Linear Algebra

Oleg Viro

02/20/2018

Many students have not learned the basic notions of Linear Algebra.

Many students have not learned the basic notions of Linear Algebra.

For example, confuse list of vectors and a list of numbers (element of \mathbb{F}^n),

• Many students have not learned the basic notions of Linear Algebra.

For example, confuse list of vectors and a list of numbers (element of \mathbb{F}^n), individual linear combination $a_1v_1+\cdots+a_nv_n$ and $\mathrm{span}(v_1,\ldots,v_n)$.

- Many students have not learned the basic notions of Linear Algebra.
- There are defects in logic.

- Many students have not learned the basic notions of Linear Algebra.
- There are defects in logic.

For example,

" v_1, \ldots, v_n are linearly dependent if

 $a_1v_1 + \cdots + a_nv_n = 0 \implies$ at least one of a_i does not equal 0."

- Many students have not learned the basic notions of Linear Algebra.
- There are defects in logic.
- Remember: writing obviously irrelevant things that you remember is not rewarded.

- Many students have not learned the basic notions of Linear Algebra.
- There are defects in logic.
- Remember: writing obviously irrelevant things that you remember is not rewarded.

The graders consider introducing negative credits for a clear demonstration of illiteracy.

Prove or give a counterexample:

If v_1 , v_2 , v_3 , v_4 is a basis of vector space V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$, $v_4 \notin U$, then v_1, v_2 is a basis of U.

Prove or give a counterexample:

If v_1 , v_2 , v_3 , v_4 is a basis of vector space V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$, $v_4 \notin U$, then v_1, v_2 is a basis of U.

Counterexample: $U = \text{span}(v_1, v_2, v_3 + v_4) \neq \text{span}(v_1, v_2)$.

Prove or give a counterexample:

If v_1 , v_2 , v_3 , v_4 is a basis of vector space V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$, $v_4 \notin U$, then v_1, v_2 is a basis of U.

Counterexample: $U = \text{span}(v_1, v_2, v_3 + v_4) \neq \text{span}(v_1, v_2)$.

 $v_3 + v_4 \not\in \operatorname{span}(v_1, v_2)$,

because otherwise $v_3 + v_4 = av_1 + bv_2$

which would contradict to linear independence of v_1 , v_2 , v_3 , v_4 .

Let w_1, \ldots, w_m be a linearly independent list of vectors in a vector space V and $u \in V$. What values can the dimension of $\mathrm{span}(w_1 + u, \ldots, w_m + u)$ take?

Answer: m-1 or m.

Let w_1, \ldots, w_m be a linearly independent list of vectors in a vector space V and $u \in V$. What values can the dimension of $\mathrm{span}(w_1 + u, \ldots, w_m + u)$ take?

Answer: m-1 or m. $\dim \operatorname{span}(w_1+u,\ldots,w_m+u) \leq m \text{ , because } \dim \operatorname{span}(v_1,\ldots,v_k) \leq k \text{ .}$

Let w_1, \ldots, w_m be a linearly independent list of vectors in a vector space V and $u \in V$. What values can the dimension of $\mathrm{span}(w_1 + u, \ldots, w_m + u)$ take?

Answer: m-1 or m. $\dim \operatorname{span}(w_1+u,\ldots,w_m+u) \leq m \text{ , because } \dim \operatorname{span}(v_1,\ldots,v_k) \leq k \text{ .}$ Let us prove that $m-1 \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u)$.

Let w_1, \ldots, w_m be a linearly independent list of vectors in a vector space V and $u \in V$. What values can the dimension of $\mathrm{span}(w_1 + u, \ldots, w_m + u)$ take?

Answer: m-1 or m.

 $\dim \operatorname{span}(w_1+u,\ldots,w_m+u) \leq m$, because $\dim \operatorname{span}(v_1,\ldots,v_k) \leq k$.

Let us prove that $m-1 \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u)$.

For any $u \in V$, $w_k - w_m = w_k + u - (w_m + u) \in \operatorname{span}(w_1 + u, \dots, w_m + u)$.

Answer: m-1 or m.

Let w_1, \ldots, w_m be a linearly independent list of vectors in a vector space V and $u \in V$. What values can the dimension of $\mathrm{span}(w_1 + u, \ldots, w_m + u)$ take?

 $\dim \operatorname{span}(w_1+u,\dots,w_m+u) \leq m \text{ , because } \dim \operatorname{span}(v_1,\dots,v_k) \leq k$ Let us prove that $m-1 \leq \dim \operatorname{span}(w_1+u,\dots,w_m+u)$. For any $u \in V$, $w_k-w_m=w_k+u-(w_m+u) \in \operatorname{span}(w_1+u,\dots,w_m+u)$.

