Lecture 8. Sets

Oleg Viro

February 29, 2016

Sets and maps

Language rather than theory.
The language was needed since the ancient time.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \quad \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection
Theorem. $f: X \rightarrow Y$ is injection \Longleftrightarrow $\exists g: Y \rightarrow X$ such that $g \circ f=\operatorname{id}_{X}$.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \varnothing
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection
Theorem. $f: X \rightarrow Y$ is injection \Longleftrightarrow $\exists g: Y \rightarrow X$ such that $g \circ f=\operatorname{id}_{X}$.
Left inverse; invertible from left.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T, \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection, surjection

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \quad \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection, surjection
Theorem. $f: X \rightarrow Y$ is surjection \Longleftrightarrow

$$
\exists g: Y \rightarrow X \text { such that } f \circ g=\operatorname{id}_{Y}
$$

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \quad \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection, surjection
Theorem. $f: X \rightarrow Y$ is surjection \Longleftrightarrow

$$
\exists g: Y \rightarrow X \text { such that } f \circ g=\operatorname{id}_{Y}
$$

Right inverse; invertible from right.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection, surjection, bijection.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \quad \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection, surjection, bijection.
Theorem. $f: X \rightarrow Y$ is bijection \Longleftrightarrow $\exists g: Y \rightarrow X$ such that $g \circ f=\mathrm{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \quad \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection, surjection, bijection.
Theorem. $f: X \rightarrow Y$ is bijection \Longleftrightarrow $\exists g: Y \rightarrow X$ such that $g \circ f=\mathrm{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.
Inverse; invertible.

Sets and maps

Language rather than theory.
The language was needed since the ancient time.
But only Georg Cantor (1845-1918) took the task seriously.
In any intellectual activity, one gathers objects into groups.
The first words: sets, elements.

$$
\begin{aligned}
e \in S, S \ni e, & e \notin S, S \subset T \\
& \{a, b, c, \ldots\}, \quad \varnothing .
\end{aligned}
$$

Equality of sets: $A=B$ means $e \in A \Longleftrightarrow e \in B$.
Sets communicate via maps $S \rightarrow T$.
Compositions, image, preimage, identity, injection, surjection, bijection.
Theorem. $f: X \rightarrow Y$ is bijection \Longleftrightarrow $\exists g: Y \rightarrow X$ such that $g \circ f=\mathrm{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.
Inverse; invertible. The inverse is unique, because
left inverse = right inverse.

The number of elements

Sets A and B contain the same number of elements

The number of elements

Sets A and B contain the same number of elements
$\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

The number of elements

Sets A and B contain the same number of elements
$\Longleftrightarrow \exists$ bijection $A \rightarrow B$.
This is a definition.
Cantor, 1878.

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders, partial orders

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders, partial orders, Equivalence relations.

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders, partial orders, Equivalence relations.
Equivalence classes.

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders, partial orders, Equivalence relations.
Equivalence classes. Cardinal numbers.

The number of elements

Sets A and B contain the same number of elements $\Longleftrightarrow \exists$ bijection $A \rightarrow B$.

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders, partial orders, Equivalence relations.
Equivalence classes. Cardinal numbers.
Definition for inequality between cardinal numbers.

The number of elements

Sets A and B contain the same number of elements

$$
\Longleftrightarrow \exists \text { bijection } A \rightarrow B .
$$

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders, partial orders, Equivalence relations.
Equivalence classes. Cardinal numbers.
Definition for inequality between cardinal numbers.
Cantor-Bernstein-Schroeder theorem. If there exist injections $X \rightarrow Y$ and $Y \rightarrow X$, then \exists a bijection $X \rightarrow Y$.

