Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Let a line AB and an arbitrary point M outside the line be given.
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Let a line AB and an arbitrary point M outside the line be given. Drop a perpendicular from M to AB.

\[A \underline{\quad \quad} B \]
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Apply the axial symmetry about AB.

\[M \]

\[A \quad B \]
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Apply the axial symmetry about AB.

![Diagram](image-url)
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Apply the axial symmetry about AB. Connect M and M' by a line.
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Apply the axial symmetry about AB. Connect M and M' by a line.
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Prove that MM' is perpendicular to AB!
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Prove that MM' is perpendicular to AB!

$\angle MCA = \angle ACM'$ as symmetric.
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Prove that MM' is perpendicular to AB!

$\angle MCA = \angle ACM'$ as symmetric. $\angle MCA + \angle ACM' = 180^\circ$ as $\angle MCA$ and $\angle ACM'$ are supplementary.
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Prove that MM' is perpendicular to AB!

$\angle MCA = \angle ACM'$ as symmetric. $\angle MCA + \angle ACM' = 180^\circ$ as $\angle MCA$ and $\angle ACM'$ are supplementary.

Hence $\angle MCA = \angle ACM' = 90^\circ$ and $MM' \perp AB$.
Dropping perpendicular

Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness.
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Uniqueness. Assume there is another perpendicular MD.
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Uniqueness. Assume there is another perpendicular MD.

![Diagram showing a point M outside a line AB, with perpendiculars MD and M'D, and another line CD parallel to AB.]
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular MD. Take its image under the symmetry about AB.

![Diagram](image-url)
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular MD. Take its image under the symmetry about AB.

![Diagram with points A, B, C, D, M, and M']
Dropping perpendicular

Theorem. *From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.*

Uniqueness. Assume there is another perpendicular MD. Take its image under the symmetry about AB. Angles $\angle MDA$ and $\angle ADM'$ are right, therefore $\angle MDM'$ is straight.
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular MD. Take its image under the symmetry about AB. Angles $\angle MDA$ and $\angle ADM'$ are right, therefore $\angle MDM'$ is straight. Hence $MDM' = MM'$ and $D = C$.
Theorem. From any point lying outside a given line one can drop a perpendicular to this line, and such perpendicular is unique.

Uniqueness. Assume there is another perpendicular MD. Take its image under the symmetry about AB. Angles $\angle MDA$ and $\angle ADM'$ are right, therefore $\angle MDM'$ is straight. Hence $MDM' = MM'$ and $D = C$.
Theorem. If two sides and the angle enclosed by them in one triangle are congruent respectively to two sides and the angle enclosed by them in another triangle, then such triangles are congruent.
Theorem. If two sides and the angle enclosed by them in one triangle are congruent respectively to two sides and the angle enclosed by them in another triangle, then such triangles are congruent.

Proof. Let $\triangle ABC$ and $\triangle A'B'C'$ be triangles such that $AC = A'C'$, $AB = A'B'$, $\angle A = \angle A'$.
SAS-test

Superimpose $\triangle ABC$ onto $\triangle A'B'C'$ in such a way that A would coincide with A'
Superimpose $\triangle ABC$ onto $\triangle A'B'C'$ in such a way that A would coincide with A'
SAS-test

Superimpose \(\triangle ABC \) onto \(\triangle A'B'C'' \) in such a way that \(A \) would coincide with \(A' \), the side \(AC \) would go along \(A'C'' \)
SAS-test

Superimpose $\triangle ABC$ onto $\triangle A'B'C''$ in such a way that A would coincide with A', the side AC would go along $A'C''$.
Superimpose $\triangle ABC$ onto $\triangle A'B'C''$ in such a way that A would coincide with A', the side AC would go along $A'C''$, and the side AB would lie on the same side of $A'C''$ as $A'B'$.
Superimpose $\triangle ABC$ onto $\triangle A'B'C''$ in such a way that A would coincide with A', the side AC would go along $A'C''$, and the side AB would lie on the same side of $A'C''$ as $A'B'$.
Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.
Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.
Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.
Theorem. In isosceles triangles the angles at the base equal one another.
Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.
Theorem. In isosceles triangles the angles at the base equal one another.
Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.
Pons asinorum

Theorem. In isosceles triangles the angles at the base equal one another.
Theorem. In isosceles triangles the angles at the base equal one another.
Lines in triangle

Triangle ABC with altitude BD.

