
Isometries.

Congruence mappings as isometries. The notion of isometry is a
general notion commonly accepted in mathematics. It means a map-
ping which preserves distances. The word metric is a synonym to the
word distance. In the context of this course, an isometry is a mapping
of the plane that maps each segment s to a segment s′ congruent to
s. Therefore each congruence mapping is an isometry. In fact, each
isometry of the plane is a congruence mapping.
Here we study isometries of the plane.

Exercise. Generalize everything into the setup of the 3-space.

Recovering an isometry from images of three points.

Theorem 1. An isometry of the plane can be recovered from its re-
striction to any triple of non-collinear points.

Proof. Given images A′, B′ and C ′ of non-collinear points A, B, C
under and isometry, let us find the image of an arbitrary point X .
Using a compass, draw circles cA and cB centered at A′ and B′ of radii
congruent to AX and BX , respectively. They intersect in at least one
point, because segments AB and A′B′ are congruent and the circles
centered at A and B with the same radii intersect at X . There may
be two intersection point. The image of X must be one of them. In
order to choose the right one, measure the distance between C and S

and choose the intersection point X ′ of the circles cA and cB such that
C ′X ′ is congruent to CX . �

In fact, there are exactly two isometries with the same restriction
to a pair of distinct points. They can be obtained from each other by
composing with the reflection about the line connecting these points.

Isometries as compositions of reflections.

Theorem 2. Any isometry of the plane is a composition of at most
three reflections.

Proof. Choose three non-collinear points A, B, C. By theorem 1 , it
would suffice to find a composition of at most three reflections which
maps A, B and C to their images under a given isometry S.
First, find a reflection R1 which maps A to S(A). The axis of such

a reflection is a perpendicular bisector of the segment AS(A). It is
uniquely defined, unless S(A) = A. If S(A) = A, one can take either a
reflection about any line passing through A, or take, instead of reflec-
tion, an identity map for R1 .
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Second, find a reflection R2 which maps segment S(A)R1(B) to
S(A)S(B). The axis of such a reflection is the bisector of angle
∠R1(B)S(A)S(B).
The reflection R2 maps R1(B) to S(B). Indeed, the segment

S(A)R1(B) = R1(AB) is congruent to AB (because R1 is an isometry),
AB is congruent to S(A)S(B) = S(AB) (because S is an isometry),
therefore S(A)R1(B) is congruent to S(A)S(B). Reflection R2 maps
the ray S(A)R1(B) to the ray S(A)S(B), preserving the point S(A)
and distances. Therefore it maps R1(B) to S(B).
Triangles R2○R1(△ABC) and S(△ABC) are congruent via an isom-

etry S ○ (R2 ○R1)−1 = S ○R1 ○R2, and the isometry is identity on the
side S(AB) = R2 ○ R1(AB). Now either R2(R1(C)) = C and then
S = R2 ○R1, or the triangles R2 ○R1(△ABC) and S(△ABC) are sym-
metric about their common side S(AB). In the former case S = R2○R1,
in the latter case denote by R3 the reflection about S(AB) and observe
that S = R3 ○R2 ○R1. �

Translations and central symmetries. A map of the plane to itself
is called a translation if, for some fixed points A and B, it maps a point
X to a point T (X) such that XT (X)BA is a parallelogram.
Here we have to be careful with the notion of parallelogram, because

a parallelogram may degenerate to a figure in a line. Not any degener-
ate quadrilateral fitting in a line deserves to be called a parallelogram,
although any two sides of such a degenerate quadrilateral are parallel.
By a parallelogram we mean a sequence of four segments KL, LM ,
MN and MK such that KL is congruent and parallel to MN and LM

is congruent and parallel to MK. This definition describes the usual
parallelograms, for which congruence can be deduced from parallelness
and vice versa, and the degenerate parallelograms.

Theorem 3. For any points A and B there exists a translation map-
ping A to B. A translation is an isometry.

Proof. Any point A, B and X can be completed in a unique way to
a parallelogram ABXY . Define T (X) = Y . For any points X , Y the
quadrilateral XY T (Y )T (X) is a parallelogram. Therefore, T is an
isometry. �

Denote by TAB the translation which maps A to B.

Theorem 4. The composition of any two translations is a translation.

Theorem 4 means that TBC ○ TAB = TAC .
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Fix a point O. A map of the plane to itself which maps a point A to
a point B such that O is a midpoint of the segment AB is called the
symmetry about a point O.

Theorem 5. A symmetry about a point is an isometry.

Proof. SAS-test for congruent triangles (extended appropriately to de-
generate triangles.) �

Theorem 6. The composition of any two symmetries in a point is a
translation. In details, SB○SA = T 1

2

Ð→

AB
, where SX denotes the symmetry

about point X.

Remark. The equality

SB ○ SA = T 1

2

Ð→

AB

implies a couple of other useful equalities. Namely, compose both sides
of this equality with SB from the left:

SB ○ SB ○ SA = SB ○ T 1

2

Ð→

AB

Since SB ○ SB is the identity, it can be rewritten as

SA = SB ○ T 1

2

Ð→

AB
.

Similarly, but multiplying by SA from right, we get

SB = T 1

2

Ð→

AB
○ SA.

Corollary. The composition of an even number of symmetries in
points is a translation; the composition of an odd number of symmetries
in points is a symmetry in a point.