The number of elements

Sets A and B contain the same number of elements

$$
\Longleftrightarrow \exists \text { bijection } A \rightarrow B .
$$

Properties of injections, surjections, bijections.
Transitivity, reflexivity, symmetry.
Pre-orders, Total strict orders, partial orders, Equivalence relations.
Equivalence classes. Cardinal numbers.
Definition for inequality between cardinal numbers.
Cantor-Bernstein-Schroeder theorem. If there exist injections
$X \rightarrow Y$ and $Y \rightarrow X$, then \exists a bijection $X \rightarrow Y$.
$a \leq b, b \leq a \Longrightarrow a=b$.

Grand Hotel Hilbert

Hotel with infinite number of rooms, numerated by natural numbers. (1924)

Grand Hotel Hilbert

Hotel full. One more guest came.

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.
$\aleph_{0}=\operatorname{card}(\mathbb{N})$

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.
$\aleph_{0}=\operatorname{card}(\mathbb{N}), \aleph_{0}+1=\aleph_{0}$

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.
$\aleph_{0}=\operatorname{card}(\mathbb{N}), \aleph_{0}+1=\aleph_{0}, \quad \aleph_{0}+\aleph_{0}=\aleph_{0}$

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.
$\aleph_{0}=\operatorname{card}(\mathbb{N}), \aleph_{0}+1=\aleph_{0}, \quad \aleph_{0}+\aleph_{0}=\aleph_{0}, \quad \aleph_{0} \times \aleph_{0}=\aleph_{0}$.

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.
$\aleph_{0}=\operatorname{card}(\mathbb{N}), \aleph_{0}+1=\aleph_{0}, \quad \aleph_{0}+\aleph_{0}=\aleph_{0}, \quad \aleph_{0} \times \aleph_{0}=\aleph_{0}$.
$\operatorname{card}(\mathbb{Z})=\operatorname{card}(\mathbb{N})=\aleph_{0}$

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.
$\aleph_{0}=\operatorname{card}(\mathbb{N}), \aleph_{0}+1=\aleph_{0}, \quad \aleph_{0}+\aleph_{0}=\aleph_{0}, \quad \aleph_{0} \times \aleph_{0}=\aleph_{0}$.
$\operatorname{card}(\mathbb{Z})=\operatorname{card}(\mathbb{N})=\aleph_{0}, \quad \operatorname{card}(\mathbb{Q})=\operatorname{card}(\mathbb{N})=\aleph_{0}$.

Grand Hotel Hilbert

Hotel full. One more guest came.
Hotel full. Infinitely many guests arrived.
Hotel full.
Infinitely many buses with infinite number of passengers in each arrived.
$\aleph_{0}=\operatorname{card}(\mathbb{N}), \aleph_{0}+1=\aleph_{0}, \quad \aleph_{0}+\aleph_{0}=\aleph_{0}, \quad \aleph_{0} \times \aleph_{0}=\aleph_{0}$.
$\operatorname{card}(\mathbb{Z})=\operatorname{card}(\mathbb{N})=\aleph_{0}, \quad \operatorname{card}(\mathbb{Q})=\operatorname{card}(\mathbb{N})=\aleph_{0}$.
Are all infinite sets equipotent?

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a. 2^{A} is the set of all subsets of the set A.

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.
2^{A} is the set of all subsets of the set A.
Why 2 ?

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.
2^{A} is the set of all subsets of the set A.
Why 2 ? What is 3^{A} ?

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

Definition. A^{B} is the set of all maps $B \rightarrow A$. Justify!

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

Definition. A^{B} is the set of all maps $B \rightarrow A$.
Proof of Theorem. Let $f: A \rightarrow\{0,1\}^{A}$ be a bijection.
$f(x)$ is a map $A \rightarrow\{0,1\}$ for each $x \in A$.

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

Definition. A^{B} is the set of all maps $B \rightarrow A$.
Proof of Theorem. Let $f: A \rightarrow\{0,1\}^{A}$ be a bijection.
$f(x)$ is a map $A \rightarrow\{0,1\}$ for each $x \in A$.
Define $\phi: A \rightarrow\{0,1\}$ by formula $\phi(x)=1-f(x)(x)$.

