphism between two open onneted subsets of

R is a (stritly) monotone ontinuous funtion.

50.J.3. Prove that if a sequene xn of points of W onverges to a point a ∈
U rW then it does not onverge in V .

50.J.4. Prove that if there exists a bounded onneted omponent C of ϕ(W )
then C = ϕ(W ), V =W , X = U and hene X is homeomorphi to R.

50.J.5. In the ase of onneted W and U 6= V , onstrut a homeomorphism

X → R whih takes:

• W to (0, 1),

• U to (0,+∞), and

• V to (−∞, 1).

50.J.6. In the ase of W onsisting of two onneted omponents, onstrut a

homeomorphism X → S1
, whih takes:

• W to {z ∈ S1 : −1/
√
2 < Im(z) < 1/

√
2},

• U to {z ∈ S1 : −1/
√
2 < Im(z)}, and

• V to {z ∈ S1 : Im(z) < 1/
√
2}.

⌈50′7⌋ Without Boundary

50.F.1. Dedue Theorem 50.F from Lemma 50.I.

50.G.1. Dedue from Lemma 50.I that for any onneted non-ompat one-

dimensional manifold X without a boundary there exists an embedding X → R

with open image.

50.G.2. Dedue Theorem 50.G from 50.G.1.
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⌈50′8⌋ With Boundary

50.H.1. Prove that any ompat onneted manifold of dimension 1 an be

embedded into S1
.

50.H.2. List all onneted subsets of S1
.

50.H.3. Dedue Theorem 50.H from 50.H.2, and 50.H.1.

50.I.1. Prove that any non-ompat onneted manifold of dimension 1 an be

embedded into R1
.

50.I.2. Dedue Theorem 50.I from 50.I.1.

⌈50′9⌋ Corollaries of Classi�ation

50.K. Prove that onneted sum of losed 1-manifolds is de�ned up home-

omorphism by topologial types of summands.

50.L. Whih 0-manifolds bound a ompat 1-manifold?

⌈50′10⌋ Orientations of 1-manifolds

Orientation of a onneted non-losed 1-manifold is a linear order on the set

of its points suh that the orresponding interval topology (see, e.g., 7.P. )

oinides with the topology of this manifold.

Orientation of a onneted losed 1-manifold is a yli order on the set of

its points suh that the topology of this yli order (see 8

′
3x) oinides with

the topology of the 1-manifold.

Orientation of an arbitrary 1-manifold is a olletion of orientations of its

onneted omponents (eah omponent is equipped with an orientation).

50.M. Any 1-manifold admits an orientation.

50.N. An orientation of 1-manifold indues an orientation (i.e., a linear

ordering of points) on eah subspae homeomorphi to R or R+. Vie versa,

an orientation of a 1-manifold is determined by a olletion of orientations

of its open subspaes homeomorphi to R or R+, if the subspaes over the

manifold and the orientations agree with eah other: the orientations of any

two subspaes de�ne the same orientation on eah onneted omponent of

their intersetion.

50.O. Let X be a ylily ordered set, a ∈ X and B ⊂ X r {a}. De�ne in
X r {a} a linear order indued, as in 8.Jx, by the yli order on X r {a},
and equip B with the linear order indued by this linear order on X r {a}.
Prove that if B admits a bijetive monotone map onto R, or [0; 1], or [0; 1),
or (0; 1], then this linear order on B does not depend on a.



332 XI. Manifolds of Low Dimensions

The onstrution of 50.O allows one to de�ne an orientation on any 1-
manifold whih is a subspae of an oriented losed 1-manifold. A 1-manifold,

whih is a subspae of an oriented non-losed 1-manifold X, inherits from X
an orientation as a linear order. Thus, any 1-manifold, whih is a subspae of

an oriented 1-manifold X, inherits from X an orientation. This orientation

is said to be indued by the orientation of X.

A topologial embedding X → Y of an oriented 1-manifold to another one

is said to preserve the orientation if it maps the orientation of X to the

orientation indued on the image by the orientation of Y .

50.P. Any two orientation preserving embeddings of an oriented onneted

1-manifold X to an oriented onneted 1-manifold Y are isotopi.

50.Q. If two embeddings of an oriented 1-manifold X to an oriented 1-
manifold Y are isotopi and one of the embeddings preserves the orientation,

then the other one also preserves the orientation

50.R Corollary. Orientation of a losed segment is determined by the or-

dering of its end points.

An orientation of a segment is shown by an arrow direted from the initial

end point to the �nal one.

50.S. A onneted 1-manifold admits two orientations. A 1-manifold on-

sisting of n onneted omponents admits 2n orientations.

⌈50′11⌋ Mapping Class Groups

50.T. Find the mapping lass groups of

(1) S1
, (2) R

1
, (3) R

1
+,

(4) [0, 1], (5) S1 ∐ S1
, (6) R

1
+ ∐ R

1
+.

50.1. Find the mapping lass group of an arbitrary 1-manifold with �nite number

of omponents.

⌈50′12⌋ Involutions

Reall that a non-identity ontinuous map f : X → X is alled an involution

if f2 = idX .

50.U. A ontinuous involution of a topologial spae is a homeomorphism.

50.2. Prove that an involution of a non-losed onneted 1-manifold reverses ori-

entation.

50.3. Riddle. Relate the preeding problem with the fat that any 1-manifold

is orientable.

50.4. Does Theorem 50.2 generalize to any periodi homeomorphism of a non-

losed onneted manifold?
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50.5. Does a non-losed onneted 1-manifold admit a homeomorphism f 6= id
with f9 = id?

50.6. Prove that an orientation preserving involution of a 1-manifold has no �xed

points.

Involutions f, g : X → X are said to be equivalent if there exists a home-

omorphism h : X → X suh that hg = fh. In other words, equivalene of

involutions is onjugay in the group of all homeomorphisms of X.

50.V Classi�ation of involutions on onneted 1-manifolds.

(1) Any involution of S1
is equivalent either to the antipodal symmetry z 7→

−z, or symmetry against a line z 7→ z.

(2) Any involution of R is equivalent to the symmetry against the origin

x 7→ −x.

(3) Any involution of I is equivalent to the symmetry against the midpoint

x 7→ 1
2 − x.

(4) Half-line R+ does not admit an involution.

50.7. Classify involutions up to equivalene on an arbitrary 1-manifold.
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51. Two-Dimensional Manifolds: General

Piture

⌈51′1⌋ Examples

Deleting from the torus S1×S1
the interior of an embedded disk, we obtain

a handle. Similarly, deleting from the two-sphere the interior of n disjoint

embedded disks, we obtain a sphere with n holes.

51.A. A sphere with a hole is homeomorphi to the disk D2
.

51.B. A sphere with two holes is homeomorphi to the ylinder S1 × I.

∼
=

∼
=

A sphere with three holes has a speial name. It is alled pantaloons or just

pants .

∼
=

The result of attahing p opies of a handle to a sphere with p holes via

embeddings homeomorphially mapping the boundary irles of the handles

onto those of the holes is a sphere with p handles, or, in a more eremonial

way (and less understandable, for a while), an orientable onneted losed

surfae of genus p.

51.1. Prove that a sphere with p handles is well de�ned up to homeomorphism

(i.e., the topologial type of the result of gluing does not depend on the attahing

embeddings).

51.C. A sphere with one handle is homeomorphi to the torus S1 × S1
.
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∼
=

51.D. A sphere with two handles is homeomorphi to the result of gluing

together two opies of a handle via the identity map of the boundary irle.

