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e Many students have not learned the basic notions of Linear Algebra.

For example, confuse list of vectors and a list of numbers (element of F"),

individual linear combination aiv1 + - -+ + a,v, and span(vy,...,v,).
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Impressions about Midterm 1 Lecture 8

e Many students have not learned the basic notions of Linear Algebra.

e There are defects in logic.

For example,
“v1,...,v, are linearly dependent if
av1 + -+ a,v, =0 — at least one of a; does not equal 0."
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Linear Algebra
Impressions about Midterm 1 Lecture 8

e Many students have not learned the basic notions of Linear Algebra.
e There are defects in logic.
e Remember: writing obviously irrelevant things that you remember is not rewarded.

The graders consider introducing negative credits for a clear demonstration of illiteracy.
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Linear Algebra

Midterm Problem 3 Lecture 8

Prove or give a counterexample:
If vq, vo, v3, v4 is a basis of vector space V' and U is a subspace of V' such that
vi,v9 € U and vz € U, vy € U, then vy1,vs is a basis of U .

3/13



Linear Algebra

Midterm Problem 3 Lecture 8

Prove or give a counterexample:
If vq, vo, v3, v4 is a basis of vector space V' and U is a subspace of V' such that
vi,v9 € U and vz € U, vy € U, then vy1,vs is a basis of U .

Counterexample: U = span(vy,vs,v3 + v4) # span(vy, va) .

3/13



Linear Algebra

Midterm Problem 3 Lecture 8

Prove or give a counterexample:
If vq, vo, v3, v4 is a basis of vector space V' and U is a subspace of V' such that
vi,v9 € U and vz € U, vy € U, then vy1,vs is a basis of U .

Counterexample: U = span(vy,vs,v3 + v4) # span(vy, va) .

v3 + vg & span(vy, va),
because otherwise v3 + v4 = avy + bus
which would contradict to linear independence of vy, vo, v3, v4. ®
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Midterm Problem 4 Lecture 8
Let w1q,...,w,, be a linearly independent list of vectors in a vector space V
and u € V. What values can the dimension of span(w; + u,...,w,, + u) take?

Answer: m —1 or m.

dim span(wi + u, ..., w, +u) < m, because dimspan(vy,...,vx) < k.
Let us prove that m — 1 < dim span(wy + u, . .., Wy, + u).
Forany u eV, wip — wy, = wg +u — (W, +u) € span(wy + U, ..., Wy, + ) .
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Let w1q,...,w,, be a linearly independent list of vectors in a vector space V
and u € V. What values can the dimension of span(w; + u,...,w,, + u) take?
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would imply linear dependence of wq, ..., w,, .
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Let w1q,...,w,, be a linearly independent list of vectors in a vector space V
and u € V. What values can the dimension of span(w; + u,...,w,, + u) take?

Answer: m —1 or m.
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(@) Let U ={p € P3(F) | p(2) = p(1)}. Find a basis of U .

5 /13



Linear Algebra

Midterm Problem 5 Lecture 8

(@) Let U ={p € P3(F) | p(2) = p(1)}. Find a basis of U .

Solution: (z —1)(z —2), z(x —1)(x —2), 1.

5 /13



Linear Algebra

Midterm Problem 5 Lecture 8
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(b) Extend the basis in part (a) to a basis of P3(IF).
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Midterm Problem 5 Lecture 8

(@) Let U ={p € P3(F) | p(2) = p(1)}. Find a basis of U .

Solution: (z —1)(z —2), z(x —1)(x —2), 1.

(b) Extend the basis in part (a) to a basis of P3(IF).

Solution: .
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. . Linear Algebra
Linear maps " — VV vs. lists of vectors Lecture 8

A linear map 7, : " — V «~ alist u of n vectorsin V

To(T1,...,Tn) =T1Uy + - + TpUn

T.(F") =V <= V =span(u)

Forany v eV, J(z1,...,x,) €EF" v=21u1 + - + TpUy, .

T, isinjective <= wu is a linear independent list

null(7,) =0 <= (riu1+ - +zu, =0 = Vizx; =0)

T,, is an isomorphism <= wu is a basis of V

Theorem. Each finite-dimensional vector space V is isomorphic to Fd4imV
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3.5 Linear maps and basis of domain
Let v1,...,v,, beabasisof V and wy,...,w, € W.
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Proof. Existense.
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where v = (v1,...,v,) and w = (wy,...,w,).
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7/13



Linear Algebra
Lecture 8

Linear map vs. its values on basis

3.5 Linear maps and basis of domain
Let v1,...,v, beabasisof V and wq,...,w, €W . Then
3 a unique linear map 7": V — W such that Tv; = w; for j=1,...,n.

Proof. Existense.
Consider linear maps 7, : " —V and T, : F* — W,
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Let v1,...,v, beabasisof V and wq,...,w, €W . Then
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Then F7 L v Low maps e; — vj — w;. Hence T, 0T =T,
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Linear map vs. its values on basis

3.5 Linear maps and basis of domain
Let v1,...,v, beabasisof V and wq,...,w, €W . Then
3 a unique linear map 7": V — W such that Tv; = w; for j=1,...,n.