Therefore $\operatorname{span}(w_1 - w_m, \dots, w_{m-1} - w_m) \subset \operatorname{span}(w_1 + u, \dots, w_m + u)$ and $\dim \operatorname{span}(w_1 - w_m, \dots, w_{m-1} - w_m) \leq \dim \operatorname{span}(w_1 + u, \dots, w_m + u)$

```
Answer: m-1 or m. \dim \operatorname{span}(w_1+u,\ldots,w_m+u) \leq m \text{ , because } \dim \operatorname{span}(v_1,\ldots,v_k) \leq k \text{ .} Let us prove that m-1 \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u). For any u \in V , w_k-w_m=w_k+u-(w_m+u) \in \operatorname{span}(w_1+u,\ldots,w_m+u) . Therefore \operatorname{span}(w_1-w_m,\ldots,w_{m-1}-w_m) \subset \operatorname{span}(w_1+u,\ldots,w_m+u) and \dim \operatorname{span}(w_1-w_m,\ldots,w_{m-1}-w_m) \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u) Vectors w_1-w_m,\ldots,w_{m-1}-w_m are linearly independent, because a non-trivial linear relation x_1(w_1-w_m)+\cdots+x_{m-1}(w_{m-1}-w_m)=0 would imply linear dependence of w_1,\ldots,w_m.
```

```
Answer: m-1 or m. \dim \operatorname{span}(w_1+u,\ldots,w_m+u) \leq m, because \dim \operatorname{span}(v_1,\ldots,v_k) \leq k. Let us prove that m-1 \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u). For any u \in V, w_k-w_m=w_k+u-(w_m+u) \in \operatorname{span}(w_1+u,\ldots,w_m+u). Therefore \operatorname{span}(w_1-w_m,\ldots,w_{m-1}-w_m) \subset \operatorname{span}(w_1+u,\ldots,w_m+u) and \dim \operatorname{span}(w_1-w_m,\ldots,w_{m-1}-w_m) \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u) Vectors w_1-w_m,\ldots,w_{m-1}-w_m are linearly independent, because a non-trivial linear relation x_1(w_1-w_m)+\cdots+x_{m-1}(w_{m-1}-w_m)=0 would imply linear dependence of w_1,\ldots,w_m. Hence \dim \operatorname{span}(w_1-w_m,\ldots,w_{m-1}-w_m)=m-1 \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u).
```

```
Answer: m-1 or m.
\dim \operatorname{span}(w_1+u,\ldots,w_m+u) \leq m, because \dim \operatorname{span}(v_1,\ldots,v_k) \leq k.
Let us prove that m-1 \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u).
For any u \in V, w_k - w_m = w_k + u - (w_m + u) \in \operatorname{span}(w_1 + u, \dots, w_m + u).
Therefore \operatorname{span}(w_1 - w_m, \dots, w_{m-1} - w_m) \subset \operatorname{span}(w_1 + u, \dots, w_m + u) and
\dim \operatorname{span}(w_1 - w_m, \dots, w_{m-1} - w_m) \le \dim \operatorname{span}(w_1 + u, \dots, w_m + u)
                         Vectors w_1 - w_m, \ldots, w_{m-1} - w_m are linearly independent,
because a non-trivial linear relation x_1(w_1-w_m)+\cdots+x_{m-1}(w_{m-1}-w_m)=0
would imply linear dependence of w_1, \ldots, w_m .
Hence \dim \text{span}(w_1 - w_m, \dots, w_{m-1} - w_m) = m - 1 \leq \dim \text{span}(w_1 + u, \dots, w_m + u).
If u=0, then \dim \operatorname{span}(w_1+u,\ldots,w_m+u)=m.
```

```
Answer: m-1 or m.
\dim \operatorname{span}(w_1+u,\ldots,w_m+u) \leq m, because \dim \operatorname{span}(v_1,\ldots,v_k) \leq k.
Let us prove that m-1 \leq \dim \operatorname{span}(w_1+u,\ldots,w_m+u).
For any u \in V, w_k - w_m = w_k + u - (w_m + u) \in \text{span}(w_1 + u, \dots, w_m + u).
Therefore \operatorname{span}(w_1 - w_m, \dots, w_{m-1} - w_m) \subset \operatorname{span}(w_1 + u, \dots, w_m + u) and
\dim \operatorname{span}(w_1 - w_m, \dots, w_{m-1} - w_m) \le \dim \operatorname{span}(w_1 + u, \dots, w_m + u)
                        Vectors w_1 - w_m, \ldots, w_{m-1} - w_m are linearly independent,
because a non-trivial linear relation x_1(w_1-w_m)+\cdots+x_{m-1}(w_{m-1}-w_m)=0
would imply linear dependence of w_1, \ldots, w_m.
Hence \dim \text{span}(w_1 - w_m, \dots, w_{m-1} - w_m) = m - 1 \leq \dim \text{span}(w_1 + u, \dots, w_m + u).
If u=0, then \dim \operatorname{span}(w_1+u,\ldots,w_m+u)=m.
If u = -w_m, then span(w_1 + u, ..., w_m + u) = span(w_1 - w_m, ..., w_{m-1} - w_m)
        and dim span(w_1 + u, \ldots, w_m + u) = m - 1.
```

(a) Let $U=\{p\in\mathcal{P}_3(\mathbb{F})\mid p(2)=p(1)\}$. Find a basis of U .

(a) Let $U=\{p\in\mathcal{P}_3(\mathbb{F})\mid p(2)=p(1)\}$. Find a basis of U .

Solution: (x-1)(x-2), x(x-1)(x-2), 1.

(a) Let $U = \{ p \in \mathcal{P}_3(\mathbb{F}) \mid p(2) = p(1) \}$. Find a basis of U.

Solution: (x-1)(x-2), x(x-1)(x-2), 1.

(b) Extend the basis in part (a) to a basis of $\mathcal{P}_3(\mathbb{F})$.

(a) Let $U=\{p\in\mathcal{P}_3(\mathbb{F})\mid p(2)=p(1)\}$. Find a basis of U .

Solution: (x-1)(x-2), x(x-1)(x-2), 1.

(b) Extend the basis in part (a) to a basis of $\mathcal{P}_3(\mathbb{F})$.

Solution: x.

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n)=x_1u_1+\cdots+x_nu_n$$

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n) = x_1u_1 + \cdots + x_nu_n$$

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n)=x_1u_1+\cdots+x_nu_n$$

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

For any $v \in V$, $\exists (x_1, \ldots, x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n$.

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1, \dots, x_n) = x_1 u_1 + \dots + x_n u_n$$

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

For any $v \in V$, $\exists (x_1, \ldots, x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n$.

 T_u is injective \iff u is a linear independent list

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n) = x_1u_1 + \cdots + x_nu_n$$

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

For any $v \in V$, $\exists (x_1, \ldots, x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n$.