A, B, C, D are the vertices of the triangle. BD is the altitude.
Lines in triangle

median BE
Lines in triangle

![Triangle with bisector](image)

bisector BF
Lines in triangle

Altitude BD, bisector BF, median BE
Lines in triangle

Theorem. If the triangle is isosceles (i.e., AB is congruent to BC), then $D = F = E$ and all three lines coincide.
Lines in triangle

Theorem. If the triangle is isosceles (i.e., AB is congruent to BC), then $D = F = E$ and all three lines coincide.

Lemma. If AB is congruent to BC, then the triangle ABC is symmetric about its bisector BF.

altitude = bisector = median
Lines in triangle

altitude = bisector = median

Theorem. If the triangle is isosceles (i.e., AB is congruent to BC), then $D = F = E$ and all three lines coincide.

Theorem. If AB is congruent to BC, then $\angle A = \angle C$.
Lines in triangle

Theorem. If the triangle is isosceles (i.e., AB is congruent to BC), then $D = F = E$ and all three lines coincide.

Theorem. If AB is congruent to BC, then $\angle A = \angle C$.

altitude = bisector = median
SSS-test

Theorem. SSS-test. If three sides of one triangle are congruent respectively to three sides of another triangle, then the triangles are congruent.
Theorem. **SSS-test.** If three sides of one triangle are congruent respectively to three sides of another triangle, then the triangles are congruent.
SSS-test

Juxtapose ABC and $A'B'C'$ in such a way that BC and $B'C''$ would coincide, and A and A' would lie on the opposite sides of $B'C''$.
SSS-test

Juxtapose ABC and $A'B'C'$ in such a way that BC and $B'C''$ would coincide, and A and A' would lie on the opposite sides of $B'C''$.
SSS-test

Joining A' and A'' we obtain isosceles triangles $A'B'A''$ and $A'C'A''$ with the common base $A'A''$.
Joining A' and A'' we obtain isosceles triangles $A'B'A''$ and $A'C'A''$ with the common base $A'A''$.
The angles at the base are congruent.
SSS-test

The angles at the base are congruent.
SSS-test

The angles at the base are congruent. Apply SAS-test.
SSS-test

Another case to consider?
SSS-test
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint \(E \) on \(BC \).
Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on BC.
Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on BC.
Draw the median AE and extend it to F so that $EF = AE$.
Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on BC. Draw the median AE and extend it to F so that $EF = AE$.

![Diagram of a triangle with exterior angle theorem](image)
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on BC.
Draw the median AE and extend it to F so that $EF = AE$.
Draw segment CF.

![Diagram of a triangle with exterior angles](attachment:triangle_diagram.png)
Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on BC.
Draw the median AE and extend it to F so that $EF = AE$.
Draw segment CF.
Exterior angle

Theorem. *An exterior angle of a triangle is greater than each interior angle not supplementary to it.*

Put midpoint E on BC. Draw the median AE and extend it to F so that $EF = AE$. Draw segment CF. Triangles ABE and EFC are congruent by SAS-test.
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on BC.
Draw the median AE and extend it to F so that $EF = AE$.
Draw segment CF.
Triangles ABE and EFC are congruent by SAS-test.
$\angle B = \angle ECF < \angle C$.
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Put midpoint E on BC.
Draw the median AE and extend it to F so that $EF = AE$.
Draw segment CF.
Triangles ABE and EFC are congruent by SAS-test.
$\angle B = \angle ECF < \angle C$.
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Corollary. If in a triangle one angle is not acute, then the other two angles are acute.
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Corollary. If in a triangle one angle is not acute, then the other two angles are acute.

Proof. The exterior angle at the vertex with non-acute angle is not obtuse (i.e., $\leq 90^\circ$).
Exterior angle

Theorem. An exterior angle of a triangle is greater than each interior angle not supplementary to it.

Corollary. If in a triangle one angle is not acute, then the other two angles are acute.

Proof. The exterior angle at the vertex with non-acute angle is not obtuse (i.e., $\leq 90^\circ$).

