4.6. Divergent Series

On the contents of the lecture. “Divergent series is a pure handiwork of
Diable. It is a full nonsense to say that 12* — 22" 4 327 — ... = 0. Do you keep
to die laughing about this?” (N.H. Abel letter to ...). The twist of fate: now one
says that that the above mentioned equality holds in Abel’s sense.

The earliest analysts thought that any series, convergent or divergent, has a
sum given by God and the only problem is to find it correctly. Sometimes they
disagreed what is the correct answer. In the nineteenth century divergent series
were expelled from mathematics as a “handiwork of Diable” (N.H. Abel). Later
they were rehabilitated (see G.H. Hardy’s book Divergent Series'). Euler remains
the unsurpassed master of divergent series. For example, with the help of divergent
series he discovered Riemann’s functional equation of the (-function a hundred
years before Riemann.

Evaluations with divergent series. Euler wrote: “My pen is clever than
myself.” Before we develop a theory let us simply follow to Euler’s pen. The
fundamental equality is

(4.6.1) 1+:c+:c2+:c3+---:11w.
Now we, following Euler, suppose that this equality holds for all  # 1. In the
second lecture we were confused by some unexpected properties of divergent series.
But now in contrast with the second lecture we do not hurry up to land. Let us
look around.

Substituting z = —e¥ in (4.6.1) one gets

. 1
1—eY 2y _ 3 .= .
e’ +e e’ + 1+ ov
On the other hand
1 1 2
4.6.2 = — .
(4.6.2) 1+ev ev—-1 e-1
Since
o0
z o Bk k
k=0

One derives from (4.6.2) via (4.6.3)

1 > Bp(1-2%) , |
4.6.4 = A A .
(4.6.4) | k§:1 Y

Let us differentiate repeatedly n-times the equality (4.6) by y. The left-hand side
gives > po  (—1)Fkme*¥. In particular for y = 0 we get Y, (—1)*k™. We get on
the right-hand side by virtue of (4.6.4) the following
d\" 1 Bpa(1—2"1)
dy) 1+ev n+1 '
Combining these results we get the following equality
By (201 — 1)
n+1 '

(4.6.5) 1" —2" 43" 4" ... =

en:s Hardy, Divergent Series, Oxford University Press, 1949.
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Since odd Bernoulli numbers vanish, we get

12n_22n+32n_42n+‘_‘:0'
Consider an even analytic function f(z), such that f(O) = 0. In this case f(z)
is presented by a power series a;z? + asz* + a3x6 +..., then
o0 o0
_1 f (k) )<t
S L S S
k=1 k=1
— Z anxQn Z 1)k—1k2n—2
k=1
=az’(1-1+1-1+...)
_ a1x2
2
In particular, for f(x) = 1 — cosz this equality turns into
= 1—coskzr 22
4.6. B
(4.6.6) > v 1
k=1
For x = 7 the equality (4.6.6) gives
14 +3 L =+ L .-
32 72 -8

Since

= 1\ o— 1
_ =(1=2
e D By e (B Doy
one derives the sum of the Euler series:

—2 = —.
— k 6
We see that calculations with divergent series sometimes give brilliant results.
But sometimes they give the wrong result. Indeed the equality (4.6.6) generally is
untrue, because on the left-hand side we have a periodic function and on the right-

hand side a non-periodic one. But it is true for € [—7, 7]. Termwise differentiation
of (4.6.6) gives the true equality (3.4.2), which we know from Lecture 3.4.

Euler’s sum of a divergent series. Now we develop a theory justifying
the above evaluations. Euler writes that the value of an infinite expression (in
particular the sum of a divergent series) is equal to the value of a finite expression
whose expansion gives this infinite expression. Hence, numerical equalities arise by
substituting a numerical value for a variable in a generating functional identity. To
evaluate the sum of a series Y .- a; Euler usually considers its power generating
function g(z) represented by the power series Y, axz®, and supposes that the
sum of the series is equal to g(1).