∼
=

A sphere with two handles is a pretzel . Sometimes, this word also denotes a

sphere with more handles.

The Möbius strip or Möbius band is de�ned as I2/[(0, t) ∼ (1, 1 − t)]. In

other words, this is the quotient spae of the square I2 by the partition into

entrally symmetri pairs of points on the vertial edges of I2, and singletons

that do not lie on the vertial edges. The Möbius strip is obtained, so to

speak, by identifying the vertial sides of a square in suh a way that the

diretions shown on them by arrows are superimposed:

51.E. Prove that the Möbius strip is homeomorphi to the surfae that is

swept in R
3
by a segment rotating in a half-plane around the midpoint, while

the half-plane rotates around its boundary line. The ratio of the angular

veloities of these rotations is suh that the rotation of the half-plane through

360◦ takes the same time as the rotation of the segment through 180◦. See
Figure.
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The spae obtained from a sphere with q holes by attahing q opies of the
Möbius strip via embeddings of the boundary irles of the Möbius strips

onto the boundary irles of the holes (the boundaries of the holes) is a

sphere with q ross-aps, or a nonorientable onneted losed surfae of genus

q.

51.2. Prove that a sphere with q ross-aps is well de�ned up to homeomorphism

(i.e., the topologial type of the result of gluing does not depend on the attahing

embeddings).

51.F. A sphere with a ross-ap is homeomorphi to the projetive plane.

Klein bottle is I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1 − t)]. In other words, this is

the quotient spae of square I2 by the partition into

• singletons in its interior,

• pairs of points (t, 0), (t, 1) on horizontal edges that lie on the same

vertial line,

• pairs of points (0, t), (1, 1− t) symmetri with respet to the enter

of the square that lie on the vertial edges, and

• the quadruple of verties.

51.3. Present the Klein bottle as a quotient spae of

(1) a ylinder;

(2) the Möbius strip.

51.4. Prove that S1 × S1/[(z, w) ∼ (−z, w̄)] is homeomorphi to the Klein bottle.

(Here w̄ denotes the omplex number onjugate to w.)

51.5. Embed the Klein bottle in R
4
(f. 51.E and 51.3).

51.6. Embed the Klein bottle in R
4
so that the image of this embedding under

the orthogonal projetion R
4 → R

3
would look as follows:
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51.G. A sphere with two ross-aps is homeomorphi to the Klein bottle.

A sphere, spheres with handles, and spheres with ross-aps are basi sur-

faes.

51.H. Prove that a sphere with p handles and q ross-aps is homeomorphi

to a sphere with 2p+ q ross-aps (here q > 0).

51.7. Classify up to homeomorphism those spaes whih are obtained by attahing

p opies of S1×I to a sphere with 2p holes via embeddings of the boundary irles

of the ylinders onto the boundary irles of the sphere with holes.

51.I. What onneted 2-manifolds do you know?

(1) List losed onneted 2-manifold that you know.

(2) Do you know a onneted ompat 2-manifold, whih is not losed?

(3) What non-ompat onneted 2-manifolds do you know?

(4) Is there a non-ompat onneted 2-manifolds with non-empty bound-

ary?

51.8. Construt non-homeomorphi non-ompat onneted manifolds of dimen-

sion two without boundary and with isomorphi in�nitely generated fundamental

group.

For notions relevant to this problem see what follows.

⌈51′2x⌋ Ends and Odds

Let X be a non-ompat Hausdor� topologial spae, whih is a union of an

inreasing sequene of its ompat subspaes

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X.

Eah onneted omponent U of X r Cn is ontained in some onneted

omponent of X r Cn−1. A dereasing sequene U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ . . .
of onneted omponents of

(X r C1) ⊃ (X r C2) ⊃ · · · ⊃ (X r Cn) ⊃ . . .

respetively is alled an end of X with respet to C1 ⊂ · · · ⊂ Cn ⊂ . . . .
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51.Jx. Let X and Cn be as above, D be a ompat set in X and V a

onneted omponent of XrD. Prove that there exists n suh that D ⊂ Cn.

51.Kx. Let X and Cn be as above, Dn be an inreasing sequene of ompat

sets of X with X = ∪∞

n=1Dn. Prove that for any end U1 ⊃ · · · ⊃ Un ⊃ . . .
of X with respet to Cn there exists a unique end V1 ⊃ · · · ⊃ Vn ⊃ . . . of X
with respet to Dn suh that for any p there exists q suh that Vq ⊂ Up.

51.Lx. Let X, Cn and Dn be as above. Then the map of the set of ends of

X with respet to Cn to the set of ends of X with respet to Dn de�ned by

the statement of ?? is a bijetion.

Theorem 51.Lx allows one to speak about ends of X without speifying a

system of ompat sets

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X

with X = ∪∞

n=1Cn. Indeed, 51.Kx and 51.Lx establish a anonial one-to-one

orrespondene between ends of X with respet to any two systems of this

kind.

51.Mx. Prove that R
1
has two ends, R

n
with n > 1 has only one end.

51.Nx. Find the number of ends for the universal overing spae of the

bouquet of two irles.

51.Ox. Does there exist a 2-manifold with a �nite number of ends whih

annot be embedded into a ompat 2-manifold?

51.Px. Prove that for any ompat set K ⊂ S2
with onneted omplement

S2
r K there is a natural map of the set of ends of S2

r K to the set of

onneted omponents of K.

Let W be an open set of X. The set of ends U1 ⊃ · · · ⊃ Un ⊃ . . . of X suh

that Un ⊂W for su�iently large n is said to be open.

51.Qx. Prove that this de�nes a topologial struture in the set of ends of

X.

The set of ends of X equipped with this topologial struture is alled the

spae of ends of X. Denote this spae by E(X).

51.8.1. Construt non-ompat onneted manifolds of dimension two without

boundary and with isomorphi in�nitely generated fundamental group, but with

non-homeomorphi spaes of ends.

51.8.2. Construt non-ompat onneted manifolds of dimension two without

boundary and with isomorphi in�nitely generated fundamental group, but with

di�erent number of ends.
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51.8.3. Construt non-ompat onneted manifolds of dimension two without

boundary with isomorphi in�nitely generated fundamental group and the same

number of ends, but with di�erent topology in the spae of ends.

51.8.4. Let K be a ompletely disonneted losed set in S2
. Prove that the

map E(S2 rK) → K de�ned in ?? is ontinuous.

51.8.5. Construt a ompletely disonneted losed set K ⊂ S2
suh that this

map is a homeomorphism.

51.Rx. Prove that there exists an unountable family of pairwise nonhome-

omorphi onneted 2-manifolds without boundary.

The examples of non-ompat manifolds dimension 2 presented above show

that there are too many non-ompat onneted 2-manifolds. This makes im-

possible any really useful topologial lassi�ation of non-ompat 2-manifolds.

Theorems reduing the homeomorphism problem for 2-manifolds of this type

to the homeomorphism problem for their spaes of ends do not seem to be

useful: spaes of ends look not muh simpler than the surfaes themselves.

However, there is a speial lass of non-ompat 2-manifolds, whih admits a

simple and useful lassi�ation theorem. This is the lass of simply onneted

non-ompat 2-manifolds without boundary. We postpone its onsideration

to setion 56

′
4x. Now we turn to the ase, whih is the simplest and most

useful for appliations.

⌈51′3⌋ Homeomorphism and Homotopy Classi�ations of Basi

Surfaes

51.S. The fundamental group of a sphere with g handles admits the following

presentation:

〈a1, b1, a2, b2, . . . ag, bg | a1b1a−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g = 1〉.

