
Complements to the textbook
”Elementary Analysis” by Kenneth A.Ross

Oleg Viro

Preface

The author of any textbook makes choices. In the textbook by Kenneth
A.Ross, which we use in this course (MAT 319: Foundations of Analysis),
the choices made by the author are quite traditional. Some of them seems
old-fashioned. It is natural, because the book was written about 35 years ago.
The goal of these notes is to make remarks which complement the textbook.

Analysis of what? The main meaning of the word analysis, the word,
which gives the name to our subject, is an investigation of the component
parts of a whole and their relations in making up the whole and also the
abstract separation of a whole into its constituent parts in order to study the
parts and their relations. Its antonym is synthesis which means a combination
of parts into a complex whole.

In the textbook I could not find an answer to the question of what is
analyzed. The answer is well-known from other sources: here analysis stays
for analysis of functions. Functions are analyzed. More specifically, this
initial, most elementary, part of Analysis analyzes real valued functions of a
single real variable. A function of this type is a map defined on a subset S
of the set R of all real numbers and taking values in R.

The stage. All the actions take place on the real line, that is the set R
of all real numbers. This is a very rich environment, with lots of structures
intertwined. One can do many things with real numbers: perform the arith-
metic operations (addition, subtraction, multiplications, division), compare
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real numbers (i.e., say which of two numbers is greater) consider distances
between real numbers (for real numbers x and y, the distance between them
is |x−y|), etc. The inequalities and distances allow us to define a collection of
properties, which a function may have and which help to analyze a function.

Choices. The collection of the tools used in Analysis for analyzing a func-
tion is pretty standard. It does not change from book to book. However, due
to a great number of structures on R, they can be introduced in many ways.

A choice of a specific set of definitions depends on many reasons. One
may intend to optimize the length of proofs, facilitate understanding or ap-
plications (that is to make the exposition more conceptual and motivated or
directed towards calculation algorithms). The tastes of the author and the
way how the author studied the subject also influence the choice.

When we pass to analysis of more general functions, some of the structures
disappear, others stay available, but change their appearance. A desire to
facilitate understanding in the forthcoming parts of Analysis also are taken
into consideration.

The choices made by K.A.Ross in his textbook have allowed him to give
short simple proofs, however some of the definitions are left unmotivated and
cannot survive a transition to a more general environment.

Below I try to put the theory into the context of more natural and flexible
systems of notions. This is not original, but rather well known. I hope that
it makes the theory easier to understand and, on the other hand, prepare the
reader to forthcoming generalizations.

1 How to invent topological structures

One of the major directions in the analysis of a function is concentrating
on its local properties. This simplifies the task. Instead of dealing with
complicated global picture, we concentrate on a comparatively simple local
picture. Locally a real valued function of a real variable is quite simple
usually. If the function is continuous and differentiable (which are already
its local properties), then the values of its derivative and (if a more detailed
information is needed) the values of its high derivatives characterize the local
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behavior of the function.

The idea of localization can be applied in more complicated situations,
when the function to be studied is a function of several variables, the variables
may be non real, but complex, or have some other nature (say, may be ma-
trices, or functions). The development of the idea of localization, which was
motivated by these generalizations, also helped to understand better what is
happening in the original situation. It gave rise to important mathematical
structures. Often these structures are presented abstractly and dogmatically.
It makes them easier to study, but leaves aside questions about motivation.

In this section I try to show a genesis of the notion of topological space. I
do not try to follow the real history, but rather explain the genesis of ideas.
The section is not necessary for what follows. It may be more difficult to
read than the next sections. It is not required for success in exams. An
non-patient reader may want to jump to the next section 2 where a more
traditional formal text starts.

1.1 Local means “in a neighborhood”. The core of local con-
sideration is the notion of neighborhood . Informally speaking, a neighbor-
hood of a point is a set surrounding the point. It may be narrow or broad,
but it must contain all the points that are sufficiently close to the point under
consideration.

