# Lecture 6. Dynamical Systems 

Oleg Viro

The lecture on dynamical systems was given by Matthieu Arfeux. Below you can find a concise list of definitions (borrowed from [1]) and statements on this topic.

### 6.1 Dynamical System

A discrete-time dynamical system consists of a non-empty set $X$ and a map $f: X \rightarrow X$. For $n \in \mathbb{N}$, the $n$th iterate of $f$ is the $n$-fold composition $f^{n}=f \circ \cdots \circ f$.

For $x \in X$, we define the orbit $O_{f}(x)=\cup_{n>0} f^{n}(x)$. A point $x \in X$ is a periodic point of period $T>0$ if $f^{T}(x)=x$. If $f(x)=x$ then $x$ is called a fixed point.

In order to classify dynamical systems, we need a notion of equivalence. Let $f: X \rightarrow X$ and $g: Y \rightarrow Y$ be dynamical systems. A semiconjugacy from $(Y, g)$ to $(X, f)$ (or, briefly, from $g$ to $f$ ) is a surjective map $\pi: Y \rightarrow X$ such that $f^{n} \circ \pi=\pi \circ g^{n}$, for all $n \in \mathbb{N}$. We express this formula schematically by saying that the following diagram commutes:


An invertible semiconjugacy is called a conjugacy. If there is a conjugacy from one dynamical system to another, the two systems are said to be conjugate; conjugacy is an equivalence relation. To study a particular dynamical system, we often look for a conjugacy or semiconjugacy with a better-understood model. To classify dynamical systems, we study equivalence classes determined by conjugacies preserving some specified structure. Note that for some classes of dynamical systems (e.g., measure-preserving transformations) the word isomorphism is used instead of "conjugacy."

### 6.2 Circle

Consider the unit circle $S^{1}=[0,1] / \sim$, where $\sim$ indicates that 0 and 1 are identified. Addition $\bmod 1$ makes $S^{1}$ an abelian group. The natural distance on $[0,1]$ induces a distance on $S^{1}$; specifically, $d(x, y)=\min (\mid x-$ $y|l-|x-y|)$.

We can also describe the circle as the set $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$, with complex multiplication as the group operation. The two notations are related by $z=e^{2 \pi i x}=\cos 2 \pi x+i \sin 2 \pi x$, which is an isometry if we divide arc length on the multiplicative circle by $2 \pi$.

### 6.3 Binary expansion

We will mostly use the additive notation for the circle: a point on the circle $S^{1}$ is presented by real number $x$ modulo 1 . In other words, two numbers $x$ and $x^{\prime}$ represent the same point on the circle, if and only if $x-x^{\prime}$ is an integer. As above each point can be represented by $x_{1}[0,1]$. Then te only non-uniqueness of the representation appears for the end points 0 and 1 , which represent the same point. To avoid even this non-uniqueness, we may choose $x$ in $[0,1)$.

Any real number $x \in[0,1)$ can be presented as $\sum_{j=1}^{\infty} \frac{x_{j}}{2^{j}}$ where each $x_{j}$ is either 0 or 1 . This is similar to the decimal expansion $x=\sum_{j=1}^{\infty} \frac{d_{j}}{10^{j}}$ where $d_{j}$ is a digit (i.e., one of the numbers $0,1,2,3,4,5,6,7,8,9$ ) and $x$ is presented by an infinite decimal fraction $0 . d_{1} d_{2} d_{3} \ldots d_{n} \ldots$. The presentation

$$
x=\sum_{j=1}^{\infty} \frac{x_{j}}{2^{j}}
$$

is called a binary expansion of $x$. The sequence of zeros and ones $x_{1}, x_{2}, x_{3}$, $\ldots$ is called a binary representation of $x$.

A binary representation is not unique. For example, the sequences

$$
1,0,0,0,0, \ldots, 0, \ldots \text { and } 0,1,1,1,1, \ldots, 1, \ldots
$$

are representations of the same number $\frac{1}{2}$.
Exercise 1. Describe all the pairs of different sequences of zeros and ones which represent the same number.

Denote by $\Sigma$ the set of infinite sequences formed of zeros and ones. Define a map

$$
\varphi: \Sigma \rightarrow[0,1]: \varphi\left(\left(x_{j}\right)_{j \in \mathbb{N}}\right)=\sum_{j=1}^{\infty} \frac{x_{j}}{2^{j}}
$$

Exercise 2. Find a subset $\Gamma \subset \Sigma$ such that the restriction of $\varphi$ to $\Gamma$ is bijective.

### 6.4 Square and shift

Since $\left|z^{2}\right|=|z|^{2}$ for any complex number $z$, taking square maps the unit circle $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ to itself. The binary representation is quite useful for study of the dynamical system $S^{1} \rightarrow \operatorname{Re}^{1}: z \mapsto z^{2}$.

Theorem 1. The map $\varphi: \Sigma \rightarrow[0,1]$ defines a semiconjugacy

where $g:\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(x_{2}, x_{3}, x_{4}, \ldots\right)$.
It is easy to describe periodic points for $g$ of period $T \in \mathbb{N}$.
Exercise 3. Prove that $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is a periodic point for $g$ of period $T$ if and only if it is periodic sequence of the same period, that is $x_{j}=x_{j+T}$ for any $j \in \mathbb{N}$.

By Theorem 1, this gives also a description of periodic points for $z \mapsto z^{2}$.
Exercise 4. Fof an integer $T$, find all the complex numbers $z$ with $|z|=1$, which are $T$-periodic for the map $z \mapsto z^{2}$.

Exercise 5. Check if the answer to Exercise 4 can be obtained via Theorem 1 and Exercise 3.

## References

[1] Michael Brin, Garrett Stuck Introduction to Dynamical Systems 2002, Cambridge University Press.