51.T. The fundamental group of a sphere with g ross-aps admits the fol-

lowing presentation:

〈a1, a2, . . . ag | a21a22 . . . a2g = 1〉.

51.U. Spheres with di�erent numbers of handles have non-isomorphi fun-

damental groups.

When we want to prove that two �nitely presented groups are not isomor-

phi, one of the �rst natural moves is to abelianize the groups. (Reall that

to abelianize a group G means to quotient G out by the ommutator sub-

group. The ommutator subgroup [G,G] is the normal subgroup generated

by the ommutators a−1b−1ab for all a, b ∈ G. Abelianization means adding

relations ab = ba for any a, b ∈ G.)
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Abelian �nitely generated groups are well known. Any �nitely generated

Abelian group is isomorphi to a produt of a �nite number of yli groups.

If the abelianized groups are not isomorphi, then the original groups are

not isomorphi as well.

51.U.1. The abelianized fundamental group of a sphere with g handles is a free

Abelian group of rank 2g (i.e., is isomorphi to Z2g
).

51.V. Fundamental groups of spheres with di�erent numbers of ross-aps

are not isomorphi.

51.V.1. The abelianized fundamental group of a sphere with g ross-aps is

isomorphi to Zg−1 × Z2.

51.W Homotopy Classi�ation of Basi Surfaes.

Spheres with di�erent numbers of handles are not homotopy equivalent.

Spheres with di�erent numbers of ross-aps are not homotopy equivalent.

A sphere with handles is not homotopy equivalent to a sphere with ross-aps.

If X is a path-onneted spae, then the abelianized fundamental group of X
is the 1-dimensional (or �rst) homology group of X and denoted by H1(X). If
X is not path-onneted, then H1(X) is the diret sum of the �rst homology

groups of all path-onneted omponents ofX. Thus 51.U.1 an be rephrased

as follows: if Fg is a sphere with g handles, then H1(Fg) = Z2g
.

⌈51′4⌋ Closed Surfaes

51.X. Any onneted losed manifold of dimension two is homeomorphi

either to sphere S2
, or sphere with handles, or sphere with rossaps.

Reall that aording to Theorem 51.W the basi surfaes represent pair-

wise distint topologial (and even homotopy) types. Therefore, 51.W and

51.X together give topologial and homotopy lassi�ations of losed two-

dimensional manifolds.

We do not reommend to have a try at proving Theorem 51.X immediately

and, espeially, in the form given above. All known proofs of 51.X an be

deomposed into two main stages: �rstly, a manifold under onsideration is

equipped with some additional struture (like triangulation or smooth stru-

ture); then using this struture a required homeomorphism is onstruted.

Although the �rst stage appears in the proof neessarily and is rather di�-

ult, it is not useful outside the proof. Indeed, any losed 2-manifold, whih

we meet in a onrete mathematial ontext, is either equipped, or an be

easily equipped with the additional struture. The methods of imposing the
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additional struture are muh easier, than a general proof of existene for

suh a struture in an arbitrary 2-manifold.

Therefore, we suggest for the �rst ase to restrit ourselves to the seond

stage of the proof of Theorem 51.X, prefaing it with general notions related

to the most lassial additional struture, whih an be used for this purpose.

⌈51′5⌋ Compat Surfaes with Boundary

As in the ase of one-dimensional manifolds, lassi�ation of ompat two-

dimensional manifolds with boundary an be easily redued to the lassi�a-

tion of losed manifolds. In the ase of one-dimensional manifolds it was very

useful to double a manifold. In two-dimensional ase there is a onstrution

providing a losed manifold related to a ompat manifold with boundary

even loser than the double.

51.Y. Contrating to a point eah onneted omponent of the boundary of

a two-dimensional ompat manifold with boundary gives rise to a losed

two-dimensional manifold.

51.9. A spae homeomorphi to the quotient spae of 51.Y an be onstruted

by attahing opies of D2
one to eah onneted omponent of the boundary.

51.Z. Any onneted ompat manifold of dimension 2 with nonempty boun-

dary is homeomorphi either to sphere with holes, or sphere with handles and

holes, or sphere with rossaps and holes.
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52. Triangulations

⌈52′1⌋ Triangulations of Surfaes

By an Eulidean triangle we mean the onvex hall of three non-ollinear points

of Eulidean spae. Of ourse, it is homeomorphi to disk D2
, but it is not

solely the topologial struture that is relevant now. The boundary of a

triangle ontains three distinguished points, its verties, whih divide the

boundary into three piees, its edges. A topologial triangle in a topologial

spae X is an embedding of an Eulidean triangle into X. A vertex (re-

spetively, edge) of a topologial triangle T → X is the image of a vertex (

respetively, edge) of T in X.

A set of topologial triangles in a 2-manifold X is a triangulation of X pro-

vided the images of these triangles form a fundamental over of X and any

two of the images either are disjoint or interset in a ommon side or in a

ommon vertex.

52.A. Prove that in the ase of ompat X the former ondition (about

fundamental over) means that the number of triangles is �nite.

52.B. Prove that the ondition about fundamental over means that the

over is loally �nite.

⌈52′2⌋ Triangulation as ellular deomposition

52.C. A triangulation of a 2-manifold turns it into a ellular spae, 0-ells

of whih are the verties of all triangles of the triangulation, 1-ells are the

sides of the triangles, and 2-ells are the interiors of the triangles.

This result allows us to apply all the terms introdued above for ellular

spaes. In partiular, we an speak about skeletons, ellular subspaes and

ells. However,in the latter two ases we rather use terms triangulated sub-

spae and simplex. Triangulations and terminology related to them appeared

long before ellular spaes. Therefore in this ontext the adjetive ellular is

replaed usually by adjetives triangulated or simpliial.

⌈52′3⌋ Two Properties of Triangulations of Surfaes

52.D Unrami�ed. Let E be a side of a triangle involved into a triangulation

of a 2-manifold X. Prove that there exist at most two triangles of this

triangulation for whih E is a side. Cf. ??, ?? and 2.10.

52.E Loal strong onnetedness. Let V be a vertex of a triangle in-

volved into a triangulation of a 2-manifold X and T , T ′
be two triangles
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of the triangulation adjaent to V . Prove that there exists a sequene

T = T1, T2, . . . , Tn = T ′
of triangles of the triangulation suh that V is

a vertex of eah of them and triangles Ti, Ti+1 have ommon side for eah

i = 1, . . . , n− 1.

⌈52′4x⌋ Sheme of Triangulation

Triangulations allow to desribe a surfae by a simple ombinatorial objet.

Let X be a 2-manifold and T a triangulation of X. Denote the set of verties

of T by V . Denote by Σ2 the set of triples of verties, whih are verties of a

triangle of T . Denote by Σ1 the set of pairs of verties, whih are verties of a

side of T . Put Σ0 = S. This is the set of verties of T . Put Σ = Σ2∪Σ1∪Σ0.

The pair (V,Σ) is alled the (ombinatorial) sheme of T .
52.Fx. Prove that the ombinatorial sheme (V,Σ) of a triangulation of a

2-manifold has the following properties:

(1) Σ is a set onsisting of subsets of V ,

(2) eah element of Σ onsists of at most 3 elements of V ,

(3) three-element elements of Σ over V ,

(4) any subset of an element of Σ belongs to Σ,

(5) intersetion of any olletion of elements of Σ belongs to Σ,

(6) for any two-element element of Σ there exist exatly two three-

element elements of Σ ontaining it.