1.2 Neighborhoods on the line. Consider this notion in the stan-
dard environment of the real line. For a point p ∈ R (aka a real number),
a neighborhood of p is any set which contains all points that are sufficiently
close to p.

What does it mean “sufficiently close”? These words mean nothing, unless
we know the answer to the question: “Sufficiently for what?” Depending on
the answer, the meaning may vary.

But the words close to p (without the adjective sufficiently) mean at a small
distance from p. Therefore, independently of the purpose for being close to p,
the words sufficiently close to p may be characterized by the distance from p.
We may fix some positive distance ε (the Greek letter ε, epsilon, is traditional
for this context, although you are free to use any other letter) and say that
sufficiently close means at a distance less than ε.
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As soon as the choice of ε is made, a neighborhood should contain all the
points whose distance from p is less than ε. In other words, it should contain
the set {x ∈ R : |x − p| < ε} that is the interval (p − ε, p + ε) = {x ∈ R :
p − ε < x < p + ε}. Whether it contains more remote points or not, is not
essential, it will be called a neighborhood of p, anyway.

The choice of ε cannot be done once and for all. If we want to specify
ε, we speak about a ε-neighborhood, but often it is enough that a set is
an ε-neighborhood for whatever ε > 0. In other words, a set N ⊂ R is a
neighborhood of p ∈ R if there exists an interval (a, b) = {x ∈ R : a < x < b}
such that p ∈ (a, b) ⊂ N .

1.3 Three main properties of neighborhoods Since infor-
mally a neighborhood of p means the set which includes all points that are
sufficiently close to p, the following two properties seems to be natural:

1. The intersection of any two neighborhoods of p is a neighborhood of p.

2. Any set which contains a neighborhood of p is a neighborhood of p.

It would be natural to expect that a neighborhood is shared by neighbors. In
other words, a neighborhood N of a point p is a neighborhood for points suffi-
ciently close to p. “Sufficiently close” means “belonging to a neighborhood”.
This time it is probably a new neighborhood, more narrow neighborhood,
because the original one could contain quite remote points. Therefore the
statement: “a neighborhood is shared by neighbors” is transformed to a more
complicated and formal statement:

3. For any neighborhood N of p there is a neighborhood M ⊂ N such that
N is a neighborhood of each q ∈M .

It happens that most arguments about neighborhoods are based on the prop-
erties 1-3 formulated above. So far our consideration of neighborhoods was
based on a vague intuitive idea of close points and one example, a real line
R, in which it is realized rigorously. The same considerations stay valid as
long as a notion of distance is available. Furthermore, a reasonable notion
of neighborhood can be extended to situations without distances. The three
properties stated above hold true in all these situations and inspire to use
the same intuition and terminology.
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Topological spaces could be introduced as follows: one starts with an
arbitrary set X. Elements of X are called points of this space. For each
point p ∈ X, there is a distinguished collection of subsets of X containing
p. These subsets are called neighborhoods of p. It is required that these
collections satisfy the three properties stated above. That’s it. The set X
equipped with all this stuff is a topological space.

In literature (in particular, in most of textbooks) topological spaces intro-
duced a little bit differently. The difference is not important: the standard
definition of topological space which is presented below in Section 2.1, is
equivalent to the one that was just outlined. The only difference is that
instead of all the neighborhoods, only especially nice neighborhoods are dis-
tinguished. These especially nice neighborhoods are called open sets. In the
approach outlined above they can be described as follows: a set is open if it
is a neighborhood for each of its points.

As a primary notion used in the definition of topology, open sets are more
convenient than neighborhoods. Neighborhoods can be defined in terms of
open sets: a set N , which contains a point p, is a neighborhood of p if there
exists an open set U such that p ∈ U ∈ N . Of course, open sets are required
to have properties which implies the three properties of neighborhoods dis-
cussed above.

Now, after this informal introduction, we have to pass to formal defini-
tions. If for whatever reasons you had difficulties in this section, please, do
not try to overcome them now. Go ahead. A formal theory is easier. Revisit
this section later.

