Homework 2

Oleg Viro

February 10, 2016

Stereographic projection

Stereographic projection

$$
(0, t) \mapsto(x, y) \text {, where }(x, y)
$$

is the intersection point of

$$
x^{2}+y^{2}=1 \text { and } y=t(x+1) .
$$

Stereographic projection

$$
(0, t) \mapsto(x, y) \text {, where }(x, y)
$$

is the intersection point of
$x^{2}+y^{2}=1$ and $y=t(x+1)$.

Substitute:
$x^{2}+t^{2}(x+1)^{2}=1$.

Stereographic projection

$$
(0, t) \mapsto(x, y) \text {, where }(x, y)
$$

is the intersection point of
$x^{2}+y^{2}=1$ and $y=t(x+1)$.

Substitute:
$x^{2}+t^{2}(x+1)^{2}=1$.
Simplify:

$$
\left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1=0
$$

Stereographic projection

$(0, t) \mapsto(x, y)$, where (x, y)
is the intersection point of
$x^{2}+y^{2}=1$ and $y=t(x+1)$.

Substitute:
$x^{2}+t^{2}(x+1)^{2}=1$.
Simplify:
$\left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1=0$
Divide by $x+1$.

Stereographic projection

$(0, t) \mapsto(x, y)$, where (x, y)
is the intersection point of
$x^{2}+y^{2}=1$ and $y=t(x+1)$.

Substitute:
$x^{2}+t^{2}(x+1)^{2}=1$.
Simplify:
$\left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1=0$
Divide by $x+1$.
$\left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1=$
$\left(1+t^{2}\right) x^{2}+\left(1+t^{2}\right) x-\left(1+t^{2}\right) x+2 t^{2} x+t^{2}-1=$

Stereographic projection

$(0, t) \mapsto(x, y)$, where (x, y)
is the intersection point of $x^{2}+y^{2}=1$ and $y=t(x+1)$.

Substitute:
$x^{2}+t^{2}(x+1)^{2}=1$.
Simplify:
$\left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1=0$
Divide by $x+1$.

$$
\begin{aligned}
& \left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1= \\
& \left(1+t^{2}\right) x^{2}+\left(1+t^{2}\right) x-\left(1+t^{2}\right) x+2 t^{2} x+t^{2}-1= \\
& \left(1+t^{2}\right) x(x+1)+\left(t^{2}-1\right)(x+1)=(x+1)\left(\left(1+t^{2}\right) x-\left(t^{2}-1\right)\right) .
\end{aligned}
$$

Stereographic projection

$(0, t) \mapsto(x, y)$, where (x, y)
is the intersection point of $x^{2}+y^{2}=1$ and $y=t(x+1)$.

Substitute:
$x^{2}+t^{2}(x+1)^{2}=1$.
Simplify:
$\left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1=0$
Divide by $x+1$.

$$
\begin{aligned}
& \left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1= \\
& \left(1+t^{2}\right) x^{2}+\left(1+t^{2}\right) x-\left(1+t^{2}\right) x+2 t^{2} x+t^{2}-1= \\
& \left(1+t^{2}\right) x(x+1)+\left(t^{2}-1\right)(x+1)=(x+1)\left(\left(1+t^{2}\right) x-\left(t^{2}-1\right)\right) . \\
& x=\frac{1-t^{2}}{1+t^{2}}, y=t(x+1)=
\end{aligned}
$$

Problem 1.1

Find all rational solutions of the equation

$$
x^{2}+y^{2}+3=0 .
$$

Problem 1.2

Find all rational solutions of the equation

$$
x^{2}+y^{2}-3=0 .
$$

Problem 1.3

Find all rational solutions of the equation

$$
x^{2}-x y+y^{2}-4 x+2 y+4=0 .
$$

Problem 2.1

Find all integer solutions of the following equation

$$
x^{2}+y^{2}-5 z^{2}=0
$$

Problem 2.2

Find all integer solutions of the following equation

$$
x^{2}-3 y^{2}+z^{2}=0
$$