Reall that objets of this kind appeared above, in Setion 24

′
3x. Let V

be a set and Σ is a set of �nite subsets of V . The pair (V,Σ) is alled a

triangulation sheme if

• any subset of an element of Σ belongs to Σ,

• intersetion of any olletion of elements of Σ belongs to Σ,

• any one element subset of V belongs to Σ.

For any simpliial sheme (V,Σ) in 24

′
3x a topologial spae S(V,Σ) was

onstruted. This is, in fat, a ellular spae, see 42.Ux.

52.Gx. Prove that if (V,Σ) is the ombinatorial sheme of a triangulation

of a 2-manifold X then S(V,Σ) is homeomorphi to X.

52.Hx. Let (V,Σ) be a triangulation sheme suh that

(1) V is ountable,

(2) eah element of Σ onsists of at most 3 elements of V ,
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(3) three-element elements of Σ over V ,

(4) for any two-element element of Σ there exist exatly two three-

element elements of Σ ontaining it

Prove that (V,Σ) is a ombinatorial sheme of a triangulation of a 2-manifold.

⌈52′5⌋ Examples

52.1. Consider the over of torus obtained in the obvious way from the over of

the square by its halves separated by a diagonal of the square.

Is it a triangulation of torus? Why not?

52.2. Prove that the simplest triangulation of S2
onsists of 4 triangles.

52.3*. Prove that a triangulation of torus S1 × S1
ontains at least 14 triangles,

and a triangulation of the projetive plane ontains at least 10 triangles.

⌈52′6⌋ Subdivision of a Triangulation

A triangulation S of a 2-manifold X is said to be a subdivision of a triangu-

lation T , if eah triangle of S is ontained in some triangle

1

of T . Then S is

also alled a re�nement of T .
There are several standard ways to subdivide a triangulation. Here is one

of the simplest of them. Choose a point inside a triangle τ , all it a new

vertex, onnet it by disjoint ars with verties of τ and all these ars

new edges. These ars divide τ to three new triangles. In the original

triangulation replae τ by these three new triangles. This operation is alled

a star subdivision entered at τ . See Figure 1.

52.I. Give a formal desription of a star subdivision entered at a triangle

τ . I.e., present it as a hange of a triangulation thought of as a olletion of

topologial triangles. What three embeddings of Eulidean triangles are to

replae τ? Show that the replaement gives rise to a triangulation. Desribe

the orresponding operation on the ombinatorial sheme.

Here is another subdivision de�ned loally. One adds a new vertex taken

on an edge ε of a given triangulation. One onnets the new vertex by two

1

Although triangles whih form a triangulation of X have been de�ned as topologial em-

beddings, we hope that a reader guess that when one of suh triangles is said to be ontained in

another one this means that the image of the embedding whih is the former triangle is ontained

in the image of the other embedding whih is the latter.
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τ

Figure 1. Star subdivision entered at triangle τ

.

new edges to the verties of the two tringles adjaent to ε. The new edges

divide these triangles, eah to two new triangles. The rest of triangles of

the original triangulation are not a�eted. This operation is alled a star

subdivision entered at ε. See Figure 2.

ε

Figure 2. Star subdivision entered at edge ε.

52.J. Give a formal desription of a star subdivision entered at edge ε.
What four embeddings of Eulidean triangles are to replae the topologial

triangles with edge ε? Show that the replaement gives rise to a triangula-

tion. Desribe the orresponding operation on the ombinatorial sheme.

52.4. Find a triangulation and its subdivision, whih annot be presented as a

omposition of star subdivisions at edges or triangles.

52.5*. Prove that any subdivision of a triangulation of a ompat surfae an be

presented as a omposition of a �nite sequenes of star subdivisions entered at

edges or triangles and operations inverse to suh subdivisions.

By a barientri subdivision of a triangle we all a omposition of a star

subdivision entered at this tringle followed by star subdivisions at eah of

its edges. See Figure 3.

Barientri subdivision of a triangulation of 2-manifold is a subdivision whih

is a simultaneous barientri subdivision of all triangles of this triangulation.

See Figure 4.
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Figure 3. Barientri subdivision of a triangle.

ε

Figure 4. Barientri subdivision of a triangulation.

52.K. Establish a natural one-to-one orrespondene between verties of a

barientri subdivision a simplies (i.e., verties, edges and triangles) of the

original tringulation.

52.L. Establish a natural one-to-one orrespondene between triangles of a

barientri subdivision and triples eah of whih is formed of a triangle of

the original triangulation, an edge of this triangle and a vertex of this edge.

The expression barientri subdivision has appeared in a diiferent ontext,

see Setion 21. Let us relate the two notions sharing this name .

52.Mx Barientri subdivision of a triangulation and its sheme.

Prove that the ombinatorial sheme of the barientri subdivision of a tri-

angulation of a 2-manifold oinides with the barientri subdivision of the

sheme of the original triangulation (see 24

′
4x).

⌈52′7⌋ Homotopy Type of Compat Surfae with Non-Empty Bound-

ary

52.N. Any ompat onneted triangulated 2-manifold with non-empty bound-

ary ollapses to a one-dimensional simpliial subspae.

52.O. Any ompat onneted triangulated 2-manifold with non-empty bound-

ary is homotopy equivalent to a bouquet of irles.

52.P. The Euler harateristi of a triangulated ompat onneted 2-manifold

with non-empty boundary does not depend on triangulation. It is equal to

1 − r, where r is the rank of the one-dimensional homology group of the

2-manifold.
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52.Q. The Euler harateristi of a triangulated ompat onneted 2-manifold

with non-empty boundary is not greater than 1.

52.R. The Euler harateristi of a triangulated losed onneted 2-manifold

with non-empty boundary is not greater than 2.

⌈52′8⌋ Triangulations in dimension one

By an Eulidean segment we mean the onvex hall of two di�erent points

of a Eulidean spae. It is homeomorphi to I. A topologial segment or

topologial edge in a topologial spae X is a topologial embedding of an

Eulidean segment into X. A set of topologial segments in a 1-manifold X
is a triangulation of X if the images of these topologial segments onstitute

a fundamental over of X and any two of the images either are disjoint or

interset in one ommon end point.

Traingulations of 1-manifolds are similar to triangulations of 2-manifolds

onsidered above.

52.S. Find ounter-parts for theorems above. Whih of them have no

ounter-parts? What is a ounter-part for the property 52.D? What are

ounter-parts for star and barientri subdivisions?

52.T. Find homotopy lassi�ation of triangulated ompat 1-manifolds us-

ing arguments similar to the ones from Setion 52

′
7. Compare with the

topologial lassi�ation of 1-manifolds obtained in Setion 50.

52.U. What values take the Euler harateristi on ompat 1-manifolds?

52.V. What is relation of the Euler harateristi of a ompat triangulated

1-manifold X and the number of ∂X?

52.W. Triangulation of a 2-manifold X gives rise to a triangulation of its

boundary ∂X. Namely, the edges of the triangualtion of ∂X are the sides of

triangles of the original triangulation whih lie in ∂X.

⌈52′9⌋ Triangualtions in higher dimensions

52.X. Generalize everything presented above in this setion to the ase of

manifolds of higher dimensions.
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53. Handle Deomposition

⌈53′1⌋ Handles and Their Anatomy

Together with triangulations, it is useful to onsider representations of a

manifold as a union of balls of the same dimension, but adjaent to eah

other as if they were thikening of ells of a ellular spae

A spae Dp ×Dn−p
is alled a (standard) handle of dimension n and index p.