2 Spaces

One of the main notions in Analysis is the notion of continuous function.
It can be considered in the three levels of generality: on the real line R,
on metric spaces, and on topological spaces. It belongs to the third level,
i.e, to the most general setup of topological spaces. In this setup it has the
simplest form. On the other hand, this level is the most abstract. Many
mathematicians believe that it is difficult for a beginner. I think it depends
on the beginner and on the teacher.

In section 3 we will present continuity from all the three perspectives in
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the most concise form. In this section, we will study the underlying spaces.

2.1 Topological spaces Let X be a set. Let Ω be a collection of its
subsets such that:

1. the union of any collection of sets that are elements of Ω belongs to Ω;

2. the intersection of any finite collection of sets that are elements of Ω
belongs to Ω;

3. the empty set ∅ and the whole X belong to Ω.

Then

• Ω is called a topological structure or just a topology on X;

• the pair (X,Ω) is called a topological space;

• elements of X are called points of this topological space;

• elements of Ω are called open sets of the topological space (X,Ω).

The conditions in the definition above are the axioms of topological struc-
ture. Let us reformulate the axioms of topological structure using the words
open set wherever possible.

1. The union of any collection of open sets is open.

2. The intersection of any finite collection of open sets is open.

3. The empty set and the whole space are open.

There is a large collection of notions, which can be used in a topological
space. The notion of a neighborhood was already mentioned in section 1 in
a preliminary informal discussion of topological spaces.

Here is how they appear if we start with the notion of topological space.
Let X be a topological space, a ∈ X. A set N ⊂ X is said to be a neighbor-
hood of a, if there is an open set U such that a ∈ U ⊂ N .
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Obviously, any open set, which contains a point, is a neighborhood of this
point. A set N is a neighborhood of a point a if it contains a smaller open
neighborhood U of a.

Any open set is a neighborhood of each of its points.

Often one uses more narrow notion of neighborhood. Namely, by neigh-
borhoods one means only open neighborhoods.

Let X be a topological space, A ⊂ X and b ∈ X. Then

• b is called an interior point of A if it has a neighborhood, which is
contained in A;

• b is called an exterior point of A if it has a neighborhood, which is
disjoint with A (i.e., contained in X r A);

• b is called a boundary point of A if every of its neighborhoods has a
non-empty intersection both with A and X r A.

A set F ⊂ X is said to be closed in the space (X,Ω) if its complement
X r F is open (i.e., X r F ∈ Ω).

2.2 The simplest examples of topological spaces A discrete
topological space is a set with the topological structure which consists of all
the subsets of this set.

Let us check that this is a topological space, i.e., all axioms of topological
structure hold true.

What should we check? The first axiom reads here that the union of any
collection of subsets of X is a subset of X. Well, this is true, of course. If
A ⊂ X for each A ∈ Γ, then, obviously,

⋃
A∈Γ A ⊂ X. Exactly in the same

way we check the second axiom. Finally, we obviously have ∅ ⊂ X and
X ⊂ X.

An indiscrete topological space is the opposite example, in which the topo-
logical structure is the most meager. (It is also called trivial topology .) It
consists only of X and ∅.

This is a topological structure, is it not?
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Yes, it is. If one of the united sets is X, then the union is X, otherwise
the union is empty. If one of the sets to intersect is ∅, then the intersection
is ∅. Otherwise, the intersection equals X.

2.3 The real line Let X be the set R of all real numbers, Ω the set of
arbitrary unions of open intervals (a, b) with a, b ∈ R.

Exercise 2.1. Check whether Ω satisfies the axioms of topological structure.

First, show that
⋃
A∈ΓA ∩

⋃
B∈ΣB =

⋃
A∈Γ,B∈Σ(A ∩ B). Therefore, if A

and B are intervals, then the right-hand side is a union of intervals.

This is the topological structure which is always meant when R is consid-
ered as a topological space (unless another topological structure is explicitly
specified). This space is usually called the real line, and the structure is
referred to as the canonical or standard topology on R.