 T_u is injective \iff u is a linear independent list

$$\operatorname{null}(T_u) = 0 \iff (x_1 u_1 + \dots + x_n u_n = 0 \implies \forall i \ x_i = 0)$$

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1, \dots, x_n) = x_1 u_1 + \dots + x_n u_n$$

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

For any $v \in V$, $\exists (x_1, \ldots, x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n$.

 T_u is injective \iff u is a linear independent list

$$\operatorname{null}(T_u) = 0 \iff (x_1 u_1 + \dots + x_n u_n = 0 \implies \forall i \ x_i = 0)$$

 T_u is an isomorphism $\iff u$ is a basis of V

A linear map $T_u: \mathbb{F}^n \to V \iff$ a list u of n vectors in V

$$T_u(x_1,\ldots,x_n)=x_1u_1+\cdots+x_nu_n$$

$$T_u(\mathbb{F}^n) = V \iff V = \operatorname{span}(u)$$

For any $v \in V$, $\exists (x_1, \ldots, x_n) \in \mathbb{F}^n$ $v = x_1u_1 + \cdots + x_nu_n$.

 T_u is injective \iff u is a linear independent list

$$\operatorname{null}(T_u) = 0 \iff (x_1 u_1 + \dots + x_n u_n = 0 \implies \forall i \ x_i = 0)$$

 T_u is an isomorphism $\iff u$ is a basis of V

Theorem. Each finite-dimensional vector space V is isomorphic to $\mathbb{F}^{\dim V}$.

Linear map vs. its values on basis

3.5 Linear maps and basis of domain

Let v_1, \ldots, v_n be a basis of V and $w_1, \ldots, w_n \in W$.

3.5 Linear maps and basis of domain

```
Let v_1,\ldots,v_n be a basis of V and w_1,\ldots,w_n\in W. Then \exists a unique linear map T:V\to W such that Tv_j=w_j for j=1,\ldots,n.
```

3.5 Linear maps and basis of domain

```
Let v_1,\ldots,v_n be a basis of V and w_1,\ldots,w_n\in W. Then \exists a unique linear map T:V\to W such that Tv_j=w_j for j=1,\ldots,n.
```

Proof. Existense.

```
Consider linear maps T_v:\mathbb F^n	o V and T_w:\mathbb F^n	o W, where v=(v_1,\dots,v_n) and w=(w_1,\dots,w_n).
```

3.5 Linear maps and basis of domain

```
Let v_1,\ldots,v_n be a basis of V and w_1,\ldots,w_n\in W. Then \exists a unique linear map T:V\to W such that Tv_j=w_j for j=1,\ldots,n.
```

Proof. Existense.

```
Consider linear maps T_v:\mathbb F^n	o V and T_w:\mathbb F^n	o W, where v=(v_1,\dots,v_n) and w=(w_1,\dots,w_n).
```

 T_v is invertible, because v is a basis of V.

3.5 Linear maps and basis of domain

```
Let v_1,\ldots,v_n be a basis of V and w_1,\ldots,w_n\in W. Then \exists a unique linear map T:V\to W such that Tv_j=w_j for j=1,\ldots,n.
```

Proof. Existense.

Consider linear maps $T_v:\mathbb F^n o V$ and $T_w:\mathbb F^n o W$, where $v=(v_1,\dots,v_n)$ and $w=(w_1,\dots,w_n)$.

 T_v is invertible, because v is a basis of V .

The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$.

3.5 Linear maps and basis of domain

```
Let v_1,\ldots,v_n be a basis of V and w_1,\ldots,w_n\in W. Then \exists a unique linear map T:V\to W such that Tv_j=w_j for j=1,\ldots,n.
```

Proof. Existense.

Consider linear maps $T_v:\mathbb{F}^n o V$ and $T_w:\mathbb{F}^n o W$, where $v=(v_1,\dots,v_n)$ and $w=(w_1,\dots,w_n)$.

 T_v is invertible, because v is a basis of V .

The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$.

3.5 Linear maps and basis of domain

Let v_1,\ldots,v_n be a basis of V and $w_1,\ldots,w_n\in W$. Then \exists a unique linear map $T:V\to W$ such that $Tv_j=w_j$ for $j=1,\ldots,n$.

Proof. Existense.

Consider linear maps $T_v:\mathbb{F}^n o V$ and $T_w:\mathbb{F}^n o W$, where $v=(v_1,\dots,v_n)$ and $w=(w_1,\dots,w_n)$.

 T_v is invertible, because v is a basis of V .

The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$.

Uniqueness. Let $T:V \to W$ be any linear map with $Tv_j = w_j$ for $j=1,\ldots,n$.

3.5 Linear maps and basis of domain

Let v_1,\ldots,v_n be a basis of V and $w_1,\ldots,w_n\in W$. Then \exists a unique linear map $T:V\to W$ such that $Tv_j=w_j$ for $j=1,\ldots,n$.

Proof. Existense.

Consider linear maps $T_v:\mathbb{F}^n o V$ and $T_w:\mathbb{F}^n o W$, where $v=(v_1,\dots,v_n)$ and $w=(w_1,\dots,w_n)$.

 T_v is invertible, because v is a basis of V .

The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$.

Uniqueness. Let $T:V\to W$ be any linear map with $Tv_j=w_j$ for $j=1,\ldots,n$. Then $\mathbb{F}^n\xrightarrow{T_v}V\xrightarrow{T}W$ maps $e_j\mapsto v_j\mapsto w_j$.

3.5 Linear maps and basis of domain

Let v_1,\ldots,v_n be a basis of V and $w_1,\ldots,w_n\in W$. Then \exists a unique linear map $T:V\to W$ such that $Tv_j=w_j$ for $j=1,\ldots,n$.

Proof. Existense.

Consider linear maps $T_v:\mathbb{F}^n o V$ and $T_w:\mathbb{F}^n o W$, where $v=(v_1,\dots,v_n)$ and $w=(w_1,\dots,w_n)$.

 T_v is invertible, because v is a basis of V .

