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The first words: sets, elements. e ∈ S , S ∋ e , e 6∈ S , S ⊂ T ,

{a, b, c, . . . } , ∅ .

Equality of sets: A = B means e ∈ A ⇐⇒ e ∈ B .

Sets communicate via maps S → T .

Compositions, image, preimage, identity, injection, surjection, bijection.

Theorem. f : X → Y is bijection ⇐⇒
∃g : Y → X such that g ◦ f = idX and f ◦ g = idY .

Inverse; invertible. The inverse is unique, because

left inverse = right inverse.
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Sets A and B contain the same number of elements

⇐⇒ ∃ bijection A → B .

Properties of injections, surjections, bijections.

Transitivity, reflexivity, symmetry.

Pre-orders, Total strict orders, partial orders, Equivalence relations.

Equivalence classes. Cardinal numbers.

Definition for inequality between cardinal numbers.

Cantor-Bernstein-Schroeder theorem. If there exist injections

X → Y and Y → X , then ∃ a bijection X → Y .

a ≤ b, b ≤ a =⇒ a = b.
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Hotel full. One more guest came.

Hotel full. Infinitely many guests arrived.

Hotel full.

Infinitely many buses with infinite number of passengers in each arrived.

ℵ0 = card(N) , ℵ0 + 1 = ℵ0 , ℵ0 + ℵ0 = ℵ0 , ℵ0 × ℵ0 = ℵ0 .

card(Z) = card(N) = ℵ0 , card(Q) = card(N) = ℵ0 .

Are all infinite sets equipotent?
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Theorem. 2a 6= a for any cardinal number a.

Definition. AB is the set of all maps B → A .

Proof of Theorem. Let f : A → {0, 1}A be a bijection.

f(x) is a map A → {0, 1} for each x ∈ A .

Define φ : A → {0, 1} by formula φ(x) = 1− f(x)(x) .

Then φ(x) 6= f(x)(x) . Hence φ 6= f(x) for any x ∈ A .

Hence f : A → {0, 1}A is not even a surjection.

So, it’s not a bijection. This contradicts to the assumption! �
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Theorem. card(R) > ℵ0

Proof. It would suffice to prove that card([0, 1)) > ℵ0 .

In fact, card({0, 1}N) = card([0, 1)) .

There is an injection 2N → [0, 1) : (xn)n=1,... 7→
∑

∞

n=1

xn

10n

Hence ℵ0 = cardN < card 2N ≤ card[0, 1) ≤ cardR . �

The set of irrational numbers is uncountable.

The of algebraic numbers is countable.

The set of transcendental numbers is uncountable.

In particular, transcendental numbers exist.

Continuum hypothesis. There is no intermediate cardinal number

between ℵ0 and continuum= cardR
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card(cube) = card(segment) .
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card(R∞) = card(R) for any n .


	Sets and maps
	The number of elements
	Grand Hotel Hilbert
	The sets of subsets
	Continuum
	Counter-intuitive equalities

