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Final Exam. Solutions

Problem 1. (8 pt) Formulate and prove theorems about relationships between the angles formed
by two intersecting lines and the arcs which are cut by the lines on a circle, which is not tangent to
the lines and does not pass through their intersection point.

Solution. This is Theorem 126 from the textbook. The proofs become clear from looking at the
following pictures and recalling the relation between an exterior angle of a triangle and the two interior
angles non-adjacent to the exterior one (the exterior is congruent to the sum of the two interior) and
the relation between an inscribed angle and the corresponding central angle (the inscribed is congruent
to a half of the central).

There were students who invented in their exams other solutions.

Problem 2. (5 pt) Construct a triangle △ABC given an angle congruent to its interior angle at
vertex A, a segment congruent to a radius of inscribed circle, and a segment congruent to the altitude
dropped from vertex B.

Solution. 1. Draw an angle congruent to the given angle. Mark the vertex of the angle as A.
2. Draw a line parallel to one of the sides of the angle at the distance equal to the given length h of
altitude, and intersecting the other side of the angle. Mark the intersection point of the line with the
other side as B.
3. Draw a line parallel to one of the sides of the angle at the distance equal to the given radius of
inscribed circle r, and intersecting the other side of the angle. 4. Construct the bisector of angle A.
5. Draw a circle of radius r centered at the intersection O of the lines drawn at steps 3 and 4.
6. Draw a line through B tangent to the circle constructed at step 5. (for this draw a circle with
diameter BO, draw a line through B and the intersection point of the two circles that is not on the
side of ∠A).
7. This line is the side BC of the triangle.
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A proof that the construction gives the required result is straightforward. The solution is unique. It
exists if 2r < h. If 2r > h, then the problem has no solution, while the construction gives a triangle
in which ∠A is an exterior angle, and r is the radius of an exscribed circle. If h = 2r, there is no
solution.
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Problem 3. (5 pt) Given a convex quadrilateral PQRS and a point O inside of PQRS, construct
a parallelogram ABCD such that A ∈ PQ, B ∈ QR, C ∈ RS and D ∈ SP and O is the intersection
point of diagonals AC and BD.

Solution. Construct a quadrilateral P ′Q′R′S′ symmetric about O to PQRS. If A exists it is
intersection point of PQ and R′S′. Indeed, A ∈ PQ should be symmetric to B ∈ RS about O,
because diagonals of a parallelogram meet at their midpoints. The point symmetric to A about O,
that is the intersection point of P ′Q′ with RS, is C. Similarly, the intersection point of QR and P ′S′

is B, and the point symmetric to B about O is D.
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There may be no solution, one solution, or infinitely many solutions, according to the number of
intersection points of the segments.

Problem 4. (9 pt) Find the interior angles of a triangle △ABC, in which median AM and altitude
AH divide angle ∠A into three equal angles (i.e., ∠CAH = ∠HAM = ∠MAB).
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Solution. In △ACM the segment AH is both altitude and bisector. Therefore, this is an isosceles
triangle and AH is also its median, i.e., |CH| = |HM |. Since AM is median of △ABC, |CM | = |MB|
and |HM | = 1

2
|MB|.

In △AHB, AM is a bisector. Hence AH

AB
= HM

MB
= 1

2
. This is a right triangle. A right triangle, in

which one of the legs is a half of the hypothenuse, has interior degrees 30◦ and 60◦. (It is a half of a
regular triangle.) Hence ∠B = 30◦, ∠A = 90◦ and ∠C = 60◦. �

One could just guess the angles without the arguments above, but a guess does not prove that there
is no triangles with other angles satisfying all the conditions of the problem.

Problem 5. (8 pt) Parallelepiped is a polyhedron bounded in the 3-space by three pairs of parallel
planes.

(1) Prove that each face of a parallelepiped is a parallelogram.
(2) Formulate properties of a parallelepiped similar to the properties of a parallelogram that were

studied in the course and prove one of them.