2.4 Metric spaces A function d : X ×X → R≥0 = {x ∈ R : x ≥ 0 }
is called a metric (or distance function) on X if

1. d(x, y) = 0 iff x = y;

2. d(x, y) = d(y, x) for any x, y ∈ X;

3. d(x, y) ≤ d(x, z) + d(z, y) for any x, y, z ∈ X.

The pair (X, d), where d is called a metric on X, is a metric space. Con-
dition (3) is called the triangle inequality .

The notion of metric originated in geometry, and it brings geometric no-
tions and intuition into other contexts. It particular, elements of X are called
points, no matter what is their original nature.

Exercise 2.2. Prove that the function

d : X ×X → R≥0 : (x, y) 7→

{
0 if x = y,

1 if x 6= y

is a metric for any set X.

Exercise 2.3. Prove that R× R→ R≥0 : (x, y) 7→ |x− y| is a metric.
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Let us solve this exercise. The triangle inequality in this case takes the
form |x−y| ≤ |x−z|+ |z−y|. Putting a = x−z and b = z−y, we transform
the triangle inequality into the well-known inequality |a+ b| ≤ |a|+ |b|.
Exercise 2.4. Prove that the plane with the usual distance between points is
a metric space.

The metrics of Exercise 2.3 is always meant when R is considered as a
metric space, unless another metric is specified explicitly.

Let (X, d) be a metric space, a ∈ X a point, r a positive real number.
Then the sets

Br(a) = {x ∈ X : d(a, x) < r }, (1)

Dr(a) = {x ∈ X : d(a, x) ≤ r }, (2)

Sr(a) = {x ∈ X : d(a, x) = r } (3)

are called, respectively, the open ball , closed ball (or disk), and sphere of the
space (X, d) with center a and radius r.

The word ball was borrowed from a specific metric space, the three dimen-
sional Euclidean space, but then it is used in all other metric spaces. There
it may have quite different look. Say, on the line R, an open ball Br(a) is
the interval (a− r, a+ r). The common definition and properties justify the
common name.

For a metric space (X, d), denote by Ωd the collection of sets which contain
each point together with a ball centered at it. In other words, a set U ⊂ X
belongs to Ωd if for any a ∈ U there exists r ∈ R+ such that Br(a) ⊂ U .

Theorem 2.1. Ωd is a topological structure.

The topological structure Ωd is called the metric topology . We also say
that it is generated by the metric d. This topological structure is always
meant whenever the metric space is regarded as a topological space (for
instance, when we speak about open and closed sets, neighborhoods, etc. in
this space).

Exercise 2.5. Prove that any open ball Br(a) is open in the metric topology.

Exercise 2.6. Prove that a set is open in metric topology if and only if it is
a union of open balls.
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Exercise 2.7. Prove that the standard topological structure in R introduced
in Section 2.3 is generated by the metric (x, y) 7→ |x− y|.
Exercise 2.8. Prove that in a metric space a set N is a neighborhood of a if
and only if there exists a ball with center at a, which is contained in N .

Exercise 2.9. Prove that in a metric space a set N is a neighborhood of a if
and only if there exists a real number ε > 0 such that Bε(a) ⊂ N .

Yet another reformulation:

Exercise 2.10. In a metric space, N is a neighborhood of a if and only if there
exists a real number ε > 0 such that x ∈ N for any x ∈ X with ρ(x, a) < ε.

2.5 Subspace topology Let (X,Ω) be a topological space, A ⊂ X.
Denote by ΩA the collection of sets A∩V , where V ∈ Ω: ΩA = {A∩V : V ∈
Ω}.

Theorem 2.2. The collection ΩA is a topological structure in A.

Proof. We must check that ΩA satisfies the axioms of topological structure.
Consider the first axiom. Let Γ ⊂ ΩA be a collection of sets in ΩA. We
must prove that

⋃
U∈Γ U ∈ ΩA. For each U ∈ Γ, find UX ∈ Ω such that

U = A ∩ UX . This is possible due to the definition of ΩA. Transform the
union under consideration:

⋃
U∈Γ U =

⋃
U∈Γ(A ∩ UX) = A ∩

⋃
U∈Γ UX . The

union
⋃
U∈Γ UX belongs to Ω (i.e., is open in X) as the union of sets open

in X. (Here we use the fact that Ω, being a topology on X, satisfies the
first axiom of topological structure.) Therefore, A∩

⋃
U∈Γ UX belongs to ΩA.