Its subset Dp × {0} ⊂ Dp × Dn−p
is alled the ore of handle Dp ×Dn−p

,

and a subset {0} ×Dn−p ⊂ Dp ×Dn−p
is alled its oore. The boundary

∂(Dp ×Dn−p) = of the handle Dp ×Dn−p
an be presented as union of its

base Dp × Sn−p−1
and obase Sp−1 ×Dn−p

.

53.A. Draw all standard handles of dimensions ≤ 3.

A topologial embedding h of the standard handle Dp ×Dn−p
of dimension

n and index p into a manifold of the same dimansion n is alled a handle of

dimension n and index p. The image under h of IntDp × IntDn−p
is alled

the interior of h, the image of the ore h(Dp × {0}) of the standard handle

is alled the ore of h, the image h({0} ×Dn−p) of oore, the oore, et.

⌈53′2⌋ Handle Deomposition of Manifold

Let X be a manifold of dimension n. A olleton of n-dimensional handles

in X is alled a handle deomposition of X, if

(1) the images of these handles onstitute a loally �nite over of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of eah of the handles is ontained in the union of obases

of the handles of smaller indies.

Let X be a manifold of dimension n with boundary. A olletion of n-
dimensional handles in X is alled a handle deomposion of X modulo bound-

ary, if

(1) the images of these handles onstitute a loally �nite over of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of eah of the handles is ontained in the union of ∂X and

obases of the handles of smaller indies.

A omposition of a handle h : Dp×Dn−p → X with the homeomorphism of

transposition of the fators Dp ×Dn−p → Dn−p ×Dp
turns the handle h of

index p into a handle of the same dimension n, but of the omplementary
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index n− p. The ore of the handle turns into the oore, while the base, to

obase.

53.B. Composing eah handle with the homeomorphism transposing the

fators turns a handle deomposition of manifold into a handle deomposition

modulo boundary of the same manifold. Vie versa, a handle deomposition

modulo boundary turns into a handle deomposition of the same manifold.

Handle deompositions obtained from eah other in this way are said to be

dual to eah other.

53.C. Riddle. For n-dimensional manifold with boundary split into two

(n−1)-dimensional manifolds with disjoint losures, de�ne handle deompo-

sition modulo one of these manifolds so that the dual handle deomposition

would be modulo the omplementary part of the boundary.

53.1. Find handle deompositions with a minimal number of handles for the

following manifolds:

(a) irle S1
; (b) sphere Sn

; () ball Dn

(d) torus S1 × S1
; (e) handle; (f) ylinder S1 × I ;

(g) Möbius band; (h) projetive plane

RP 2
;

(i) projetive spae

RPn
;

(j) sphere with p
handles;

(k) sphere with p
ross-aps;

(l) sphere with n
holes.

⌈53′3⌋ Handle Deomposition and Triangulation

Let X be a 2-manifold, τ its triangulation, τ ′ its barientri subdivision, and
τ ′′ the barientri subdivision of τ ′. For eah simplex S of τ denote by HS

the union of all simplies of τ ′′ whih ontain the unique vertex of τ ′ that
lies in

∫

S. Thus, if S is a vertex then HS is the union of all triangles of

τ ′′ ontaining this vertex, if S is an edge then HS is the union all of the

triangles of τ ′′ whih interset with S but do not ontain any of its verties,

and, �nally, if S is a triangle of τ then HS is the union of all triangles of τ ′′

whih lie in S but do not interset its boundary.

53.D Handle Deomposition out of a Triangulation. Sets HS onsti-

tute a handle deomposition of X. The index of HS equals the dimension of

S.

53.E. Can every handle deomposition of a 2-manifold be onstruted from

a triangulation as indiated in 53.D?

53.F. How to triangulate a 2-manifold whih is equipped with a handle

deomposition?
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Figure 5. Constrution of a handle deomposition from a triangulation.

⌈53′4⌋ Regular Neighborhoods

Let X be a 2-manifold, τ its triangulation, and A be a simpliial subspae of

X. The union of all those simplies of the double barientri subdivision τ ′′

of τ whih interset A is alled the regular or seond barientri neighborhood

of A (with respet to τ).

Of ourse, usually regular neighborhood is not open in X, sine it is the

union of simplies, whih are losed. So, it is a neighborhood of A only in

wide sense (its interior ontains A).

53.G. A regular neighborhood of A in X is a 2-manifold. It oinides with

the union of handles orresponding to the simplies ontained in A. These

handles onstitute a handle deomposition of the regular neighborhood.

53.H Collaps Indues Homemorphism. Let X be a triangulated 2-

manifold and A ⊂ X be its triangulated subspae. If X ց A then X is

homeomorphi to a regular neighborhood of A.

53.I. Any triangulated ompat onneted 2-manifold with non-empty bound-

ary is homeomorphi to a regular neighborhood of some of its 1-dimensional

triangulated subspaes.

53.J. In a triangulated 2-manifold, any triangulated subspae whih is a

tree has regular neighborhood homeomorphi to disk.

53.K. In a triangulated 2-manifold, any triangulated subspae homeomor-

phi to irle has regular neighborhood homeomorphi either to the Möbius

band or ylinder S1 × I.

In the former ase the irle is said to be one-sided, in the latter, two-sided.

⌈53′5⌋ Cutting 2-Manifold Along a Curve

53.L Cut Along a Curve. Let F be a triangulated surfae and C ⊂ F be

a ompat one-dimensional manifold ontained in the 1-skeleton of F and
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satisfying ondition ∂C = ∂F ∩ C. Prove that there exists a 2-manifold T
and surjetive map p : T → F suh that:

(1) p| : T r p−1(C) → F r C is a homeomorphism,

(2) p| : p−1(C) → C is a two-fold overing.

53.M Uniqueness of Cut. The 2-manifold T and map p whih exist a-

ording to Theorem 53.L, are unique up to homeomorphism: if T̃ and p̃ are
other 2-manifold and map satisfying the same hypothesis then there exists

a homeomorphism h : T̃ → T suh that p ◦ h = p̃.

The 2-manifold T desribed in 53.L is alled the result of utting of F along

C. It is denoted by F C. This is not at all the omplement F r C,
although a opy of F rC is ontained in F C as a dense subset homotopy

equivalent to the whole F C.

53.N Triangulation of Cut Result. F C possesses a unique triangula-

tion suh that the natural map F C → F maps homeomorphially edges

and triangles of this triangulation onto edges and, respetivly, triangles of

the original triangulation of F .

53.O. Let X be a triangulated 2-manifold, C be its triangulated subspae

homeomorphi to irle, and let F be a regular neighborhood of C in X.

Prove

(1) F C onsists of two onneted omponents, if C is two-sided on

X, it is onneted if C is one-sided;

(2) the inverse image of C under the natural map X C → X onsists

of two onneted omponents if C is two-sided on X, it is onneted

if C is one-sided on X.

This proposition disloses the meaning of words one-sided and two-sided

irle on a 2-manifold. Indeed, both onneted omponents of the result of

utting of a regular neighborhood, and onneted omponents of the inverse

image of the irle an laim its right to be alled a side of the irle or a

side of the ut.

53.2. Desribe the topologial type of F C for the following F and C:

(1) F is sphere S2
, and C is its equator;

(2) F is a Möbius strip, and C is its middle irle (deformation retrat);

(3) F = S1 × S1
, C = S1 × 1;

(4) F is torus S1 × S1
standardly embedded into R

3
, and C is the trefoil

knot lying on F , that is {(z, w) ∈ S1 × S1 | z2 = w3};
(5) F is a Möbius strip, C is a segment: �ndtwo topologially di�erent

position of C on F and desribe F C for eah of them;

(6) F = RP 2
, C = RP 1

.
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(7) F = RP 2
, C is homeomorphi to irle: �nd two topologially di�erent

position C on F and desribe F C for eah of them.