Solution. (1) Each face of a parallelepiped is bounded by intersection lines of the plane in which
the face is contained with two pairs of parallel planes. According to a well-known theorem, parallel
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planes intersect with a plane in parallel lines. Therefore the face is bounded by two pairs of parallel
lines. A parallelogram is defined as a quadrilateral with parallel opposite sides. �

(2) In this course the following properties of parallelograms were studied:

(1) In any parallelogram opposite sides are congruent.
(2) In any parallelogram opposite angles are congruent.
(3) In any parallelogram the diagonals bisects each other.

In a parallelepiped, there are two counter-parts to the notion of side: face and edge. For both of them
one can find counter-parts for property (1):
for faces: In a parallelepiped the opposite faces are parallelograms congruent to each other.
for edges: In a parallelepiped there are 12 edges divided into three groups. Each group consists of four
congruent edges parallel to each other.

In a parallelepiped, there are two counter-parts to the notion of angle: dihedral angles formed by
pairs of planes, and angles at vertices formed by triples of planes. For both of them one can find
counter-parts for property (2):
for dihedral angles: The dihedral angles at opposite parallel edges are congruent.
for angles at vertices: The angles at vertices at opposite vertices are congruent.
Both follow from symmetry: a parallelepiped is symmetric about a point, the point is the intersection
point of its diagonals (segments connecting the opposite vertices). By the way, this symmetry is a
counter-part for the symmetry of a parallelogram about the intersection point of its diagonals.

The symmetry gives a counter-part for bisecting of diagonals in a parallelogram. All diagonals of
a parallelepiped intersect in its center of symmetry. Here again by a diagonal I mean a segment
connecting the opposite vertices. There are 8 vertices and 4 diagonals.

Besides, a parallelepiped has 2-dimensional diagonals: plane sections passing through two pairs of
opposite vertices. These sections are parallelograms. Two such sections intersect each other either
along a common diagonal or along a common midline. In both cases, the intersection divides each of
the parallelogram sections into two congruent figures (triangles or parallelograms).

Of course, a solution was not assumed to be so long and include so many theorems.

Problem 6. (8 pt) Prove that the image of a circle under an inversion is either a circle or a line.

Solution. This is a couple of theorems presented in a lecture which can be found on the web page.
Here I reproduce this fragment of the lecture.

Obviously, a line passing through the center of an inversion is mapped by the inversion to itself.

Theorem 1. The image under an inversion of a line l not passing through the center O of the

inversion is a circle c passing through O and having at O a tangent line parallel to l.
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Proof. Drop the perpendicular OA to l from O. Let A be its intersection with l. Let A′ be the image
of A under the inversion. Take arbitrary point B ∈ l. Denote by B′ its image under the inversion.
By the definition of inversion |OA||OA′| = |OB||OB′|. Therefore OA

OB
= OB′

OA′ . By SAS-test for similar
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triangles, △OAB is similar to △OB′A′. Therefore ∠A′B′O = ∠OAB. The latter angle is right,
because OA ⊥ l. Hence B′ belongs to the circle with diameter OA′.

Vice versa, let us take any point B′ of the circle with diameter OA′. Draw a ray OB′ and denote the
intersection of this ray with l by B. Triangles △OB′A′ and △OAB similar by the AA-test. Hence
OB

OA
= OA′

OB′ and |OB||OB′| = |OA||OA′|. Therefore, B′ is the image of B under the inversion. �

Theorem 2. The image under an inversion of a circle c passing through the center O of the inversion

is a line which is parallel to the line tangent to c at O.

Proof. It follows from Theorem 1 , because an inversion is inverse to itself. �

Theorem 3. The image under an inversion of a circle c that does not pass through the center O of

the inversion is a circle c′ that is the image of c under a homothety centered at O.
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Proof. Let A be a point of circle c, and A′ be the image of A under the inversion. Denote by B the

second intersection point of the ray OA with c. By definition of inversion, |OA′| = R2

|OA| , where R2 is

the degree of inversion. On the other hand, |OA| = d2

|OB| , where d2 is the degree of O with respect to

the circle c. Recall that d does not depend on the points A and B, this is the length of segment of a
tangent line from O to c between O and the point of tangency.

Substituting this formula to the formula for |OA′|, we get

|OA′| =
R2

d2
|OB|.