Similarly we can check the second axiom. The third axiom: A = A∩X, and
∅ = A ∩∅.

The pair (A,ΩA) is a subspace of the space (X,Ω). The collection ΩA is
the subspace topology , the relative topology , or the topology induced on A by
Ω, and its elements are said to be sets open in A.

Exercise 2.11. Prove that the canonical topology on R1 coincides with the
topology induced on R1 as on a subspace of the plane.

Proof. Let us prove that a subset of R1 is open in the relative topology iff it
is open in the canonical topology.
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The intersection of an open disk with R1 is either an open interval or the
empty set. Any open set in the plane is a union of open disks. Therefore, the
intersection of any open set of the plane with R1 is a union of open intervals.
Thus, it is open in R1.

Conversely, an open set in R1 is a union of open intervals, each open
interval is the intersection with R1 of the open disk with the same center and
radius.

Theorem 2.3. A set F is closed in a subspace A ⊂ X iff F is the intersection
of A and a closed subset of X.

Proof. Assume that F is closed in A. Then the complement ArF is open in
A, i.e., ArF = A∩U , where U is open in X. What closed set cuts F on A? It
is cut byXrU . Indeed, we have A∩(XrU) = Ar(A∩U) = Ar(ArF ) = F .
The converse is proved similarly.

Exercise 2.12. If a subset of a subspace is open (respectively, closed) in the
ambient space, then it is also open (respectively, closed) in the subspace.

Sets that are open in a subspace are not necessarily open in the ambient
space.

Theorem 2.4. The unique open set in R1 which is also open in R2 is ∅.

Proof. No disk of R2 is contained in R.

However, the following is true.

Theorem 2.5. An open set of an open subspace is open in the ambient space,
i.e., if A ∈ Ω, then ΩA ⊂ Ω.

Proof. If A ∈ Ω and B ∈ ΩA, then B = A ∩ U , where U ∈ Ω. Therefore,
B ∈ Ω is the intersection of two sets, A and U , belonging to Ω.

The same relation holds true for closed sets. Sets that are closed in the
subspace are not necessarily closed in the ambient space. However, the fol-
lowing is true.

Theorem 2.6. Closed sets of a closed subspace are closed in the ambient
space.
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Proof. Act as in the proof of Theorem 2.5, but use Theorem 2.3 instead of
the definition of relative topology.

Theorem 2.7 (Transitivity of induced topology). Let (X,Ω) be a to-
pological space, X ⊃ A ⊃ B. Then (ΩA)B = ΩB, i.e., the topology induced
on B by the relative topology of A coincides with the topology induced on B
directly from X.

Proof. The core of the proof is the equality (U ∩ A) ∩ B = U ∩ B. It holds
true because B ⊂ A, and we apply it to U ∈ Ω. When U runs through
Ω, the right-hand side of the equality (U ∩ A) ∩ B = U ∩ B runs through
ΩB, while the left-hand side runs through (ΩA)B. Indeed, elements of ΩB are
intersections U∩B with U ∈ Ω, and elements of (ΩA)B are intersections V ∩B
with V ∈ ΩA, but V , in turn, being an element of ΩA, is the intersection
U ∩ A with U ∈ Ω.

3 Continuous maps

3.1 Definition and basic properties Let X and Y be topological
spaces. A map f : X → Y is said to be continuous if the preimage of each
open subset of Y is an open subset of X.

Recall that the preimage of a subset B ⊂ Y under a map f : X → Y is
{a ∈ X : f(a) ∈ B} (in words: this is the set of all the elements of X which
are mapped by f to elements of B). The preimage of B under f is denoted
by f−1(B).

