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3.58 Definition An ivertible linear map is called an isomorphism.
Vector spaces V and W are called isomorphic if ∃ an isomorphism V → W .

Properties of isomorphisms

• The identity map of a vector space is an isomorphism.
• The composition of isomorphisms is an isomorphism.
• The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

An isomorphism maps a linear independent list to a linear independent list
a spanning list to a spanning list,
a basis to a basis.

Isomorphic finite-dimensional vector spaces have the same dimension.
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Let e1 = (1, 0 . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , en = (0, 0, . . . , 0, 1) .
Clearly, (x1, x2, . . . , xn) = x1e1 + · · ·+ xnen for any (x1, . . . , xn) ∈ F

n .

Theorem. Any linear T : Fn → V is T(u1,...,un) where ui = T (ei) for ∀i .
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A linear map Tu : Fn → V ! a list u of n vectors in V

Tu(F
n) = V ⇐⇒ V = span(u)

Tu is injective ⇐⇒ u is a linear independent list

Tu is an isomorphism ⇐⇒ u is a basis of V

Theorem. Each finite-dimensional vector space V is isomorphic to F
dimV .
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