This means that A′ is the image of B under the homothety with center O and ratio R2

d2
. Hence, the

image of c under the inversion is the image of c under this homothety. �

Problem 7. (12 pt) On sides of a fixed angle with vertex A, one chooses points B and C and draws
circles b and c passing through A and tangent to BC at points B and C, respectively.
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(1) Draw the image of this picture under an inversion centered at A.
(2) Prove that the angle between circles b and c that is marked on the picture above does not

depend on the choice of B and C.
(3) Find the relation of the angle between b and c to ∠A.

Solution. (1) An inversion centered at A maps lines AB and AC passing through A to themselves.
Denote the line BC by b. This line is mapped to the circle passing through A and the images of
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B and C. The circles b and c are mapped to lines. They pass through the images of points B and
C, respectively, and are tangent to the circle that is the image of line d. In the picture below the
configuration of images is shown. The images are marked with the same letters as the original figures.
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(3) Since the inversion preserves the angles, the angle between lines b and c is equal to the angle
between their pre-images, circles b and c. The relation between angles is easier to see in the image.
The angle ∠A is inscribed in circle d and equals the half of the central angle ∠BOC, where O is the
center of circle d.

B

C

c

A

b

d

O

The sides of the angle between b and c are tangent lines at B and C to circle d. They are perpendicular
to the sides of the angle ∠BOC. Therefore the angle between b and c is 2∠BAC.

Of course, the same result can be obtained in the original picture. Observe that the angle between
circles b and c, that is the angle between their tangent lines at the intersection point, does not depend
on the intersection point, and can be measured at A as the angle between the lines tangent to circles
b and c at A.
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These tangent lines are related to the tangent lines to the same circles at points B and C (which
coincide with each other: this is line BC = d). Namely, the tangent lines to b and c at A are the
images of BC under reflections about the diameters of circles b and c perpendicular to the chords
AB and AC, respectively. Thus one of these tangent lines can be obtained from the other one by the
composition of reflections in these diameters. The diameters are perpendicular to the sides of ∠BAC.
Therefore the composition of reflections in them is a rotation by the angle 2∠BAC. �

(2) Independence of the angle on position of B and C on the sides of ∠A follows from the calculation
above. �
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Certainly, it was not expected that all the arguments presented above will be necessary for the full
credit. It would suffice to provide one calculation of the angle. The calculation in the image of
inversion is more straightforward.

Problem 8. (5 pt) It is known that if a convex hexagon ABCDEF can be inscribed in a circle,
then the sum of interior angles at A, C and E is 360◦.

Show that the converse is not true. Even more, prove that it is impossible to recognize whether a
convex hexagon can be inscribed in a circle if only interior angles are known.

Solution. For any convex hexagon ABCDEF inscribed in a circle there exists a hexagon with
exactly the same interior angles which cannot be inscribed in a circle.

Indeed, choose one of the sides of an inscribed hexagon, say, EF . Draw a line parallel to EF ,
intersecting the hexagon and sufficiently close to EF so that it would separate EF from the other
vertices of the hexagon. Denote the intersection points of this line with DE and FA by E′ and F ′,
respectively. Cut out from ABCDEF the quadrilateral E′EFF ′.
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The new hexagon ABCDE′F ′ has the same interior angles as the original one. It cannot be inscribed
in a circle, because otherwise the circle would pass through ABC, but this would determine the old
circle, and the new vertices are not on it. �

There are many other ways to solve this problem.

The set of hexagons which can be inscribed in a circle is quite meager in the set of all hexagons. A
general hexagon depends on 12 real parameters (coordinates of the vertices), while a hexagon which
can be inscribed depends on 6+3 = 9 parameters, because the first 3 vertices depend on 6 parameters
and determine a circle, while each next vertex should be contained in this circle and therefore depends
on 1 parameter each. Therefore one non-degenerate equation on angles cannot describe the set of
hexagons that can be inscribed.

We showed above that interior angles are not good parameters, in terms of which restrictions can be
stated. On the other hand, the problem belongs to the similarity geometry: a hexagon can or cannot
be inscribed in a circle simultaneously with all hexagons similar to it. Therefore, it would be natural
to expect that the answer will be formulated in terms of some angles. This is correct, but interior
angles should be supplemented with angles between diagonals. Exercise: find the system of equations
on the angles between sides and diagonals which would describe the set of hexagons inscribed in a
circle.