53.P Euler Charateristi and Cut. Let F be a triangulated ompat

2-manifold and C ⊂
∫

F be a losed one-dimensional ontained in the 1-

skeleton of the triangulation of F . Then χ(F C) = χF .

53.Q. Find the Euler harateristi of F C, if ∂C 6= ∅.

53.R Generalized Cut (Inise). Let F be a triangulated 2-manifold and

C ⊂ F be a ompat 1-dimensional manifold ontained in 1-skeleton of F
and satisfying ondition ∂F ∩C ⊂ ∂C. Let D = Cr (∂Cr∂F ). Prove that
there exist a 2-manifold T and sujetive ontinuous map p : T → F suh

that:

(1) p| : T r p−1(D) → F rD is a homeomorphism,

(2) p| : p−1(D) → D is a two-fold overing.

53.S Uniqueness of Cut. The 2-manifold T and map p, whih exist a-

ording to Theorem 53.R, ae unique up to homeomorphism: if T̃ and p̃ are

other 2-manifold and map satisfying the same hypothesis then there exists

a homeomorphism h : T̃ → T suh that p ◦ h = p̃.

The 2-Manifold T desribed in 53.R is also alled the result of utting of F
along C and denoted by F C.

53.3. Show that if C is a segment ontained in the interior of a 2-manifold F then

F C is homeomorphi to F rIntB, where B is the subset of

∫
F homeomorphi

to disk.

53.4. Show that if C is a segment suh that one of its end points is in

∫
F and

the other one is on ∂F then F C is homeomorphi to F .

⌈53′6⌋ Orientations

Reall that an orientation of a segment is a linear order of the set of its points.

It is determined by its restrition to the set of its end points, see 50.R. To

desribe an orientation of a segment it su�es to say whih of its end points

is initial and whih is �nal.

Similarly, orientation of a triangle an be desribed in a number of ways,

eah of whih an be hosen as the de�nition. By an orientation of a triangle

one means a olletion of orientations of its edges suh that eah vertex of the

triangle is the �nal point for one of the edges adjaent to it and initial point

for the other edge. Thus, an orientation of a triangle de�nes an orientation

on eah of its sides.

A segment admits two orientations. A triangle also admits two orientations:

one is obtained from another one by hange of the orientation on eah side
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of the triangle. Therefore an orientation of any side of a triangle de�nes an

orientation of the triangle.

Verties of an oriented triangle are ylily ordered: a vertex A follows im-

mediately the vertex B whih is the initial vertex of the edge whih �nishes

at A. Similarly the edges of an oriented triangle are ylily ordered: a side

a follows immediately the side b whih �nal end point is the initial point of

a.

Vie versa, eah of these yli orders de�nes an orientation of the triangle.

An orientation of a triangulation of a 2-manifold is a olletion of orientations

of all triangles onstituting the triangulation suh that for eah edge the

orientations de�ned on it by the orientations of the two adjaent triangles

are opposite to eah other. A triangulation is said to be orientable, if it

admits an orientation.

53.T Number of Orientations. A triangulation of a onneted 2-manifold

is either non-orientable or admits exatly two orientations. These two ori-

entations are opposite to eah other. Eah of them an be reovered from the

orientation of any triangle involved in the triangulation.

53.U Lifting of Triangulation. Let B be a triangulated surfae and p :
X → B be a overing. Can you equip X with a triangulation?

53.V Lifting of Orientation. Let B be an oriented triangulated surfae

and p : X → B be a overing. Equip X with a triangulation suh that p
maps eah simplex of this triangulation homeomorphially onto a simplex of

the original triangulation of B. Is this triangulation orientable?

53.W. Let X be a triangulated surfae, C ⊂ X be a 1-dimensional manifold

ontained in 1-skeleton of X. If the triangulation of X is orientable, then C
is two-sided.
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54. Topologial Classi�ation of Compat

Triangulated 2-Manifolds

⌈54′1⌋ Spines and Their Regular Neighborhoods

Let X be a triangulated ompat onneted 2-manifold with non-empty

boundary. A simpliial subspae S of the 1-skeleton of X is a spine of X if

X ollapses to S.

54.A. Let X be a triangulated ompat onneted 2-manifold with non-empty

boundary. Then a regular neighborhood of its spine is homeomorphi to X.

54.B Corollary. A triangulated ompat onneted 2-manifold with non-

empty boundary admits a handle deomposition without handles of index 2.

A spine of a losed onneted 2-manifold is a spine of this manifold with an

interior of a triangle from the triangulation removed.

54.C. A triangulated losed onneted 2-manifold admits a handle deom-

position with exatly one handle of index 2.

54.D. A spine of a triangulated losed onneted 2-manifold is onneted.

54.E Corollary. The Euler harateristi of a losed onneted triangulated

2-manifold is not greater than 2. If it is equal to 2, then the 2-manifold is

homeomorphi to S2
.

54.F Corollary: Extremal Case. Let X be a losed onneted triangu-

lated 2-manifold X. If χ(X) = 2, then X is homeomorphi to S2
.

⌈54′2⌋ Simply onneted ompat 2-manifolds

54.G. A simply onneted ompat triangulated 2-manifold with non-empty

boundary ollapses to a point.

54.H Corollary. A simply onneted ompat triangulated 2-manifold with

non-empty boundary is homeomorphi to disk D2
.

54.I Corollary. Let X be a ompat onneted triangulated 2-manifold X
with ∂X 6= ∅. If χ(X) = 1, then X is homeomorphi to D2

.

⌈54′3⌋ Splitting o� rossaps and handles

54.J. A non-orientable triangulated 2-manifold X is a onneted sum of

RP 2
and a triangulated 2-manifold Y . If X is onneted, then Y is also

onneted.



54. Topologial Classi�ation of Compat Triangulated 2-Manifolds 355

54.K. Under onditions of Theorem 54.J, ifX is ompat then Y is ompat

and χ(Y ) = χ(X) + 1.

54.L. If on an orientable onneted triangulated 2-manifold X there is a

simple losed urve C ontained in the 1-skeleton of X suh that X r C
is onneted, then C is ontained in a simpliial subspae H of X homeo-

morphi to torus with a hole and X is a onneted sum of a torus and a

triangulated onneted orientable 2-manifold Y .

If X is ompat, then Y is ompat and χ(Y ) = χ(X) + 2.

54.M. A ompat onneted triangulated 2-manifold with non-empty on-

neted boundary is a onneted sum of a disk and some number of opies of

the projetive plane and/or torus.

54.N Corollary. A simply onneted losed triangulated 2-manifold is home-

omorphi to S2
.

54.O. A ompat onneted triangulated 2-manifold with non-empty bound-

ary is a onneted sum of a sphere with holes and some number of opies of

the projetive plane and/or torus.

54.P. A losed onneted triangulated 2-manifold is a onneted sum of some

number of opies of the projetive plane and/or torus.

⌈54′4⌋ Splitting of a Handle on a Non-Orientable 2-Manifold

54.Q. A onneted sum of torus and projetive plane is homeomorphi to a

onneted sum of three opies of the projetive plane.

54.Q.1. On torus there are 3 simple losed urves whih meet at a single point

transversal to eah other.

54.Q.2. A onneted sum of a surfae S with RP 2
an be obtained by deleting

an open disk from S and identifying antipodal points on the boundary of the

hole.

54.Q.3. On a onneted sum of torus and projetive plane there exist three

disjoint one-sided simple losed urves.