The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$.

Uniqueness. Let $T:V\to W$ be any linear map with $Tv_j=w_j$ for $j=1,\ldots,n$. Then $\mathbb{F}^n\xrightarrow{T_v}V\xrightarrow{T}W$ maps $e_j\mapsto v_j\mapsto w_j$. Hence $T_v\circ T=T_w$

3.5 Linear maps and basis of domain

Let v_1,\ldots,v_n be a basis of V and $w_1,\ldots,w_n\in W$. Then \exists a unique linear map $T:V\to W$ such that $Tv_j=w_j$ for $j=1,\ldots,n$.

Proof. Existense.

Consider linear maps $T_v:\mathbb{F}^n o V$ and $T_w:\mathbb{F}^n o W$, where $v=(v_1,\dots,v_n)$ and $w=(w_1,\dots,w_n)$.

 T_v is invertible, because v is a basis of V .

The map $V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$ maps $v_j \mapsto e_j \mapsto w_j$.

Uniqueness. Let $T:V \to W$ be any linear map with $Tv_j = w_j$ for $j=1,\ldots,n$.

Then $\mathbb{F}^n \xrightarrow{T_v} V \xrightarrow{T} W$ maps $e_j \mapsto v_j \mapsto w_j$. Hence $T_v \circ T = T_w$ and $T = T_v^{-1} \circ T_w$.

3.5 Linear maps and basis of domain

Let v_1,\ldots,v_n be a basis of V and $w_1,\ldots,w_n\in W$. Then \exists a unique linear map $T:V\to W$ such that $Tv_j=w_j$ for $j=1,\ldots,n$.

Proof. Existense.

Consider linear maps $T_v:\mathbb{F}^n o V$ and $T_w:\mathbb{F}^n o W$, where $v=(v_1,\dots,v_n)$ and $w=(w_1,\dots,w_n)$.

 T_v is invertible, because v is a basis of V .

The map
$$V \xrightarrow{T_v^{-1}} \mathbb{F}^n \xrightarrow{T_w} W$$
 maps $v_j \mapsto e_j \mapsto w_j$.

Uniqueness. Let $T:V \to W$ be any linear map with $Tv_j = w_j$ for $j=1,\ldots,n$.

Then
$$\mathbb{F}^n \xrightarrow{T_v} V \xrightarrow{T} W$$
 maps $e_j \mapsto v_j \mapsto w_j$. Hence $T_v \circ T = T_w$ and $T = T_v^{-1} \circ T_w$.

Reformulation. Any map $\{v_1,\ldots,v_n\}\to W$ from a basis of V to a vector space is extended uniquely to a linear map $V\to W$.

In the preceding lecture we have learned that:

ullet Any finite-dimensional vector space V over $\mathbb F$ is isomorphic to $\mathbb F^n$ with $n=\dim V$.

In the preceding lecture we have learned that:

- ullet Any finite-dimensional vector space V over $\mathbb F$ is isomorphic to $\mathbb F^n$ with $n=\dim V$.
- ullet Any basis $u=(u_1,\ldots,u_n)$ of V determines an isomorphism $T_u:\mathbb{F}^n o V:(x_1\ldots,x_n)\mapsto x_1u_1+\ldots x_nu_n$.

In the preceding lecture we have learned that:

- ullet Any finite-dimensional vector space V over $\mathbb F$ is isomorphic to $\mathbb F^n$ with $n=\dim V$.
- Any basis $u=(u_1,\ldots,u_n)$ of V determines an isomorphism $T_u:\mathbb{F}^n \to V:(x_1\ldots,x_n)\mapsto x_1u_1+\ldots x_nu_n$.
- ullet Any isomorphism $T:\mathbb{F}^n o V$ is T_u , where $u=(Te_1,\ldots,Te_n)$.

In the preceding lecture we have learned that:

- Any finite-dimensional vector space V over $\mathbb F$ is isomorphic to $\mathbb F^n$ with $n=\dim V$.
- Any basis $u=(u_1,\ldots,u_n)$ of V determines an isomorphism $T_u:\mathbb{F}^n\to V:(x_1\ldots,x_n)\mapsto x_1u_1+\ldots x_nu_n$.
- ullet Any isomorphism $T:\mathbb{F}^n o V$ is T_u , where $u=(Te_1,\ldots,Te_n)$.

Definition. An isomorphism $T_u: \mathbb{F}^n \to V$ is called the **coordinate system** in V determined by basis $u = (u_1, \dots, u_n)$.

In the preceding lecture we have learned that:

- Any finite-dimensional vector space V over $\mathbb F$ is isomorphic to $\mathbb F^n$ with $n=\dim V$.
- Any basis $u=(u_1,\ldots,u_n)$ of V determines an isomorphism $T_u:\mathbb{F}^n \to V:(x_1\ldots,x_n)\mapsto x_1u_1+\ldots x_nu_n$.
- ullet Any isomorphism $T:\mathbb{F}^n o V$ is T_u , where $u=(Te_1,\ldots,Te_n)$.

Definition. An isomorphism $T_u:\mathbb{F}^n\to V$ is called the **coordinate system** in V determined by basis $u=(u_1,\ldots,u_n)$. For a vector $v\in V$, the coordinates x_1,\ldots,x_n of $T_u^{-1}(v)$ are called the **coordinates** of v in the basis u.

In the preceding lecture we have learned that:

- ullet Any finite-dimensional vector space V over $\mathbb F$ is isomorphic to $\mathbb F^n$ with $n=\dim V$.
- Any basis $u=(u_1,\ldots,u_n)$ of V determines an isomorphism $T_u:\mathbb{F}^n \to V:(x_1\ldots,x_n)\mapsto x_1u_1+\ldots x_nu_n$.
- ullet Any isomorphism $T:\mathbb{F}^n o V$ is T_u , where $u=(Te_1,\ldots,Te_n)$.

