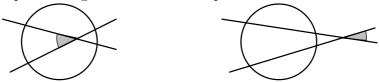
Final Exam

Problem 1. (8 pt) Formulate and prove theorems about relationships between the angles formed by two intersecting lines and the arcs which are cut by the lines on a circle, which is not tangent to the lines and does not pass through their intersection point.



Problem 2. (5 pt) Construct a triangle $\triangle ABC$ given an angle congruent to its interior angle at vertex A, a segment congruent to a radius of inscribed circle, and a segment congruent to the altitude dropped from vertex B.

Problem 3. (5 pt) Given a convex quadrilateral PQRS and a point O inside of PQRS, construct a parallelogram ABCD such that $A \in PQ$, $B \in QR$, $C \in RS$ and $D \in SP$ and O is the intersection point of diagonals AC and BD.

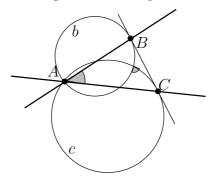
Problem 4. (9 pt) Find the interior angles of a triangle $\triangle ABC$, in which median AM and altitude AH divide angle $\angle A$ into three equal angles (i.e., $\angle CAH = \angle HAM = \angle MAB$).

Problem 5. (8 pt) Parallelepiped is a polyhedron bounded in the 3-space by three pairs of parallel planes.

- (1) Prove that each face of a parallelepiped is a parallelogram.
- (2) Formulate properties of a parallelepiped similar to the properties of a parallelogram that were studied in the course and prove one of them.

Problem 6. (8 pt) Prove that the image of a circle under an inversion is either a circle or a line.

Problem 7. (12 pt) On sides of a fixed angle with vertex A, one chooses points B and C and draws circles b and c passing through A and tangent to BC at points B and C, respectively.



- (1) Draw the image of this picture under an inversion centered at A.
- (2) Prove that the angle between circles b and c that is marked on the picture above does not depend on the choice of B and C.
- (3) Find the relation of the angle between b and c to $\angle A$.

Problem 8. (5 pt) It is known that if a convex hexagon ABCDEF can be inscribed in a circle, then the sum of interior angles at A, C and E is 360° .

Show that the converse is not true. Even more, prove that it is impossible to recognize whether a convex hexagon can be inscribed in a circle if only interior angles are known.