Compositions of two reflections.

Theorem 7. The composition of two reflections in non-parallel lines
is a rotation about the intersection point of the lines by the angle equal
to doubled angle between the lines. In formula:

RAC ○RAB = RotA,2∠BAC ,

where RXY denotes the reflection in line XY , and RotX,α denotes the
rotation about point X by angle α.

Theorem 8. The composition of two reflections in parallel lines is a
translation in a direction perpendicular to the lines by a distance twice
larger than the distance between the lines.
More precisely, if lines AB and CD are parallel, and the line AC is

perpendicular to the lines AB and CD, then

RCD ○RAB = T
2
Ð→

AC
.



4

Application: finding triangles with minimal perimeters. We
have considered the following problem:

Problem 1. Given a line l and points A,B on the same side of l, find
a point C ∈ l such that the broken line ACB would be the shortest.

Recall that a solution of this problem relies on reflection. Namely,
let B′ = Rl(B). Then the desired C is the intersection point of l and
AB′.
Notice that this problem can be reformulated as finding C ∈ l such

that the perimeter of the triangle ABC is minimal.

Problem 2. Given lines l, m and a point A, find points B ∈ l and
C ∈m such that the perimeter of the triangle ABC is minimal.

Construction that solves Problem 2. Reflect point A in l and m,
that is find B′ = Rl(A) and C ′ = Rm(A). Then B = l ∩ B′C ′ and
C =m ∩B′C ′. Exercise: provide a proof and research.

Problem 3. Given lines l, m and n, no two of which are parallel to
each other. Find points A ∈ l, B ∈m and C ∈ n such that triangle ABC

has minimal perimeter.

If we knew a point A ∈ l, the problem would be solved as Problem
2: we would connect points Rm(A) and Rn(A) and take for B and C

the intersection points of this line with m and n. So, we have to find a
point A ∈ l such that the segment Rm(A)Rn(A) would be minimal.
The end points Rm(A), Rn(A) of this segment belong to the lines

Rm(l) and Rn(l) and are obtained from the same point A ∈ l. Therefore

Rn(A) = Rn(Rm(Rm(A))) = Rn ○Rm(B),

where B ∈ Rm(l). So, one end point is obtained from another by
Rn ○Rm.
By Theorem 8 , Rn ○ Rm is a rotation about the point m ∩ n. We

look for a point B on Rm(l) such that the segment BRn ○ Rm(B) is
minimal.
The closer a point to the center of rotation, the closer this point to

its image under the rotation. Therefore the desired B is the base of
the perpendicular dropped from m∩n to Rm(l). Hence, the desired A

is the base of perpendicular dropped from m ∩ n to l.
Since all three lines are involved in the conditions of the problem in

the same way, the desired points B and C are also the end points of
altitudes of the triangle formed by lines l, m, n.

Composition of rotations.

Theorem 9. The composition of rotations (about points which may
be different) is either a rotation or translation.
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Prove this theorem by representing each rotation as a composition
of two reflections about a line. Choose the lines in such a way that the
second line in the representation of the first rotation would coincide
with the first line in the representation of the second rotation. Then
in the representation of the composition of two rotations as a compo-
sition of four reflections the two middle reflections would cancel and
the whole composition would be represented as a composition of two
reflections. The angle between the axes of these reflections would be
the sum of of the angles in the decompositions of the original rotations.
If this angle is zero, and the lines are parallel, then the composition
of rotations is a translation by Theorem 8 . If the angle is not zero,
the axes intersect, then the composition of the rotations is a rotations
around the intersection point by the angle which is the sum of angles
of the original rotations.
Similar tricks with reflections allows to simplify other compositions.

Glide reflections. A reflection about a line l followed by a transla-
tion along l is called a glide reflection. In this definition, the order
of reflection and translation does not matter, because they commute:
Rl ○ TAB = TAB ○Rl if l ∥ AB.

Theorem 10. The composition of a central symmetry and a reflection
is a glide reflection.

Use the same tricks as for Theorem 9

Classification of plane isometries.

Theorem 11. Any isometry of the plane is either a reflection about
a line, or rotation, or translation, or gliding reflection.

This theorem can be deduced from Theorem 2 by taking into account
relations between reflections in lines. By Theorem 2 , any isometry of
the plane is a composition of at most 3 reflections about lines. By
Theorems 7 and 8 , a composition of two reflections is either rotation
about a point or translation.

Lemma. A composition of three reflections is either a reflection, or
a gliding reflection.

Proof. If all three axes of the reflections are parallel, then the firs two
can be translated without changing of their composition (the composi-
tion of reflections about two parallel lines depends only on the direction
of lines and the distance between them). By translating the first two
lines, make the second of them coinciding with the third line. Then
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in the total composition they cancel, and the composition is just the
reflection in the first line.
If not all three lines are parallel, then the second is not parallel to

one of the rest. The composition of reflections about these two non-
parallel lines is a rotation, and the lines can be rotated simultaneously
about their intersection point by the same angle without changing of
the composition.
By an appropriate rotation, make the middle line perpendicular to

the line which was not rotated. Then by rotating of these two per-
pendicular lines about their intersection point, make the middle one
parallel to the other line. Now the configuration of lines consists of two
parallel lines and a line perpendicular to them. The composition of
reflections about them (the order does not matter any more, because
they commute) is a gliding symmetry. �


