Lecture 4. Rational points on the circle

Oleg Viro

February 3, 2016

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Nice formulas! Homogeneous! Divide by u^{2}

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Then $\cos \alpha=\frac{1-\frac{v^{2}}{u^{2}}}{1+\frac{v^{2}}{u^{2}}}$ and $\sin \alpha=\frac{2 v / u}{1+\frac{v^{2}}{u^{2}}}$.

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Then $\cos \alpha=\frac{1-\frac{v^{2}}{u^{2}}}{1+\frac{v^{2}}{u^{2}}}$ and $\sin \alpha=\frac{2 v / u}{1+\frac{v^{2}}{u^{2}}}$. Let $\frac{v}{u}=t$.

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}} \quad$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$, where $t=\frac{v}{u}$.

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}} \quad$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$, where $t=\frac{v}{u}$.
$u, v \in \mathbb{N} \Longrightarrow t \in \mathbb{Q}$

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}} \quad$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$, where $t=\frac{v}{u}$.
$u, v \in \mathbb{N} \Longrightarrow t \in \mathbb{Q} \quad \Longrightarrow \frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}} \in \mathbb{Q}$

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}} \quad$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$, where $t=\frac{v}{u}$.
$u, v \in \mathbb{N} \Longrightarrow t \in \mathbb{Q} \Longrightarrow \frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}} \in \mathbb{Q}$
Is this the solution? Are points $\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)$ on the circle?

Parametrizations of the circle

Last time we found formulas giving all Pythagorean triples, and started to work on a closely related problem:
find all rational points on the unit circle $x^{2}+y^{2}=1$.
On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}} \quad$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$, where $t=\frac{v}{u}$.
$u, v \in \mathbb{N} \Longrightarrow t \in \mathbb{Q} \Longrightarrow \frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}} \in \mathbb{Q}$
Is this the solution? Are points $\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)$ on the circle?
$\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}+\left(\frac{2 t}{1+t^{2}}\right)^{2}=\frac{(1-t)^{2}+4 t^{2}}{\left(1+t^{2}\right)^{2}}=\frac{1-2 t^{2}+t^{4}+4 t^{2}}{\left(1+t^{2}\right)^{2}}=\frac{1+2 t^{2}+t^{4}}{\left(1+t^{2}\right)^{2}}=1$.

Trigonometric meaning

Recall that at some moment we got

$$
\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}} \quad \text { and } \quad \sin \alpha=\frac{2 u v}{u^{2}+v^{2}}
$$

Trigonometric meaning

Recall that at some moment we got

$$
\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}} \quad \text { and } \quad \sin \alpha=\frac{2 u v}{u^{2}+v^{2}}
$$

If $u=\cos \beta$ and $v=\sin \beta$, then
$\cos \alpha=\cos ^{2} \beta-\sin ^{2} \beta=\cos 2 \beta, \quad \sin \alpha=2 \cos \beta \sin \beta=\sin 2 \beta$.

Trigonometric meaning

Recall that at some moment we got

$$
\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}} \quad \text { and } \quad \sin \alpha=\frac{2 u v}{u^{2}+v^{2}}
$$

If $u=\cos \beta$ and $v=\sin \beta$, then
$\cos \alpha=\cos ^{2} \beta-\sin ^{2} \beta=\cos 2 \beta, \quad \sin \alpha=2 \cos \beta \sin \beta=\sin 2 \beta$.

$$
t=\frac{v}{u}=\frac{\sin \beta}{\cos \beta}=\tan \beta=\tan \frac{\alpha}{2}
$$

Trigonometric meaning

Recall that at some moment we got

$$
\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}} \quad \text { and } \quad \sin \alpha=\frac{2 u v}{u^{2}+v^{2}}
$$

If $u=\cos \beta$ and $v=\sin \beta$, then
$\cos \alpha=\cos ^{2} \beta-\sin ^{2} \beta=\cos 2 \beta, \quad \sin \alpha=2 \cos \beta \sin \beta=\sin 2 \beta$.

$$
t=\frac{v}{u}=\frac{\sin \beta}{\cos \beta}=\tan \beta=\tan \frac{\alpha}{2}
$$

$\cos \alpha$ and $\sin \alpha$ are expressed as rational functions of $\tan \frac{\alpha}{2}$:
$\cos \alpha=\frac{1-t^{2}}{1+t^{2}}=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \quad$ and $\quad \sin \alpha=\frac{2 t}{1+t^{2}}=\frac{2 \tan \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}$

Trigonometric meaning

Recall that at some moment we got

$$
\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}} \quad \text { and } \quad \sin \alpha=\frac{2 u v}{u^{2}+v^{2}}
$$

If $u=\cos \beta$ and $v=\sin \beta$, then
$\cos \alpha=\cos ^{2} \beta-\sin ^{2} \beta=\cos 2 \beta, \quad \sin \alpha=2 \cos \beta \sin \beta=\sin 2 \beta$.

$$
t=\frac{v}{u}=\frac{\sin \beta}{\cos \beta}=\tan \beta=\tan \frac{\alpha}{2} .
$$

$\cos \alpha$ and $\sin \alpha$ are expressed as rational functions of $\tan \frac{\alpha}{2}$:
$\cos \alpha=\frac{1-t^{2}}{1+t^{2}}=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \quad$ and $\sin \alpha=\frac{2 t}{1+t^{2}}=\frac{2 \tan \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}$
This is the trigonometric meaning of our solution.

Riddle:

Draw on a picture all the heros: $\alpha, \cos \alpha, \sin \alpha, \beta$, and $t=\tan \beta$.