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

Definition. A^{B} is the set of all maps $B \rightarrow A$.
Proof of Theorem. Let $f: A \rightarrow\{0,1\}^{A}$ be a bijection.
$f(x)$ is a map $A \rightarrow\{0,1\}$ for each $x \in A$.
Define $\phi: A \rightarrow\{0,1\}$ by formula $\phi(x)=1-f(x)(x)$.
Then $\phi(x) \neq f(x)(x)$.

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

Definition. A^{B} is the set of all maps $B \rightarrow A$.
Proof of Theorem. Let $f: A \rightarrow\{0,1\}^{A}$ be a bijection.
$f(x)$ is a map $A \rightarrow\{0,1\}$ for each $x \in A$.
Define $\phi: A \rightarrow\{0,1\}$ by formula $\phi(x)=1-f(x)(x)$.
Then $\phi(x) \neq f(x)(x)$. Hence $\phi \neq f(x)$ for any $x \in A$.

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

Definition. A^{B} is the set of all maps $B \rightarrow A$.
Proof of Theorem. Let $f: A \rightarrow\{0,1\}^{A}$ be a bijection.
$f(x)$ is a map $A \rightarrow\{0,1\}$ for each $x \in A$.
Define $\phi: A \rightarrow\{0,1\}$ by formula $\phi(x)=1-f(x)(x)$.
Then $\phi(x) \neq f(x)(x)$. Hence $\phi \neq f(x)$ for any $x \in A$.
Hence $f: A \rightarrow\{0,1\}^{A}$ is not even a surjection.

The sets of subsets

Theorem. $2^{a} \neq a$ for any cardinal number a.

Definition. A^{B} is the set of all maps $B \rightarrow A$.
Proof of Theorem. Let $f: A \rightarrow\{0,1\}^{A}$ be a bijection.
$f(x)$ is a map $A \rightarrow\{0,1\}$ for each $x \in A$.
Define $\phi: A \rightarrow\{0,1\}$ by formula $\phi(x)=1-f(x)(x)$.
Then $\phi(x) \neq f(x)(x)$. Hence $\phi \neq f(x)$ for any $x \in A$.
Hence $f: A \rightarrow\{0,1\}^{A}$ is not even a surjection.
So, it's not a bijection. This contradicts to the assumption! \square

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.
There is an injection $2^{\mathbb{N}} \rightarrow[0,1):\left(x_{n}\right)_{n=1, \ldots} \mapsto \sum_{n=1}^{\infty} \frac{x_{n}}{10^{n}}$

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.
There is an injection $2^{\mathbb{N}} \rightarrow[0,1):\left(x_{n}\right)_{n=1, \ldots .} \mapsto \sum_{n=1}^{\infty} \frac{x_{n}}{10^{n}}$
Hence $\aleph_{0}=\operatorname{card} \mathbb{N}<\operatorname{card} 2^{\mathbb{N}} \leq \operatorname{card}[0,1) \leq \operatorname{card} \mathbb{R} . \square$

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.
There is an injection $2^{\mathbb{N}} \rightarrow[0,1):\left(x_{n}\right)_{n=1, \ldots .} \mapsto \sum_{n=1}^{\infty} \frac{x_{n}}{10^{n}}$
Hence $\aleph_{0}=\operatorname{card} \mathbb{N}<\operatorname{card} 2^{\mathbb{N}} \leq \operatorname{card}[0,1) \leq \operatorname{card} \mathbb{R} . \square$
The set of irrational numbers is uncountable.

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.
There is an injection $2^{\mathbb{N}} \rightarrow[0,1):\left(x_{n}\right)_{n=1, \ldots .} \mapsto \sum_{n=1}^{\infty} \frac{x_{n}}{10^{n}}$
Hence $\aleph_{0}=\operatorname{card} \mathbb{N}<\operatorname{card} 2^{\mathbb{N}} \leq \operatorname{card}[0,1) \leq \operatorname{card} \mathbb{R} . \square$
The set of irrational numbers is uncountable.
The of algebraic numbers is countable.

