MAT 150, Introduction to Advanced Mathematics Name _____ Homework 8, due by 11/3

Score

In the last class, the Pythagorean triples problem was reduced to the problem of finding all rational solutions of the equation $x^2 + y^2 = 1$. The solution was found in the following form:

(*)
$$x = \frac{1 - t^2}{1 + t^2} \quad y = \frac{2t}{1 + t^2}, \quad \text{where } t \in \mathbb{Q}$$

(Since the original problem was about Pythagorean triples of *natural* numbers, we were interested in positive solutions. All the positive rational solutions of the equation $x^2 + y^2 = 1$ are obtained in this way for $t \in \mathbb{Q} \cap (0, 1)$. Moreover, all the non-positive rational solutions but one, were obtained either. The missing non-positive solution x = -1, y = 0 appears as the limit of the general solution above as $t \to \infty$.)

In this hometask, I suggest a series of problems that allows to generalize the solution (*) of $x^2 + y^2 = 1$ to other similar equations, and, in particular, to obtain the solution (*) of $x^2 + y^2 = 1$ independently. The whole collection of problems may happen to be too long for a single homework. Make as many problems as you can. The rest will be either discussed in class or included into the future homeworks.

1. Parametric equation for a line. Find formulas similar to (*) (but much simpler!) providing all points of the line with a slope k passing through the point with coordinate (x_0, y_0) .

If k, x_0 and y_0 are rational, how to obtain all the points on the line with rational coordinates?

2. Given a polynomial

$$P(x,y) = ax^2 + by^2 + cxy + dx + ey + f$$

of degree two with rational coefficients a, b, c, d, e, f, and a line L with rational slope k,

- (1) prove that either the coordinates of each point of L satisfy the equation P(x, y) = 0, or there are at most two points of the intersection of L with the curve C defined by the equation P(x, y) = 0;
- (2) prove that if $L \cap C$ consists of two real points and the coordinates of one of these points are rational, then the coordinates of the other point are also rational.

3. Let P(x, y) be (as above) a polynomial of degree two with rational coefficients, and let x_0, y_0 be rational numbers such that $P(x_0, y_0) = 0$. Find all other rational solutions of the equation P(x, y) = 0. (Find formulas similar to (*) expressing the solutions.)

4. Show how the solutions (*) for $x^2 + y^2 = 1$ can be obtained in this way.

5. Generalize the problem 1 to a line in the 3-space, and to a line in n-space. Solve the problems obtained.

6. Generalize the problem 2 to polynomials in n variables. Solve the problem obtained.

7. Let $P(x_1, x_2, ..., x_n)$ be a polynomial of degree two with rational coefficients in n variables $x_1, x_2, ..., x_n$. Assume that the equation $P(x_1, x_2, ..., x_n) = 0$ has a rational particular solution $(a_1, a_2, ..., a_n)$. How to find all other rational solutions?