Definition. An isomorphism $T_u:\mathbb{F}^n\to V$ is called the **coordinate system** in V determined by basis $u=(u_1,\ldots,u_n)$. For a vector $v\in V$, the coordinates x_1,\ldots,x_n of $T_u^{-1}(v)$ are called the **coordinates** of v in the basis u.

The coordinates x_1, \ldots, x_n of v in a basis u_1, \ldots, u_n are determined by the equality $v = x_1u_1 + \cdots + x_nu_n$.

In the preceding lecture we have learned that:

- ullet Any finite-dimensional vector space V over $\mathbb F$ is isomorphic to $\mathbb F^n$ with $n=\dim V$.
- Any basis $u=(u_1,\ldots,u_n)$ of V determines an isomorphism $T_u:\mathbb{F}^n \to V:(x_1\ldots,x_n)\mapsto x_1u_1+\ldots x_nu_n$.
- ullet Any isomorphism $T:\mathbb{F}^n o V$ is T_u , where $u=(Te_1,\ldots,Te_n)$.

Definition. An isomorphism $T_u:\mathbb{F}^n\to V$ is called the **coordinate system** in V determined by basis $u=(u_1,\ldots,u_n)$. For a vector $v\in V$, the coordinates x_1,\ldots,x_n of $T_u^{-1}(v)$ are called the **coordinates** of v in the basis u.

The coordinates x_1, \ldots, x_n of v in a basis u_1, \ldots, u_n are determined by the equality $v = x_1 u_1 + \cdots + x_n u_n$.

The equality $v=x_1u_1+\cdots+x_nu_n$ is called a **decomposition** of v in the basis u_1,\ldots,u_n .

A linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u = (u_1, \dots, u_p) = (Te_1, \dots, Te_p)$

A linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

A linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

A linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, ..., A_{q,i})$ for each i = 1, ..., p.

A linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, \dots, x_p) = x_1 T e_1 + \dots + x_p T e_p$$

A linear map $T:\mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

= $x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$

A linear map $T:\mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

$$= x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$$

$$= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, ..., A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$$

A linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

$$= x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$$

$$= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, ..., A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$$

Let us think of elements of \mathbb{F}^m as columns of m numbers.

A linear map $T: \mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

$$= x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$$

$$= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, ..., A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$$

Let us think of elements of \mathbb{F}^m as columns of m numbers. Then

$$T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} =$$

A linear map $T:\mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

$$= x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$$

$$= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, ..., A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$$

Let us think of elements of \mathbb{F}^m as columns of m numbers. Then

$$T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p \\ A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,p}x_p \\ \vdots \\ A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p \end{pmatrix} =$$

A linear map $T:\mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

$$= x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$$

$$= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, ..., A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$$

Let us think of elements of \mathbb{F}^m as columns of m numbers. Then

$$T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p \\ A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,p}x_p \\ \vdots \\ A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p \end{pmatrix} = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,p} \\ A_{2,1} & A_{2,2} & \dots & A_{2,p} \\ \vdots & \vdots & \dots & \vdots \\ A_{q,1} & A_{q,2} & \dots & A_{q,p} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}.$$

A linear map $T:\mathbb{F}^p \to \mathbb{F}^q$ is defined by the list $u=(u_1,\ldots,u_p)=(Te_1,\ldots,Te_p)$ by formula $T(x_1,\ldots,x_p)=x_1u_1+\cdots+x_pu_p=x_1Te_1+\cdots+x_pTe_p$.

Recall that $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, ..., $e_p = (0, \dots, 0, 1)$.

Let $Te_i = (A_{1,i}, \dots, A_{q,i})$ for each $i = 1, \dots, p$. Then

$$T(x_1, ..., x_p) = x_1 T e_1 + \dots + x_p T e_p$$

$$= x_1(A_{1,1}, ..., A_{q,1}) + x_2(A_{1,2}, ..., A_{q,2}) + \dots + x_p(A_{1,p}, ..., A_{q,p})$$

$$= (A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p, ..., A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p).$$

Let us think of elements of \mathbb{F}^m as columns of m numbers. Then

$$T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,p}x_p \\ A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,p}x_p \\ \vdots \\ A_{q,1}x_1 + A_{q,2}x_2 + \dots + A_{q,p}x_p \end{pmatrix} = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,p} \\ A_{2,1} & A_{2,2} & \dots & A_{2,p} \\ \vdots & \vdots & \dots & \vdots \\ A_{q,1} & A_{q,2} & \dots & A_{q,p} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}.$$

Conclusion: any linear map $\mathbb{F}^p \to \mathbb{F}^q$ is multiplication by a $q \times p$ -matrix.

3.30 **Definition.** Let q and p denote positive integers.

A p-by-q matrix A is a rectangular array of elements of F with q rows and p columns:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}.$$

3.30 **Definition.** Let q and p denote positive integers.

A p-by-q matrix A is a rectangular array of elements of F with q rows and p columns:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}.$$

 $A_{j,k}$ is the entry in row j and column k.

3.30 **Definition.** Let q and p denote positive integers.

A p-by-q matrix A is a rectangular array of elements of F with q rows and p columns:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}.$$

 $A_{j,k}$ is the entry in row j and column k.

3.32 **Definition.** Let $T \in \mathcal{L}(V,W)$, $v = (v_1,\ldots,v_p)$ a basis in V, $w = (w_1,\ldots,w_q)$ a basis in W.

3.30 **Definition.** Let q and p denote positive integers.

A p-by-q matrix A is a rectangular array of elements of F with q rows and p columns:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}.$$

 $A_{j,k}$ is the entry in row j and column k.

3.32 **Definition.** Let $T\in \mathcal{L}(V,W)$, $v=(v_1,\ldots,v_p)$ a basis in V, $w=(w_1,\ldots,w_q)$ a basis in W. The matrix of T with respect to these bases is the q-by-p matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by $Tv_k=A_{1,k}w_1+\cdots+A_{q,k}w_q$.