Theorem 3.1. A map is continuous iff the preimage of each closed set is
closed.

Proof. Let f : X → Y be a map. If f : X → Y is continuous, then, for each
closed set F ⊂ Y , the set X r f−1(F ) = f−1(Y r F ) is open, and therefore
f−1(F ) is closed. To prove the converse statement, exchange the words open
and closed in the above argument.

Theorem 3.2. The identity map of any topological space is continuous.

Theorem 3.3. Any constant map (i.e., a map with one-point image) is
continuous.
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Proof. The preimage of any set under a constant map either is empty or
coincides with the whole space.

Exercise 3.1. Let Ω1 and Ω2 be two topological structures in a space X.
Prove that the identity map

id : (X,Ω1)→ (X,Ω2)

is continuous iff Ω2 ⊂ Ω1.

Exercise 3.2. Let f : X → Y be a continuous map. Find out whether or not
it is continuous with respect to

1. a larger topology on X and the same topology on Y ,

2. a smaller topology on X and the same topology on Y ,

3. a larger topology on Y and the same topology on X,

4. a smaller topology on Y and the same topology on X.

Exercise 3.3. Let X be a discrete space, Y an arbitrary space.
1) Which maps X → Y are continuous?
2) Which maps Y → X are continuous for each topology on Y ?

Exercise 3.4. Let X be an indiscrete space, Y an arbitrary space.
2) Which maps Y → X are continuous?
1) Which maps X → Y are continuous for each topology on Y ?

Theorem 3.4. Let A be a subspace of X. Then the inclusion in : A→ X is
continuous.

Proof. If a set U is open in X, then its preimage in−1(U) = U ∩A is open in
A by the definition of the induced topology.

Exercise 3.5. The topology ΩA induced on A ⊂ X by the topology of X is
the smallest topology on A with respect to which the inclusion in : A → X
is continuous.

Theorem 3.5. A composition of continuous maps is continuous.
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Proof. Let f : X → Y and g : Y → Z be continuous maps. We must
show that for every U ⊂ Z that is open in Z its preimage (g ◦ f)−1(U) =
f−1(g−1(U)) is open in X. The set g−1(U) is open in Y by continuity of g.
In turn, its preimage f−1(g−1(U)) is open in X by the continuity of f .

Recall that the restriction of a map f : X → Y to A ⊂ X is the map
f |A : A→ Y defined by formula (f |A)(x) = x for x ∈ A.

Theorem 3.6. A restriction of a continuous map is continuous.

Proof. Let X, Y be topological spaces, f : X → Y be a continuous map and
A ⊂ X. Then (f |A)−1(V ) = f−1(V ) ∩ A.

3.2 Local Continuity A map f from a topological space X to a
topological space Y is said to be continuous at a point a ∈ X if the preimage
of every neighborhood of f(a) is a neighborhood of a.

Theorem 3.7. A map f : X → Y is continuous iff it is continuous at each
point of X.

Proof. Assume that f is continuous. Let us prove that f is continuous at
every a ∈ X. Let N be a neighborhood of f(a). By the definition of neigh-
borhood, it contains an open neighborhood: there exists an open set U such
that f(a) ∈ U ⊂ N . Then a ∈ f−1(U) ⊂ f−1(N). The set f−1(U) is open in
X, because U is open in Y and f is continuous. Thus f−1(N) contains open
set f−1(U) which contains a. Therefore f−1(N) is a neighborhood of a.

Now let us assume that f is continuous at every point a ∈ X and prove
that f is continuous. We must check that the preimage of each open set is
open. Let V ⊂ Y be an open set in Y . Take a ∈ f−1(V ). By continuity of
f at a, the set f−1(V ) is a neighborhood of a. Hence, there exists an open
set Ua such that a ∈ Ua ⊂ f−1(V ). Take such Ua for each a ∈ f−1(V ) and
unite all of them. The union U = ∪a∈f−1(V )Ua is an open set (as a union of
open sets), it is contained in f−1(V ) as each Ua is contained, and it contains
f−1(V ), as each a ∈ f−1(V ) belongs to its Ua. Thus f−1(V ) = U and is an
open set.

