Stony Brook University Mathematics Department Oleg Viro

Practice Midterm 1

This Practice Midterm is given to show what kind of problems you may expect on the exam. It is proposed to you as a homework, due by Thursday 10/13. Actual Midterm 1 will be shorter and easier.

1. True or false? Explain! (a, x are real numbers).

a) $\forall a \exists x (x^2 + ax - 1 = 0)$ b) $\exists x \forall a (x^2 + ax - 1 = 0)$ c) $\forall x \exists a (x^2 + ax - 1 = 0)$.

2. Ken Olsen, CEO of *Digital Equipment*, claimed in 1977:

"There is no reason for any individual to have a computer in his home"

Give a symbolic writing of this phrase. You have to describe the universes, introduce appropriate notations and use quantifiers.

3. Use ε - δ definition to prove that $\lim_{x \to 1} (5 - 2x) = 3$.

4. A real number L is called a *limit* of a sequence $\{a_n\}_{n=1}^{\infty}$ if for any positive real number ε there exists a positive integer N such that for all integers n greater than N the inequality $|a_n - L| < \varepsilon$ holds true. Notation: $L = \lim_{n \to \infty} a_n$.

a) Rewrite this definition in a symbolic form.

b) Use this definition to prove that $\lim_{n \to \infty} \frac{1}{n} = 0$.

c) Explain what it means that a number L is **not** the limit of the sequence $\{a_n\}_{n=1}^{\infty}$.

4. Give definition of a composite number, both in words and in symbols. Remember that 1 is neither prime nor composite.

5. Give definition of an even function. Give definition of an odd function. What does it mean that a function is neither even nor odd? (Give a symbolic description.) For each of the following functions, use the definitions to determine whether it is even or odd or neither: $f(x) = x \sin x$, $g(x) = x^3 + 1$, $h(x) = e^x - e^{-x}$.

6. Prove or give a counterexample:

- a) There do not exist three consecutive integers a, b, c such that $a^2 + b^2 = c^2$.
- **b)** There do not exist three consecutive even integers a, b, c such that $a^2 + b^2 = c^2$.
- c) There do not exist three consecutive odd integers a, b, c such that $a^2 + b^2 = c^2$.

- 7. Prove that for all real numbers x, $\frac{3|x-2|}{x} \le 4$ whenever $x \ge 1$.
- 8. Formulate and prove the triangle inequality.

9. For Fibonacci sequence a_n , prove the following:

a)
$$a_1 + a_3 + \dots + a_{2n-1} = a_{2n}$$

b) $\sum_{i=1}^n ia_i = na_{n+2} - a_{n+3} + 2$.

10. Prove statements which are true and give counterexamples for those which are false.

a) $A = B \cup C$ is sufficient for $A \setminus B \subset C$. b) $A = B \cup C$ is necessary for $A \setminus B \subset C$.