
4.6. Divergent SeriesOn the ontents of the leture. \Divergent series is a pure handiwork ofDiable. It is a full nonsense to say that 12n � 22n + 32n � � � � = 0. Do you keepto die laughing about this?" (N.H. Abel letter to . . . ). The twist of fate: now onesays that that the above mentioned equality holds in Abel's sense.The earliest analysts thought that any series, onvergent or divergent, has asum given by God and the only problem is to �nd it orretly. Sometimes theydisagreed what is the orret answer. In the nineteenth entury divergent serieswere expelled from mathematis as a \handiwork of Diable" (N.H. Abel). Laterthey were rehabilitated (see G.H. Hardy's book Divergent Series1). Euler remainsthe unsurpassed master of divergent series. For example, with the help of divergentseries he disovered Riemann's funtional equation of the �-funtion a hundredyears before Riemann.Evaluations with divergent series. Euler wrote: \My pen is lever thanmyself." Before we develop a theory let us simply follow to Euler's pen. Thefundamental equality is(4.6.1) 1 + x+ x2 + x3 + � � � = 11� x :Now we, following Euler, suppose that this equality holds for all x 6= 1. In theseond leture we were onfused by some unexpeted properties of divergent series.But now in ontrast with the seond leture we do not hurry up to land. Let uslook around.Substituting x = �ey in (4.6.1) one gets1� ey + e2y � e3y + � � � = 11 + ey :On the other hand(4.6.2) 11 + ey = 1ey � 1 � 2e2y � 1 :Sine(4.6.3) zez � 1 = 1Xk=0 Bkk! zk:One derives from (4.6.2) via (4.6.3)(4.6.4) 1ey + 1 = 1Xk=1 Bk(1� 2k)k! yk�1:Let us di�erentiate repeatedly n-times the equality (4.6) by y. The left-hand sidegives P1k=0(�1)kkneky . In partiular for y = 0 we get P1k=0(�1)kkn. We get onthe right-hand side by virtue of (4.6.4) the following� ddy�n 11 + ey = Bn+1(1� 2n+1)n+ 1 :Combining these results we get the following equality(4.6.5) 1n � 2n + 3n � 4n + � � � = Bn+1(2n+1 � 1)n+ 1 :1G.H. Hardy, Divergent Series, Oxford University Press, 1949.124



4.6 divergent series 125Sine odd Bernoulli numbers vanish, we get12n � 22n + 32n � 42n + � � � = 0:Consider an even analyti funtion f(x), suh that f(0) = 0. In this ase f(x)is presented by a power series a1x2 + a2x4 + a3x6 + : : : , then1Xk=1(�1)k�1 f(kx)k2 = 1Xk=1 (�1)k�1k2 1Xn=1 anx2nk2n= 1Xn=1 anx2n 1Xk=1(�1)k�1k2n�2= a1x2(1� 1 + 1� 1 + : : : )= a1x22 :In partiular, for f(x) = 1� osx this equality turns into(4.6.6) 1Xk=1(�1)k�1 1� os kxk2 = x24 :For x = � the equality (4.6.6) gives1 + 132 + 152 + 172 + � � � = �28 :Sine 1Xk=0 1(2k + 1)2 = 1Xk=1 1k2 � 1Xk=1 1(2k)2 = �1� 14� 1Xk=1 1k2one derives the sum of the Euler series:1Xk=1 1k2 = �26 :We see that alulations with divergent series sometimes give brilliant results.But sometimes they give the wrong result. Indeed the equality (4.6.6) generally isuntrue, beause on the left-hand side we have a periodi funtion and on the right-hand side a non-periodi one. But it is true for x 2 [��; �℄. Termwise di�erentiationof (4.6.6) gives the true equality (3.4.2), whih we know from Leture 3.4.Euler's sum of a divergent series. Now we develop a theory justifyingthe above evaluations. Euler writes that the value of an in�nite expression (inpartiular the sum of a divergent series) is equal to the value of a �nite expressionwhose expansion gives this in�nite expression. Hene, numerial equalities arise bysubstituting a numerial value for a variable in a generating funtional identity. Toevaluate the sum of a series P1k=0 ak Euler usually onsiders its power generatingfuntion g(z) represented by the power series P1k=0 akzk, and supposes that thesum of the series is equal to g(1).To be preise suppose that the power seriesP1k=0 akzk onverges in a neighbor-hood of 0 and there is an analyti funtion g(z) de�ned in a domain U ontaininga path p from 0 to 1 and suh that g(z) = P1k=0 akzk for z suÆiently lose to 0and 1 is a regular point of g. Then the series P1k=0 ak is alled Euler summableand the value g(1) is alled its analyti Euler sum with respet to p. And we willuse a speial sign ' to denote the analytial sum.