Proof. Existense.
Consider linear maps 7, : " —V and T, : F* — W,

where v = (v1,...,v,) and w = (w1, ..., wy,) .
T, is invertible, because v is a basis of V.
The map V£>IF”T—“’>W maps v; > e; > w; . n
Uniqueness. Let T': V. — W be any linear map with Tv; = w; for j=1,...,n.
Then F7 L v Low maps e; — vj — w;. Hence T, 0T =T,
and T =T,'0T,. m
Reformulation. Any map {vy,...,v,} — W from a basis of V' to a vector space

Is extended uniquely to a linear map V — W .
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e Any basis u = (uy,...,u,) of V determines an isomorphism
Ty :F" =V (xy...,2,) — T1U1 + ... Ty, .

e Any isomorphism T :F* —V is T, , where u= (Tey,...,Te,).

Definition.  An isomorphism T, : F"* — V s called
the coordinate system in V' determined by basis v = (u1,...,u,).

For a vector v € V', the coordinates x1,...,x, of T, !(v) are called
the coordinates of v in the basis u .

The coordinates z1,...,x, of v in a basis uy,...,u, are determined by the equality
V=XT1UL + "+ TplUp .

The equality v = x1uq1 + - - - + z,,u, Is called
a decomposition of v in the basis uy,...,u, .
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(wi,...,wy) abasisin W . The matrix of 1" with respect to these bases is the g-by-p
matrix M(T') whose entries A;j are defned by Tvy = A; pwy + -+ + Ay rwy .

Al 1 .. ALp

Y

(Tvy,...,Tv,) = (wi,...,w,) : :
Agr .. Agyp

The kth column of M(T) is formed of the coordinates of the kth basis vector vy .
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If T:U —V and S:V — W are linear maps, then M(ST) = M(S)M(T).
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Linear maps 17 : Vi — Wy, 15 : Vo — W5 are called isomorphic if there exist
isomorphisms R : Vo — V7 and L : W7y — Wy such that T = LoT; o R.
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Linear maps 17 : Vi — Wy, 15 : Vo — W5 are called isomorphic if there exist
isomorphisms R : Vo — V7 and L : W7y — Wy such that T = LoT; o R.

T
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Another name: right-left equivalent or R-L-equivalent. RT T iL
2

Vs Wy

R-L-equivalence is an equivalence.

Proof. Reflexivity: T'=LoT o R for R=1idy, L=idw andany T': V — W .

Symmetry: If 175 = L oT; o R, then L= 1o 15 o R = 17 .
Transitivity: If T5 =1L10170Ry and I35 = Ly o150 Ry, then
T3 = Loodl50 Ry =1LosolLi0oTj0Ri0Rs. |

R-L-equivalent maps T3 : Vi — Wy, 15 : Vi — W5 have
e isomorphic domains V7 and V5,

e isomorphic target spaces W7 and W5,

e isomorphic null spaces null7; and null7; and

e isomorphic ranges rangel} and range75.
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3.22 Fundamental Theorem of Linear Maps.
Let V' be a finite-dimensional vector space and T € L(V,W).
Then range T’ is finite-dimensional and dim V = dimnull 7'+dim range 7.
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Let V' be a finite-dimensional vector space and T € L(V,W).
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Proof. Let vy,...,v, be a basis of null7". Extend it to a basis

Ui,...,0p,Ul,..., Uy Of V. Thus dimnull” =p and dimV =p+q.
Denote span(uq,...,uq) by U.
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Proof. Let vy,...,v, be a basis of null7". Extend it to a basis
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Proof. Let vy,...,v, be a basis of null7". Extend it to a basis
Ui,...,0p,Ul,..., Uy Of V. Thus dimnull” =p and dimV =p+q.
Denote span(uq,...,u,) by U. Clearly, V =span(vy,...,v,) @ span(uy,...,u,)
=nullT @ U. The restriction T|y is injective, because U NnullT = 0.
Hence Tuq,...,Tu, is a basis of range T'|;. Notice, rangeT =T(V) =T (nullT & U)
=0+ T(U) =rangeT|y . Therefore dimrangeT = dimrangeT'|y = q. Hence
dimV =p+q =dimnullT 4+ dimrange T’ u
The proof above provides classification of linear maps

between finite-dimensional vector spaces up to R-L equivalences.
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3.22 Fundamental Theorem of Linear Maps.
Let V' be a finite-dimensional vector space and T € L(V,W).
Then range T’ is finite-dimensional and dim V = dimnull 7'+ dim range T .

Proof. Let vy,...,v, be a basis of null7". Extend it to a basis
Ui,...,0p,Ul,..., Uy Of V. Thus dimnull” =p and dimV =p+q.
Denote span(uq,...,u,) by U. Clearly, V =span(vy,...,v,) @ span(uy,...,u,)
=nullT @ U. The restriction T|y is injective, because U NnullT = 0.
Hence Tuq,...,Tu, is a basis of range T'|;. Notice, rangeT =T(V) =T (nullT & U)
=0+ T(U) =rangeT|y . Therefore dimrangeT = dimrangeT'|y = q. Hence
dimV =p+q =dimnullT 4+ dimrange T’ u
The proof above provides classification of linear maps

between finite-dimensional vector spaces up to R-L equivalences.
Extend Tuy,...,Tu, toa basis Tuy,...,Tu,, wy,...,w, of W.
This basis and the bases constructed above define isomorphisms

R:FPpF! —-V and L:F! @ F" — W such that

L 'oToR:FP@F!I - TFIGF" is 0 on FP and maps identically F¢ — F9
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