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Final Exam

Problem 1. (8 pt) Formulate and prove theorems about relationships between the angles formed
by two intersecting lines and the arcs which are cut by the lines on a circle, which is not tangent to
the lines and does not pass through their intersection point.

Problem 2. (5 pt) Construct a triangle △ABC given an angle congruent to its interior angle at
vertex A, a segment congruent to a radius of inscribed circle, and a segment congruent to the altitude
dropped from vertex B.

Problem 3. (5 pt) Given a convex quadrilateral PQRS and a point O inside of PQRS, construct
a parallelogram ABCD such that A ∈ PQ, B ∈ QR, C ∈ RS and D ∈ SP and O is the intersection
point of diagonals AC and BD.

Problem 4. (9 pt) Find the interior angles of a triangle △ABC, in which median AM and altitude
AH divide angle ∠A into three equal angles (i.e., ∠CAH = ∠HAM = ∠MAB).

Problem 5. (8 pt) Parallelepiped is a polyhedron bounded in the 3-space by three pairs of parallel
planes.

(1) Prove that each face of a parallelepiped is a parallelogram.
(2) Formulate properties of a parallelepiped similar to the properties of a parallelogram that were

studied in the course and prove one of them.

Problem 6. (8 pt) Prove that the image of a circle under an inversion is either a circle or a line.

Problem 7. (12 pt) On sides of a fixed angle with vertex A, one chooses points B and C and draws
circles b and c passing through A and tangent to BC at points B and C, respectively.
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(1) Draw the image of this picture under an inversion centered at A.
(2) Prove that the angle between circles b and c that is marked on the picture above does not

depend on the choice of B and C.
(3) Find the relation of the angle between b and c to ∠A.

Problem 8. (5 pt) It is known that if a convex hexagon ABCDEF can be inscribed in a circle,
then the sum of interior angles at A, C and E is 360◦.

Show that the converse is not true. Even more, prove that it is impossible to recognize whether a
convex hexagon can be inscribed in a circle if only interior angles are known.