126 4.6 divergent seriesBy the Uniqueness Theorem 3.6.9 the value of analyti sum of a series isuniquely de�ned for a �xed p. But this value generally speaking depends on thepath. For example, let us onsider the funtion p1 + x. Its binomial series forx = �2 turns into�1 + 1� 12! � 1 � 33! � 1 � 3 � 54! � � � � � (2k � 1)!!(k + 1)! � : : : :For p(t) = ei�t one sums up this series to i, beause it is generated by the funtionexp ln(1+z)2 de�ned in the upper half-plane. And along p(t) = e�i�t this series issummable to �i by exp � ln(1+z)2 de�ned in the lower half-plane.For a �xed path the analyti Euler sum evidently satis�es the Shift, Multipli-ation and Addition Formulas of the �rst leture. But we see that the analyti sumof a real series may be purely imaginary. Hene the rule ImP1k=0 ak 'P1k=0 Im akfails for the analyti sum. The Euler sum along [0; 1℄ oinides with the Abel sumof the series in the ase when both of them exist.In above evaluations we apply termwise di�erentiation to funtional series. Ifthe Euler sum P1k=1 fk(z) is equal to F (z) for all z in a domain this does notguarantee the possibility of termwise di�erentiation. To guarantee it we supposethat the funtion generating the equality P1k=1 fk(z) ' F (z) analytially dependson z. To formalize the last ondition we have to introdue analyti funtions of twovariables.Power series of two variables. A power series of two variables z; w is de�nedas a formal unordered sum Pk;m akmzkwm, over N � N | the set of all pairs ofnonnegative integers.For a funtion of two variables f(z; w) one de�nes its partial derivative �f(z0;w0)�zwith respet to z at the point (z0; w0) as the limit of f(z0+�z;w0)�f(z0;w0)�z as �ztends to 0.Lemma 4.6.1. If P akmzk1wm1 absolutely onverges, then both Pakmzkwm andPmakmzkwm�1 absolutely onverge provided jzj < jz1j, jwj < jw1j. And for any�xed z, suh that jzj < jz1j the funtion Pmakzkwm�1 is the partial derivative ofPakmzkwm with respet to w.Proof. SineP jakmjjz1jkjw1jm <1 the same is true forP jakmjjzjkjwjm forjzj < jz1j, jwj < jw1j. By the Sum Partition Theorem we get the equalityX akmzkwm = 1Xm=0wm 1Xk=0 akmzk:For any �xed z the right-hand side of this equality is a power series with respet tow as the variable. By Theorem 3.3.9 its derivative by w, whih oinides with thepartial derivative of the left-hand side, is equal to1Xm=0mwm�1 1Xk=0 akmzk =Xmakmwm�1zk: �Analyti funtions of two variables. A funtion of two variables F (z; w)is alled analyti at the point (z0; w0) if for (z; w) suÆiently lose to (z0; w0) itan be presented as a sum of a power series of two variables.



4.6 divergent series 127Theorem 4.6.2.(1) If f(z; w) and g(z; w) are analyti funtions, then f+g and fg are analytifuntions.(2) If f1(z); f2(z) and g(z; w) are analyti funtions, then g(f1(z); f2(w)) andf1(g(z; w)) are analyti funtions.(3) The partial derivative of any analyti funtion is an analyti funtion.Proof. The third statement follows from Lemma 4.6.1. The proofs of the �rstand the seond statements are straightforward and we leave them to the reader. �Funtional analytial sum. Let us say that a series P1k=1 fk(z) of analytifuntions is analytially summable to a funtion F (z) in a domain U � C alonga path p in C � C , suh that p(0) 2 U � 0 and p(1) 2 U � 1, if there exists ananalyti funtion of two variables F (z; w), de�ned on a domain W ontaining p,U � 0, U � 1, suh that for any z0 2 U the following two onditions are satis�ed:(1) F (z0; 1) = F (z0).(2) F (z; w) =P f (k)m (z0)k! (z � z0)kwm for suÆiently small jwj and jz � z0j.Let us remark that the analyti sum does not hange if we hange p keeping itinside W . That is why one says that the sum is evaluated along the domain W .To denote the funtional analytial sum we use the sign �=. And we will writealso �=W and �=p to speify the domain or the path of summation.The funtion F (z; w) will be alled the generating funtion for the analytialequality P1k=1 fk(z) �= F (z).Lemma 4.6.3. If f(z) is an analyti funtion in a domain U ontaining 0, suhthat f(z) = P1k=0 akzk for suÆiently small jzj, then f(z) �=W P1k=0 akzk in Ufor W = f(z; w) j wz 2 Ug.Proof. The generating funtion of this analytial equality is f((z�z0)w). �Lemma 4.6.4 (on substitution). If F (z) �=p P1k=0 fk(z) in U and g(z) is ananalyti funtion, then F (g(z)) �=g(p) P1k=0 fk(g(z)) in g�1(U).Proof. Indeed, if F (z; w) generates F (z) �=p P1k=0 fk(z), then F (g(z); w))generates F (g(z)) �=g(p) P1k=0 fk(g(z)). �N. H. Abel was the �rst to have some doubts about the legality of termwisedi�erentiation of funtional series. The following theorem justi�es this operationfor analyti funtions.Theorem 4.6.5. If P1k=1 fk(z) �=p F (z) in U then P1k=1 f 0k(z) �=p F 0(z) in U .Proof. Let F (z; w) be a generating funtion for P1k=1 fk(z) �=p F (z). Wedemonstrate that its partial derivative by z (denoted F 0(z; w)) is the generatingfuntion for P1k=1 f 0k(z) �=p F 0(z). Indeed, loally in a neighborhood of (z0; 0) onehas F (z; w) =P f (k)m (z0)k! wm(z� z0)k. By virtue of Lemma 4.6.1 its derivative by zis F 0(z; w) =P f (k)m (z0)(k�1)! wm(z � z0)k�1 =P f 0(k)m (z0)k! wm(z � z0)k. �The dual theorem on termwise integration is the following one.Theorem 4.6.6. Let P1k=1 fk �= F be generated by F (z; w) de�ned on W =U � V . Then for any path q in U one has Rq F (z) dz 'P1k=1 Rq fk(z) dz.