⌈54′5⌋ Final Formulations

54.R. Any onneted losed triangulated 2-manifold is homeomorphi either

to sphere, or sphere with handles, or sphere with rossaps.

54.S. Any onneted ompat triangulated 2-manifold with non-empty bound-

ary is homeomorphi either to sphere with holes, or sphere with holes and

handles, or sphere with holes and rossaps.
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54.1. Find the plae for the Klein Bottle in the above lassi�ation.

54.2. Prove that any losed triangulated surfae with non-orientable triangulation

is homeomorphi either to projetive plane number of handles or Klein bottle with

handles. (Here the number of handles is allowed to be null.)
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55. Cellular Approah to Topologial

Classi�ation of Compat surfaes

In this setion we onsider another, more lassial and detailed solution of

the same problem. We lassify ompat triangulated 2-manifolds in a way

whih provides also an algorithm building a homeomorphism between a given

surfae and one of the standard surfaes.

⌈55′1⌋ Families of Polygons

Triangulations provide a ombinatorial desription of 2-dimensional mani-

folds, but this desription is usually too bulky. Here we will study other,

more pratial way to present 2-dimensional manifolds ombinatorially. The

main idea is to use larger building bloks.

Let F be a olletion of onvex polygons P1, P2, . . . . Let the sides of these

polygons be oriented and paired o�. Then we say that this is a family of

polygons. There is a natural quotient spae of the sum of polygons involved

in a family: one identi�es eah side with its pair-mate by a homeomorphism,

whih respets the orientations of the sides. This quotient spae is alled

just the quotient of the family.

55.A. Prove that the quotient of the family of polygons is a 2-manifold

without boundary.

55.B. Prove that the topologial type of the quotient of a family does not

hange when the homeomorphism between the sides of a distinguished pair

is replaed by other homeomorphism whih respets the orientations.

55.C. Prove that any triangulation of a 2-manifold gives rise to a family of

polygons whose quotient is homeomorphi to the 2-manifold.

A family of polygons an be desribed ombinatorially: Assign a letter to

eah distinguished pair of sides. Go around the polygons writing down the

letters assigned to the sides and equipping a letter with exponent −1 if the

side is oriented against the diretion in whih we go around the polygon. At

eah polygon we write a word. The word depends on the side from whih

we started and on the diretion of going around the polygon. Therefore it

is de�ned up to yli permutation and inversion. The olletion of words

assigned to all the polygons of the family is alled a phrase assoiated with

the family of polygons. It desribes the family to the extend su�ient to

reovering the topologial type of the quotient.



358 XI. Manifolds of Low Dimensions

55.1. Prove that the quotient of the family of polygons assoiated with phrase

aba−1b−1
is homeomorphi to S1 × S1

.

55.2. Identify the topologial type of the quotient of the family of polygons as-

soiated with phrases

(1) aa−1
;

(2) ab, ab;
(3) aa;
(4) abab−1

;

(5) abab;
(6) abcabc;
(7) aabb;
(8) a1b1a

−1

1 b−1

1 a2b2a
−1

2 b−1

2 . . . agbga
−1
g b−1

g ;

(9) a1a1a2a2 . . . agag.

55.D. A olletion of words is a phrase assoiated with a family of polygons,

i� eah letter appears twie in the words.

A family of polygons is alled irreduible if the quotient is onneted.

55.E. A family of polygons is irreduible, i� a phrase assoiated with it does

not admit a division into two olletions of words suh that there is no letter

involved in both olletions.

⌈55′2⌋ Operations on Family of Polygons

Although any family of polygons de�nes a 2-manifold, there are many fami-

lies de�ning the same 2-manifold. There are simple operations whih hange

a family, but do not hange the topologial type of the quotient of the family.

Here are the most obvious and elementary of these operations.

(1) Simultaneous reversing orientations of sides belonging to one of the

pairs.

(2) Selet a pair of sides and subdivide eah side in the pair into two

sides. The orientations of the original sides de�ne the orderings of

the halves. Unite the �rst halves into one new pair of sides, and

the seond halves into the other new pair. The orientations of the

original sides de�ne in an obvious way orientations of their halves.

This operation is alled 1-subdivision. In the quotient it e�ets in

subdivision of a 1-ell (whih is the image of the seleted pair of

sides) into two 1-ells. This 1-ells is replaed by two 1-ells and

one 0-ell.

(3) The inverse operation to 1-subdivision. It is alled 1-onsolidation.

(4) Cut one of the polygons along its diagonal into two polygons. The

sides of the ut onstitute a new pair. They are equipped with

an orientation suh that gluing the polygons by a homeomorphism
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respeting these orientations reovers the original polygon. This

operation is alled 2-subdivision. In the quotient it e�ets in subdi-

vision of a 2-ell into two new 2-ells along an ar whose end-points

are 0-ells (may be oiniding). The original 2-ell is replaed by

two 2-ells and one 1-ell.

(5) The inverse operation to 2-subdivision. It is alled 2-onsolidation.

⌈55′3⌋ Topologial and Homotopy Classi�ation of Closed Sur-

faes

55.F Redution Theorem. Any �nite irreduible family of polygons an

be redued by the �ve elementary operations to one of the following standard

families:

(1) aa−1

(2) a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g

(3) a1a1a2a2 . . . agag for some natural g.

55.G Corollary, see 54.R. Any triangulated losed onneted manifold of

dimension 2 is homeomorphi to either sphere, or sphere with handles, or

sphere with rossaps.

Theorems 55.G and 51.W provide lassi�ations of triangulated losed on-

neted 2-manifolds up to homeomorphisms and homotopy equivalene.

55.F.1 Redution to Single Polygon. Any �nite irreduible family of poly-

gons an be redued by elementary operations to a family onsisting of a single

polygon.

55.F.2 Canellation. A family of polygons orresponding to a phrase on-

taining a fragment aa−1
or a−1a, where a is any letter, an be transformed by

elementary operations to a family orresponding to the phrase obtained from

the original one by erasing this fragment, unless the latter is the whole original

phrase.

55.F.3 Redution to Single Vertex. An irreduible family of polygons an

be turned by elementary transformations to a polygon suh that all its verties

are projeted to a single point of the quotient.

55.F.4 Separation of Crossap. A family orresponding to a phrase on-

sisting of a word XaY a, where X and Y are words and a is a letter, an be

transformed to the family orresponding to the phrase bbY −1X .

55.F.5. If a family, whose quotient has a single vertex in the natural ell

deomposition, orresponds to a phrase onsisting of a word XaY a−1
, where X

and Y are nonempty words and a is a letter, then X = UbU ′
and Y = V b−1V ′

.

55.F.6 Separation of Handle. A family orresponding to a phrase onsisting

of a word UbU ′aV b−1V ′a−1
, where U , U ′

, V , and V ′
are words and a, b are

letters, an be transformed to the family presented by phrase dcd−1c−1UV ′V U ′
.
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55.F.7 Handle plus Crossap Equals 3 Crossaps. A family orrespond-

ing to phrase aba−1b−1ccX an be transformed by elementary transformations

to the family orresponding to phrase abdbadX .
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56. Reognizing Closed Surfaes

56.A. What is the topologial type of the 2-manifold, whih an be obtained

as follows: Take two disjoint opies of disk. Attah three parallel strips on-

neting the disks and twisted by π. The resulting surfae S has a onneted

boundary. Attah a opy of disk along its boundary by a homeomorphism

onto the boundary of the S. This is the spae to reognize.