3.30 **Definition.** Let q and p denote positive integers.

A p-by-q matrix A is a rectangular array of elements of F with q rows and p columns:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}.$$

 $A_{j,k}$ is the entry in row j and column k.

3.32 **Definition.** Let $T \in \mathcal{L}(V,W)$, $v = (v_1,\ldots,v_p)$ a basis in V, $w = (w_1,\ldots,w_q)$ a basis in W. The matrix of T with respect to these bases is the q-by-p matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by $Tv_k = A_{1,k}w_1 + \cdots + A_{q,k}w_q$.

$$(Tv_1, \dots, Tv_p) = (w_1, \dots, w_q) \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

3.30 **Definition.** Let q and p denote positive integers.

A p-by-q matrix A is a rectangular array of elements of F with q rows and p columns:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}.$$

 $A_{j,k}$ is the entry in row j and column k.

3.32 **Definition.** Let $T \in \mathcal{L}(V,W)$, $v = (v_1,\ldots,v_p)$ a basis in V, $w = (w_1,\ldots,w_q)$ a basis in W. The matrix of T with respect to these bases is the q-by-p matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by $Tv_k = A_{1,k}w_1 + \cdots + A_{q,k}w_q$.

$$(Tv_1, \dots, Tv_p) = (w_1, \dots, w_q) \begin{pmatrix} A_{1,1} & \dots & A_{1,p} \\ \vdots & & \vdots \\ A_{q,1} & \dots & A_{q,p} \end{pmatrix}$$

The k th column of $\mathcal{M}(T)$ is formed of the coordinates of the k th basis vector v_k .

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$.

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$. $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \cdots + B_{n,k}v_n) =$

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$. $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \cdots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \cdots + B_{n,k}Sv_n$

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$. $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \cdots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \cdots + B_{n,k}Sv_n$ $= B_{1,k}(A_{1,1}w_1 + A_{2,1}w_2 + \cdots + A_{m,1}w_m) + B_{2,k}(A_{1,2}w_1 + A_{2,2}w_2 + \cdots + A_{m,2}w_m) + \cdots + B_{n,k}(A_{1,n}w_1 + A_{2,n}w_2 + \cdots + A_{m,n}w_m)$

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$. $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \dots + B_{n,k}Sv_n \\ = B_{1,k}(A_{1,1}w_1 + A_{2,1}w_2 + \dots + A_{m,1}w_m) \\ + B_{2,k}(A_{1,2}w_1 + A_{2,2}w_2 + \dots + A_{m,2}w_m) \\ + \dots \\ + B_{n,k}(A_{1,n}w_1 + A_{2,n}w_2 + \dots + A_{m,n}w_m) \\ = \sum_{r=1}^n A_{1,r}B_{r,k}w_1 + \sum_{r=1}^n A_{2,r}B_{r,k}w_2 + \dots + \sum_{r=1}^n A_{m,r}B_{r,k}w_m$

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$. $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \dots + B_{n,k}Sv_n = B_{1,k}(A_{1,1}w_1 + A_{2,1}w_2 + \dots + A_{m,1}w_m) + B_{2,k}(A_{1,2}w_1 + A_{2,2}w_2 + \dots + A_{m,2}w_m) + \dots + B_{n,k}(A_{1,n}w_1 + A_{2,n}w_2 + \dots + A_{m,n}w_m) = \sum_{r=1}^{n} A_{1,r}B_{r,k}w_1 + \sum_{r=1}^{n} A_{2,r}B_{r,k}w_2 + \dots + \sum_{r=1}^{n} A_{m,r}B_{r,k}w_m$ $= (w_1 \dots w_m) \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \vdots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix} \begin{pmatrix} B_{1,k} \\ \vdots \\ B_{n,k} \end{pmatrix}$

3.43 The matrix of the composition of linear maps

If $T:U\to V$ and $S:V\to W$ are linear maps, then $\mathcal{M}(ST)=\mathcal{M}(S)\mathcal{M}(T)$.

Proof. Let u, v, w be bases of U, V, W, respectively, and $\mathcal{M}(S) = A$, $\mathcal{M}(T) = B$. $(ST)u_k = S(B_{1,k}v_1 + B_{2,k}v_2 + \dots + B_{n,k}v_n) = B_{1,k}Sv_1 + B_{2,k}Sv_2 + \dots + B_{n,k}Sv_n$ $=B_{1,k}(A_{1,1}w_1 + A_{2,1}w_2 + \cdots + A_{m,1}w_m)$ $+B_{2,k}(A_{1,2}w_1+A_{2,2}w_2+\cdots+A_{m,2}w_m)$ $+\dots$ $+B_{n,k}(A_{1,n}w_1 + A_{2,n}w_2 + \dots + A_{m,n}w_m)$ $= \sum_{r=1}^n A_{1,r}B_{r,k}w_1 + \sum_{r=1}^n A_{2,r}B_{r,k}w_2 + \dots + \sum_{r=1}^n A_{m,r}B_{r,k}w_m$ $= (w_1 \dots w_m) \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix} \begin{pmatrix} B_{1,k} \\ \vdots \\ B_{n,k} \end{pmatrix}$ Hence $(STu_1 \dots STu_p) = (w_1 \dots w_m) \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix} \begin{pmatrix} B_{1,1} & \dots & B_{1,p} \\ \vdots & & \vdots \\ B_{n,1} & \dots & B_{n,p} \end{pmatrix}$

Linear maps $T_1:V_1\to W_1$, $T_2:V_2\to W_2$ are called **isomorphic** if there exist isomorphisms $R:V_2\to V_1$ and $L:W_1\to W_2$ such that $T_2=L\circ T_1\circ R$.

$$V_1 \xrightarrow{T_1} W_1$$

$$R \uparrow \qquad \downarrow L$$

$$V_2 \xrightarrow{T_2} W_2$$

Linear maps $T_1:V_1\to W_1$, $T_2:V_2\to W_2$ are called **isomorphic** if there exist isomorphisms $R:V_2\to V_1$ and $L:W_1\to W_2$ such that $T_2=L\circ T_1\circ R$.