128 4.6 divergent seriesProof. The generating funtion for integrals is de�ned as Rq F (z; w) dz. �The proof of the following theorem is left to the reader.Theorem 4.6.7. If P1k=0 fk �=p F and P1k=0 gk �=p G then P1k=0(fk + gk) �=pF +G, P1k=1 fk �=p F � f0, P1k=0 fk �=p FRevision of evaluations. Now we are ready to revise the above evaluationequipped with the theory of analyti sums. Sine all onsidered generating funtionsin this paragraph are single valued, the results do not depend on the hoie of thepath of summation. That is why we drop the indiations of path below.The equality (4.6.1) is the analytial equivalene generated by 11�tx . The nextequality (4.6.7) is the analytial equivalene by Lemma 4.6.4. The equality (4.6.3)is analytial equivalene due to Lemma 4.6.3. Termwise di�erentiation of (4.6.7) isorret by virtue of Theorem 4.6.5. Therefore the equality (4.6.5) is obtained by therestrition of an analytial equivalene. Hene the Euler sum of P1k=1(�1)kk2n isequal to 0. Sine the seriesP1k=1(�1)kk2nzk onverges for jzj < 1 its value oinideswith the value of the generating funtion. And the limit limz!1�0P1k=1(�1)kk2nzkgives the Euler sum, whih is zero. Hene as a result of our alulations we havefound Abel's sum P1k=1(�1)kk2n = 0.Now we hoose another way to evaluate the Euler series. Substituting x = e�i�in (4.6.1) for 0 < � < 2� one gets1 + ei� + e2i� + e3i� + : : : �= 11� ei� ;1 + e�i� + e�2i� + e�3i� + : : : �= 11� e�i� :(4.6.7)Termwise addition of the above lines gives for � 2 (0; 2�) the following equality(4.6.8) os � + os 2� + os 3� + � � � �= �12 :Integration of (4.6.8) from � to x with subsequent replaement of x by � givesby Theorem 4.6.6: 1Xk=1 sin k�k �= � � �2 (0 < � < 2�):A seond integration of the same type gives1Xk=1 os k� � (�1)kk2 �= (� � �)24 :Putting � = �2 we get 1Xk=1 (�1)k+1k2 � 14 1Xk=1 (�1)k+1k2 ' �216 :Therefore 1Xk=1 (�1)k+1k2 = �212 :



4.6 divergent series 129Sine 1Xk=1 1k2 = 1Xk=1 (�1)k+1k2 + 2 1Xk=1 1(2k)2one gets 1Xk=1 1k2 = 12 1Xk=1 (�1)k+1k2 = �26 :Problems.1. Prove that the analyti sum of onvolution of two series is equal to the produtof analyti sums of the series.2. Suppose that for all n 2 N one has An ' P1k=0 an;k and Bn ' P1k=0 ak;n.Prove that the equalityP1k=0 Ak =P1k=0 Bk holds provided there is an analytifuntion F (z; w) oiniding withP ak;nzkwn for suÆiently small jwj,jzj whihis de�ned on a domain ontaining a path joining (0; 0) with (1; 1) analytiallyextended to (1; 1) (i.e., (1; 1) is a regular point of F (z; w)).