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.
There is an injection $2^{\mathbb{N}} \rightarrow[0,1):\left(x_{n}\right)_{n=1, \ldots .} \mapsto \sum_{n=1}^{\infty} \frac{x_{n}}{10^{n}}$
Hence $\aleph_{0}=\operatorname{card} \mathbb{N}<\operatorname{card} 2^{\mathbb{N}} \leq \operatorname{card}[0,1) \leq \operatorname{card} \mathbb{R} . \square$
The set of irrational numbers is uncountable.
The of algebraic numbers is countable.
The set of transcendental numbers is uncountable.

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.
There is an injection $2^{\mathbb{N}} \rightarrow[0,1):\left(x_{n}\right)_{n=1, \ldots .} \mapsto \sum_{n=1}^{\infty} \frac{x_{n}}{10^{n}}$
Hence $\aleph_{0}=\operatorname{card} \mathbb{N}<\operatorname{card} 2^{\mathbb{N}} \leq \operatorname{card}[0,1) \leq \operatorname{card} \mathbb{R} . \square$
The set of irrational numbers is uncountable.
The of algebraic numbers is countable.
The set of transcendental numbers is uncountable.
In particular, transcendental numbers exist.

Continuum

Theorem. $\operatorname{card}(\mathbb{R})>\aleph_{0}$
Proof. It would suffice to prove that $\operatorname{card}([0,1))>\aleph_{0}$.
In fact, $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}([0,1))$.
There is an injection $2^{\mathbb{N}} \rightarrow[0,1):\left(x_{n}\right)_{n=1, \ldots} \mapsto \sum_{n=1}^{\infty} \frac{x_{n}}{10^{n}}$
Hence $\aleph_{0}=\operatorname{card} \mathbb{N}<\operatorname{card} 2^{\mathbb{N}} \leq \operatorname{card}[0,1) \leq \operatorname{card} \mathbb{R} . \square$
The set of irrational numbers is uncountable.
The of algebraic numbers is countable.
The set of transcendental numbers is uncountable.
In particular, transcendental numbers exist.
Continuum hypothesis. There is no intermediate cardinal number between \aleph_{0} and continuum $=\operatorname{card} \mathbb{R}$

Counter-intuitive equalities

$\operatorname{card}(a, b)=\operatorname{card}(0,1)=\operatorname{card} \mathbb{R}$.

Counter-intuitive equalities

$\operatorname{card}(a, b)=\operatorname{card}(0,1)=\operatorname{card} \mathbb{R}$.
$\operatorname{card}($ square $)=\operatorname{card}($ segment $)$.

Counter-intuitive equalities

$\operatorname{card}(a, b)=\operatorname{card}(0,1)=\operatorname{card} \mathbb{R}$.
$\operatorname{card}($ square $)=\operatorname{card}($ segment $)$.
$\operatorname{card}($ cube $)=\operatorname{card}($ segment $)$.

Counter-intuitive equalities

$\operatorname{card}(a, b)=\operatorname{card}(0,1)=\operatorname{card} \mathbb{R}$.
$\operatorname{card}($ square $)=\operatorname{card}($ segment $)$.
$\operatorname{card}($ cube $)=\operatorname{card}($ segment $)$.
$\operatorname{card}\left(\mathbb{R}^{n}\right)=\operatorname{card}(\mathbb{R})$ for any n.

Counter-intuitive equalities

$\operatorname{card}(a, b)=\operatorname{card}(0,1)=\operatorname{card} \mathbb{R}$.
$\operatorname{card}($ square $)=\operatorname{card}($ segment $)$.
$\operatorname{card}($ cube $)=\operatorname{card}($ segment $)$.
$\operatorname{card}\left(\mathbb{R}^{n}\right)=\operatorname{card}(\mathbb{R})$ for any n.
$\operatorname{card}\left(\mathbb{R}^{\infty}\right)=\operatorname{card}(\mathbb{R})$ for any n.