Another name: right-left equivalent or R-L-equivalent.

$$V_1 \xrightarrow{T_1} W_1$$

$$R \uparrow \qquad \downarrow L$$

$$V_2 \xrightarrow{T_2} W_2$$

Linear maps $T_1:V_1\to W_1$, $T_2:V_2\to W_2$ are called **isomorphic** if there exist isomorphisms $R:V_2\to V_1$ and $L:W_1\to W_2$ such that $T_2=L\circ T_1\circ R$.

Another name: right-left equivalent or R-L-equivalent.

$$V_1 \xrightarrow{T_1} W_1$$

$$R \uparrow \qquad \downarrow L$$

$$V_2 \xrightarrow{T_2} W_2$$

R-L-equivalence is an equivalence.

Linear maps $T_1:V_1\to W_1$, $T_2:V_2\to W_2$ are called **isomorphic** if there exist isomorphisms $R:V_2\to V_1$ and $L:W_1\to W_2$ such that $T_2=L\circ T_1\circ R$.

Another name: right-left equivalent or R-L-equivalent.

$$V_1 \xrightarrow{T_1} W_1$$

$$R \uparrow \qquad \downarrow L$$

$$V_2 \xrightarrow{T_2} W_2$$

R-L-equivalence is an equivalence.

Proof. Reflexivity: $T = L \circ T \circ R$ for $R = \mathrm{id}_V$, $L = \mathrm{id}_W$ and any $T : V \to W$.

Linear maps $T_1:V_1\to W_1$, $T_2:V_2\to W_2$ are called **isomorphic** if there exist isomorphisms $R:V_2\to V_1$ and $L:W_1\to W_2$ such that $T_2=L\circ T_1\circ R$.

Another name: right-left equivalent or R-L-equivalent.

$$V_1 \xrightarrow{T_1} W_1$$

$$R \uparrow \qquad \downarrow L$$

$$V_2 \xrightarrow{T_2} W_2$$

R-L-equivalence is an equivalence.

Proof. Reflexivity: $T = L \circ T \circ R$ for $R = \mathrm{id}_V$, $L = \mathrm{id}_W$ and any $T : V \to W$. Symmetry: If $T_2 = L \circ T_1 \circ R$, then $L^{-1} \circ T_2 \circ R^{-1} = T_1$.

Linear maps $T_1:V_1\to W_1$, $T_2:V_2\to W_2$ are called **isomorphic** if there exist isomorphisms $R:V_2\to V_1$ and $L:W_1\to W_2$ such that $T_2=L\circ T_1\circ R$.

Another name: right-left equivalent or R-L-equivalent.

$$V_1 \xrightarrow{T_1} W_1$$

$$R \uparrow \qquad \downarrow L$$

$$V_2 \xrightarrow{T_2} W_2$$

R-L-equivalence is an equivalence.

Proof. Reflexivity: $T = L \circ T \circ R$ for $R = \mathrm{id}_V$, $L = \mathrm{id}_W$ and any $T: V \to W$.

Symmetry: If $T_2 = L \circ T_1 \circ R$, then $L^{-1} \circ T_2 \circ R^{-1} = T_1$.

Transitivity: If $T_2 = L_1 \circ T_1 \circ R_1$ and $T_3 = L_2 \circ T_2 \circ R_2$, then

$$T_3 = L_2 \circ T_2 \circ R_2 = L_2 \circ L_1 \circ T_1 \circ R_1 \circ R_2$$
.

Linear maps $T_1:V_1\to W_1$, $T_2:V_2\to W_2$ are called **isomorphic** if there exist isomorphisms $R:V_2\to V_1$ and $L:W_1\to W_2$ such that $T_2=L\circ T_1\circ R$.

Another name: right-left equivalent or R-L-equivalent.

$$V_1 \xrightarrow{T_1} W_1$$

$$R \uparrow \qquad \downarrow L$$

$$V_2 \xrightarrow{T_2} W_2$$

R-L-equivalence is an equivalence.

Proof. Reflexivity: $T = L \circ T \circ R$ for $R = \mathrm{id}_V$, $L = \mathrm{id}_W$ and any $T: V \to W$.

Symmetry: If $T_2 = L \circ T_1 \circ R$, then $L^{-1} \circ T_2 \circ R^{-1} = T_1$.

Transitivity: If $T_2 = L_1 \circ T_1 \circ R_1$ and $T_3 = L_2 \circ T_2 \circ R_2$, then

 $T_3 = L_2 \circ T_2 \circ R_2 = L_2 \circ L_1 \circ T_1 \circ R_1 \circ R_2$

R-L-equivalent maps $T_1:V_1 o W_1$, $T_2:V_1 o W_2$ have

- ullet isomorphic domains V_1 and V_2 ,
- ullet isomorphic target spaces W_1 and W_2 ,
- ullet isomorphic null spaces $\operatorname{null} T_1$ and $\operatorname{null} T_2$ and
- ullet isomorphic ranges range T_1 and range T_2 .

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V, W)$.

Then $\operatorname{range} T$ is finite-dimensional and $\operatorname{dim} V = \operatorname{dim} \operatorname{null} T + \operatorname{dim} \operatorname{range} T$.

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. Let v_1, \ldots, v_p be a basis of null T.

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. Let v_1, \ldots, v_p be a basis of null T. Extend it to a basis $v_1, \ldots, v_p, u_1, \ldots, u_q$ of V.