Other interior angles are smaller.
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*

Proof. Let \(AB < BC \).
Theorem. *In any triangle the angle opposite to a greater side is greater.*

Proof. Let $AB < BC$.

On BC, mark the segment BD congruent to AB.

![Diagram of a triangle with a segment marked equal to one of its sides.](image-url)
Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $AB < BC$.

On BC, mark the segment BD congruent to AB.

![Diagram of a triangle with marked segments](image)
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*

Proof. Let $AB < BC$.

On BC, mark the segment BD congruent to AB.

Draw the segment AD.
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*

Proof. Let \(AB < BC \).

On \(BC \), mark the segment \(BD \) congruent to \(AB \).

Draw the segment \(AD \).
Angle opposite to side

Theorem. In any triangle the angle opposite to a greater side is greater.

Proof. Let $AB < BC$.
On BC, mark the segment BD congruent to AB.
Draw the segment AD.
$\angle A > \angle BAD = \angle BDA > \angle C$.

![Diagram of triangle with marked segments and angles]
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*

We have proved earlier that the angles opposite to congruent sides are congruent.
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*

We have proved earlier that the angles opposite to congruent sides are congruent.

Converse Theorem. *In any triangle*

1. *the sides opposite to congruent angles are congruent;*
2. *the side opposite to a greater angle is greater.*
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*

We have proved earlier that the angles opposite to congruent sides are congruent.

Converse Theorem. *In any triangle*

1. *the sides opposite to congruent angles are congruent;*
2. *the side opposite to a greater angle is greater.*

Proof by contradiction *reductio ad absurdum.*
Angle opposite to side

Theorem. *In any triangle the angle opposite to a greater side is greater.*

We have proved earlier that the angles opposite to congruent sides are congruent.

Converse Theorem. *In any triangle*

(1) *the sides opposite to congruent angles are congruent;*

(2) *the side opposite to a greater angle is greater.*

Corollary.

(1) *In an equilateral triangle all angles are congruent.*

(2) *In an equiangular triangle all sides are congruent.*
Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.
Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.
Triangle inequality

Theorem. *In a triangle, each side is smaller than the sum of other two sides.*

Proof. Let the greatest side be AC. Continuing the side AB past B mark on it the segment $BD = BC$.
Triangle inequality

Theorem. *In a triangle, each side is smaller than the sum of other two sides.*

Proof. Let the greatest side be AC. Continuing the side AB past B, mark on it the segment $BD = BC$.
Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be AC. Continuing the side AB past B mark on it the segment $BD = BC$. Draw DC.
Triangle inequality

Theorem. *In a triangle, each side is smaller than the sum of other two sides.*

Proof. Let the greatest side be AC. Continuing the side AB past B mark on it the segment $BD = BC$. Draw DC.
Triangle inequality

Theorem. *In a triangle, each side is smaller than the sum of other two sides.*

Proof. Let the greatest side be AC. Continuing the side AB past B mark on it the segment $BD = BC$. Draw DC. Since $\triangle BDC$ is isosceles, then $\angle D = \angle DCB$.

![Diagram of triangle inequality](image)
Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be AC. Continuing the side AB past B mark on it the segment $BD = BC$. Draw DC.

Since $\triangle BDC$ is isosceles, then $\angle D = \angle DCB$.

![Diagram of a triangle with a construction showing the triangle inequality]
Triangle inequality

Theorem. *In a triangle, each side is smaller than the sum of other two sides.*

Proof. Let the greatest side be AC. Continuing the side AB past B mark on it the segment $BD = BC$. Draw DC.

Since $\triangle BDC$ is isosceles, then $\angle D = \angle DCB$.

Therefore $\angle D < \angle DCA$.
Triangle inequality

Theorem. In a triangle, each side is smaller than the sum of other two sides.

Proof. Let the greatest side be AC. Continuing the side AB past B mark on it the segment $BD = BC$. Draw DC.

Since $\triangle BDC$ is isosceles, then $\angle D = \angle DCB$.

Therefore $\angle D < \angle DCA$. Hence $AC < AD = AB + BD = AB + BC$.
Table of Contents

- Dropping perpendicular
- SAS-test
- SSS-test
- Pons asinorum
- Lines in triangle
- Exterior angle
- Angle opposite to side
- Triangle inequality