56.B. Euler harateristi of the ellular spae obtained as quotient of a

family of polygons is invariant under homotopy equivalenes.

56.1. How an 56.B help to solve 56.A?

56.2. Let X be a losed onneted surfae. What values of χ(X) allow to reover

the topologial type of X? What ambiguity is left for other values of χ(X)?

⌈56′1⌋ Orientations

By an orientation of a polygon one means orientation of all its sides suh

that eah vertex is the �nal end point for one of the adjaent sides and initial

for the other one. Thus an orientation of a polygon inludes orientation of

all its sides. Eah segment an be oriented in two ways, and eah polygon

an be oriented in two ways.

An orientation of a family of polygons is a olletion of orientations of all the

polygons omprising the family suh that for eah pair of sides one of the

pair-mates has the orientation inherited from the orientation of the polygon

ontaining it while the other pair-mate has the orientation opposite to the

inherited orientation. A family of polygons is said to be orientable if it

admits an orientation.

56.3. Whih of the families of polygons from Problem 55.2 are orientable?

56.4. Prove that a family of polygons assoiated with a word is orientable i� eah

letter appear in the word one with exponent −1 and one with exponent 1.

56.C. Orientability of a family of polygons is preserved by the elementary

operations.

A surfae is said to be orientable if it an be presented as the quotient of an

orientable family of polygons.

56.D. A surfae S is orientable, i� any family of polygons whose quotient

is homeomorphi to S is orientable.

56.E. Spheres with handles are orientable. Spheres with rossaps are not.
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⌈56′2⌋ More About Reognizing Closed Surfaes

56.5. How an the notion of orientability and 56.C help to solve 56.A?

56.F. Two losed onneted manifolds of dimension two are homeomorphi

i� they have the same Euler harateristi and either are both orientable or

both non-orientable.

⌈56′3⌋ Reognizing Compat Surfaes with Boundary

56.G. Riddle. Generalize orientabilty to the ase of nonlosed manifolds

of dimension two. (Give as many generalization as you an and prove that

they are equivalent. The main riterium of suess is that the generalized

orientability should help to reognize the topologial type.)

56.H. Two ompat onneted manifolds of dimension two are homeomor-

phi i� they have the same Euler harateristi, are both orientable or both

nonorientable and their boundaries have the same number of onneted om-

ponents.

⌈56′4x⌋ Simply Conneted Surfaes

56.Ix Theorem

∗
. Any simply onneted non-ompat manifold of dimension

two without boundary is homeomorphi to R
2
.

56

′
4x.1. Any simply onneted triangulated non-ompat manifold without

boundary an be presented as the union of an inreasing sequene of ompat

simpliial subspaes C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ . . . suh that eah of them is

a 2-manifold with boundary and IntCn ⊂ Cn+1 for eah n.

56

′
4x.2. Under onditions of 56

′
4x.1 the sequene Cn an be modi�ed in suh

a way that eah Cn beomes simply onneted.

56.Jx Corollary. The universal overing of any surfae with empty bound-

ary and in�nite fundamental group is homeomorphi to R2
.
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Proofs and Comments

50.A Indeed, any 0-dimensional manifold is just a ountable disrete topo-

logial spae, and the only topologial invariant needed for topologial las-

si�ation of 0-manifolds is the number of points.

50.B Eah manifold is the sum of its onneted omponents.

50.C (1) S1
, (2) I, (3) R, R+, (4) R+.

50.D

Manifold X Is X ompat? Is ∂X empty?

S1 + +

R
1 − +

I + −
R
1
+ − −

51.A For example, the stereographi projetion from an inner point of the

hole maps the sphere with a hole onto a disk homeomorphially.

51.B The stereographi projetion from an inner point of one of the holes

homeomorphially maps the sphere with two holes onto a �disk with a hole�.

Prove that the latter is homeomorphi to a ylinder. (Another option: if

we take the enter of the projetion in the hole in an appropriate way, then

the projetion maps the sphere with two holes onto a irular ring, whih is

obviously homeomorphi to a ylinder.)

51.C By de�nition, the handle is homeomorphi to a torus with a hole,

while the sphere with a hole is homeomorphi to a disk, whih preisely �lls

in the hole.

51.D Cut a sphere with two handles into two symmetri parts eah of whih

is homeomorphi to a handle.

22.I To simplify the formulas, we replae the square I2 by a retangle.

Here is a formal argument: onsider the map

ϕ : [0, 2π] × [−1
2 ,

1
2 ] → R

3 : (x, y) 7→
(

(1 + y sin x
2 ) cos x, (1 + y sin x

2 ) sin x, y cos
x
2

)

.

Chek that ϕ really maps the square onto the Möbius strip and that S(ϕ)
is the given partition. Certainly, the starting point of the argument is not a

spei� formula. First of all, you should imagine the required map. We map

the horizontal midsegment of the unit square onto the midline of the Möbius

strip, and we map eah of the vertial segments of the square onto a segment
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of the strip orthogonal to the midline. This mapping maps the vertial sides

of the square to one and the same segment, but here the opposite verties of

the square are identi�ed with eah other (hek this).

51.F Combine the results of 51.A and 22.J.

51.G Consider the Klein bottle as a quotient spae of a square and ut

the square into 5 horizontal (retangular) strips of equal width. Then the

quotient spae of the middle strip is a Möbius band, the quotient spae of the

union of the two extreme strips is one more Möbius band, and the quotient

spae of the remaining two strips is a ring, i.e., preisely a sphere with two

holes. (Here is another, maybe more visual, desription. Look at the piture

of the Klein bottle: it has a horizontal plane of symmetry. Two horizontal

planes lose to the plane of symmetry ut the Klein bottle into two Möbius

bands and a ring.)

51.H The most visual approah here is as follows: single out one of the

handles and one of the �lms. Replae the handle by a �tube� whose boundary

irles are attahed to those of two holes on the sphere, whih should be

su�iently small and lose to eah other. After that, start moving one of

the holes. (The topologial type of the quotient spae does not hange in the

ourse of suh a motion.) First, bring the hole to the boundary of the �lm,

then shift it onto the �lm, drag it one along the �lm, shift it from the �lm,

and, �nally, return the hole to the initial spot. As a result, we transform the

initial handle (a torus with a hole) into a Klein bottle with a hole, whih

splits into two Möbius bands (see Problem 22.U), i.e., into two �lms.

51.Ox Yes, for example, a plane with in�nite number of handles.

51.S See, for example, Setion 46.

51.T See, for example, Setion 46.

51.U.1 Indeed, the single relation in the fundamental group of the sphere

with g handles means that the produt of g ommutators of the generators

ai and bi equals 1, and so it �vanishes� after the abelianization.

51.V.1 Taking the elements a1, . . . , ag−1, and bn = a1a2 . . . ag as generators
in the ommuted group, we obtain an Abelian group with a single relation

b2n = 1.

51.W The �rst statement follows from 51.U.1, the seond from 51.V.1 and

the third one, from 51.U.1 and 51.V.1.

52.U All non-negative inetegers.

52.V χ(X) = 1
2χ(∂X) = 1

2♯(∂X). To prove this, onsider double DX of

X, and observe that χ(DX) = 2χ(X) − χ(∂X), while χ(DX) = 0, sine
DX is a losed 1-manifold.
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53.V Yes, it is orientable. An orientation an be obtain by taking on eah

triangle of X the orientation whih is mapped by p to the orientation of its

image.

54.Q.1 Represent the torus as the quotient spae of the unit square. Take

the images of a diagonal of the square and the two segments onneting the

midpoints of the opposite sides of the square.