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. Let v_1, \ldots, v_p be a basis of $\operatorname{null} T$. Extend it to a basis $v_1, \ldots, v_p, u_1, \ldots, u_q$ of V. Thus $\dim \operatorname{null} T = p$ and $\dim V = p + q$.

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. Let v_1,\ldots,v_p be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Thus $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U.

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. Let v_1,\ldots,v_p be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Thus $\dim\operatorname{null} T=p$ and $\dim V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U$.

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Proof. Let v_1,\ldots,v_p be a basis of $\operatorname{null} T$. Extend it to a basis $v_1,\ldots,v_p,u_1,\ldots,u_q$ of V. Thus $\operatorname{dim} \operatorname{null} T=p$ and $\operatorname{dim} V=p+q$. Denote $\operatorname{span}(u_1,\ldots,u_q)$ by U. Clearly, $V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U$. The restriction $T|_U$ is injective, because $U\cap\operatorname{null} T=0$.

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

```
Proof. Let v_1,\ldots,v_p be a basis of \operatorname{null} T. Extend it to a basis v_1,\ldots,v_p,u_1,\ldots,u_q of V. Thus \dim\operatorname{null} T=p and \dim V=p+q. Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0. Hence Tu_1,\ldots,Tu_p is a basis of \operatorname{range} T|_U.
```

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

```
Proof. Let v_1,\ldots,v_p be a basis of \operatorname{null} T. Extend it to a basis v_1,\ldots,v_p,u_1,\ldots,u_q of V. Thus \dim\operatorname{null} T=p and \dim V=p+q. Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0. Hence Tu_1,\ldots,Tu_p is a basis of \operatorname{range} T|_U. Notice, \operatorname{range} T=T(V)=T(\operatorname{null} T\oplus U)=0+T(U)=\operatorname{range} T|_U.
```

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

```
Proof. Let v_1,\ldots,v_p be a basis of \operatorname{null} T. Extend it to a basis v_1,\ldots,v_p,u_1,\ldots,u_q of V. Thus \dim\operatorname{null} T=p and \dim V=p+q. Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0. Hence Tu_1,\ldots,Tu_p is a basis of \operatorname{range} T|_U. Notice, \operatorname{range} T=T(V)=T(\operatorname{null} T\oplus U)=0+T(U)=\operatorname{range} T|_U. Therefore \dim\operatorname{range} T=\dim\operatorname{range} T|_U=q.
```

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

```
Proof. Let v_1,\ldots,v_p be a basis of \operatorname{null} T. Extend it to a basis v_1,\ldots,v_p,u_1,\ldots,u_q of V. Thus \operatorname{dim} \operatorname{null} T=p and \operatorname{dim} V=p+q. Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0. Hence Tu_1,\ldots,Tu_p is a basis of \operatorname{range} T|_U. Notice, \operatorname{range} T=T(V)=T(\operatorname{null} T\oplus U)=0+T(U)=\operatorname{range} T|_U. Therefore \operatorname{dim}\operatorname{range} T=\operatorname{dim}\operatorname{range} T|_U=q. Hence \operatorname{dim} V=p+q=\operatorname{dim}\operatorname{null} T+\operatorname{dim}\operatorname{range} T
```

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V,W)$. Then $\operatorname{range} T$ is finite-dimensional and $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

```
Proof. Let v_1,\ldots,v_p be a basis of \operatorname{null} T. Extend it to a basis v_1,\ldots,v_p,u_1,\ldots,u_q of V. Thus \dim\operatorname{null} T=p and \dim V=p+q. Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0. Hence Tu_1,\ldots,Tu_p is a basis of \operatorname{range} T|_U. Notice, \operatorname{range} T=T(V)=T(\operatorname{null} T\oplus U)=0+T(U)=\operatorname{range} T|_U. Therefore \dim\operatorname{range} T=\dim\operatorname{range} T|_U=q. Hence \dim V=p+q=\dim\operatorname{null} T+\dim\operatorname{range} T
```

3.22 Fundamental Theorem of Linear Maps.

Let V be a finite-dimensional vector space and $T\in\mathcal{L}(V,W)$. Then $\mathrm{range}\,T$ is finite-dimensional and $\dim V=\dim\mathrm{null}\,T+\dim\mathrm{range}\,T$.

```
Proof. Let v_1, \ldots, v_p be a basis of \operatorname{null} T. Extend it to a basis
v_1,\ldots,v_p,u_1,\ldots,u_q of V. Thus \dim \operatorname{null} T=p and \dim V=p+q.
Denote \operatorname{span}(u_1,\ldots,u_q) by U. Clearly, V=\operatorname{span}(v_1,\ldots,v_p)\oplus\operatorname{span}(u_1,\ldots,u_q)
=\operatorname{null} T\oplus U. The restriction T|_U is injective, because U\cap\operatorname{null} T=0.
Hence Tu_1, \ldots, Tu_p is a basis of range T|_U. Notice, range T = T(V) = T(\text{null } T \oplus U)
=0+T(U)=\mathrm{range}\,T|_U . Therefore \dim\mathrm{range}\,T=\dim\mathrm{range}\,T|_U=q . Hence
\dim V = p + q = \dim \operatorname{null} T + \dim \operatorname{range} T
The proof above provides classification of linear maps
                                 between finite-dimensional vector spaces up to R-L equivalences.
Extend Tu_1, \ldots, Tu_p to a basis Tu_1, \ldots, Tu_p, w_1, \ldots, w_r of W.
This basis and the bases constructed above define isomorphisms
                                    R:\mathbb{F}^p\oplus\mathbb{F}^q	o V and L:\mathbb{F}^q\oplus\mathbb{F}^r	o W such that
L^{-1}\circ T\circ R:\mathbb{F}^p\oplus \mathbb{F}^q 	o \mathbb{F}^q\oplus \mathbb{F}^r is 0 on \mathbb{F}^p and maps identically \mathbb{F}^q	o \mathbb{F}^q.
```