Theorem 3.8. Let X and Y be two metric spaces. A map f : X → Y is
continuous at a point a ∈ X iff each ball centered at f(a) contains the image
of a ball centered at a.
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Proof. Let as assume that f is continuous at a point a ∈ X. Let Bε(f(a))
be a ball centered at f(a). As an open set, it is a neighborhood of f(a) in Y .
By local continuity of f at a, its preimage f−1Bε(f(a)) is a neighborhood of
a. Hence, there exists a ball Bδ(a) ⊂ f−1Bε(f(a)). Applying f to both sides
of this inclusion formula, we obtain f(Bδ(a)) ⊂ Bε(f(a)).

Let us assume that each ball Bε(f(a)) contains the image of a ball Bδ(a)
and prove that then f is continuous at a. Let N be a neighborhood of f(a).
In a metric space Y this means that there exists a ball Bε(f(a)) ⊂ N . By
our assumption, Bε(f(a)) contains the image of some ball Bδ(a). Therefore,
f−1(N) ⊃ Bδ(a) is a neighborhood of a.

Theorem 3.9. Let X and Y be two metric spaces. A map f : X → Y is
continuous at a point a ∈ X iff for every ε > 0 there exists δ > 0 such that
for every point x ∈ X the inequality ρ(x, a) < δ implies ρ

(
f(x), f(a)

)
< ε.

Proof. The condition “for every point x ∈ X the inequality ρ(x, a) < δ
implies ρ (f(x), f(a)) < ε” means that f(Bδ(a)) ⊂ Bε(f(a)). Now, apply the
preceding Theorem 3.8.

Theorem 3.9 means that the definition of continuity usually studied in
Calculus, when applicable, is equivalent to the definition of continuity at a
point stated in terms of topological structures.

3.3 Sequential continuity Let X be a topological space, sn ∈ X a
sequence of its points, s ∈ X. The sequence sn is said to converge to s, if
for any neighborhood U of s there exists N ∈ N such that sn ∈ U for any
n > N . The convergence of sn to s is denoted by sn →n→∞ s or s = limn sn.

A map f : X → Y is said to sequentially continuous at a ∈ X if for any
sequence an ∈ X, which converges to a, the sequence f(an) converges to
f(a).

A map f : X → Y is said to be sequentially continuous if for each b ∈ X
and each sequence an ∈ X converging to b the sequence f(an) converges to
f(b). In other words, f : X → Y is sequentially continuous if it is sequentially
continuous at each point.

Theorem 3.10. Any map f : X → Y continuous at a ∈ X is sequentially
continuous at a.
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Proof. let f : X → Y be a continuous map, let a ∈ X, and let an → a in X.
We must prove that f(an) → f(a) in Y . Let V ⊂ Y be a neighborhood of
f(a). Since f is continuous, f−1(V ) ⊂ X is a neighborhood of a, and since
an → a, we have there exists N ∈ N such that an ∈ f−1(V ) for n > N . Then
also f(an) ∈ V for n > N , as required.

Corollary 1. Any continuous map is sequentially continuous.

Theorem 3.11. Let X be a metric space, Y a topological space and a ∈ X.
If f : X → Y is sequentially continuous at a then f is continuous at a.

Proof. Assume the contrary, that f is not continuous at a. Then there
exists a neighborhood V of f(a) such that its preimage f−1(V ) is not a
neighborhood for a. Then Bδ(a) 6⊂ f−1(V ) for each δ > 0. In particular,
B 1

n
(a) 6⊂ f−1(V ) for each n ∈ N. Hence, there exists an ∈ B 1

n
(a) r f−1(V )

for each n ∈ N. The sequence an converges to a, but f(an) 6∈ V for any n.
Hence f(an) does not converge to f(a). This contradicts the assumption of
sequential continuity of f at a.

Corollary 2. For a map X → Y of a metric space X to an arbitrary topo-
logical space Y continuity and sequential continuity are equivalent.
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