To be precise suppose that the power series 220:0 arz* converges in a neighbor-
hood of 0 and there is an analytic function g(z) defined in a domain U containing
a path p from 0 to 1 and such that g(z) = Yo, axz" for z sufficiently close to 0
and 1 is a regular point of g. Then the series Y- a is called Euler summable
and the value g(1) is called its analytic Euler sum with respect to p. And we will
use a special sign ~ to denote the analytical sum.
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By the Uniqueness Theorem 3.6.9 the value of analytic sum of a series is
uniquely defined for a fixed p. But this value generally speaking depends on the
path. For example, let us consider the function /1 + z. Its binomial series for
z = —2 turns into

1 1 —
g L L3 135 k-
21 3! 4! (k+1)!
For p(t) = €™ one sums up this series to i, because it is generated by the function
exp M defined in the upper half-plane. And along p(t) = e~ ™ this series is

summable to —i by exp w defined in the lower half-plane.

For a fixed path the analytic Euler sum evidently satisfies the Shift, Multipli-
cation and Addition Formulas of the first lecture. But we see that the analytic sum
of a real series may be purely imaginary. Hence the rule Im >~.7 j ar ~ > 1o, Imay,
fails for the analytic sum. The Euler sum along [0, 1] coincides with the Abel sum
of the series in the case when both of them exist.

In above evaluations we apply termwise differentiation to functional series. If
the Euler sum .7, fi(z) is equal to F(z) for all z in a domain this does not
guarantee the possibility of termwise differentiation. To guarantee it we suppose
that the function generating the equality Y-, fx(z) ~ F(z) analytically depends
on z. To formalize the last condition we have to introduce analytic functions of two
variables.

Power series of two variables. A power series of two variables z, w is defined
as a formal unordered sum Zk,m agmz*w™, over N x N — the set of all pairs of
nonnegative integers.

For a function of two variables f(z,w) one defines its partial derivative W

with respect to z at the point (zg,wp) as the limit of ﬂzﬁAz’“&),_f(zo’wo) as Az
tends to 0.

LEMMA 4.6.1. If 3" agmzfw!™ absolutely converges, then both " apmz*w™ and
S magmz*w™ 1 absolutely converge provided |z| < |z1|, |w| < |wi|. And for any
fized z, such that |z| < |z1| the function Y magz¥w™ 1 is the partial derivative of
> agmzFw™ with respect to w.

PROOF. Since Y |agm||z1|*|w1|™ < co the same is true for > |agm||z|*|w|™ for
|z| < |z1], lw| < |wy]. By the Sum Partition Theorem we get the equality

oo oo
E apm 2t w™ = E wmz apmzt.
m=0 k=0

For any fixed z the right-hand side of this equality is a power series with respect to
w as the variable. By Theorem 3.3.9 its derivative by w, which coincides with the
partial derivative of the left-hand side, is equal to

oo oo
Z mw™ ! Z pm 2" = Zmakmwm_lzk.
m=0 k=0
O

Analytic functions of two variables. A function of two variables F(z,w)
is called analytic at the point (zo,wy) if for (z,w) sufficiently close to (zo,wp) it
can be presented as a sum of a power series of two variables.
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THEOREM 4.6.2.
(1) If f(z,w) and g(z,w) are analytic functions, then f+g and fg are analytic
functions.

(2) If fi1(2), f2(z) and g(z,w) are analytic functions, then g(f1(z), f2(w)) and
fi(g(z,w)) are analytic functions.
(3) The partial derivative of any analytic function is an analytic function.

PRrOOF. The third statement follows from Lemma 4.6.1. The proofs of the first
and the second statements are straightforward and we leave them to the reader. O

Functional analytical sum. Let us say that a series )~ | fi(2) of analytic
functions is analytically summable to a function F(z) in a domain U C C along
a path p in C x C, such that p(0) € U x 0 and p(1) € U x 1, if there exists an
analytic function of two variables F'(z,w), defined on a domain W containing p,
U x 0, U x 1, such that for any zo € U the following two conditions are satisfied:

(1) F(z0,1) = F(zyp).

(2) F(z,w) =Y, W(z — z0)*w™ for sufficiently small |w| and |z — 2o
Let us remark that the analytic sum does not change if we change p keeping it
inside W. That is why one says that the sum is evaluated along the domain W.

To denote the functional analytical sum we use the sign . And we will write
also =y and =, to specify the domain or the path of summation.

The function F(z,w) will be called the generating function for the analytical

equality Y7, fi(z) = F(2).
LEMMA 4.6.3. If f(z) is an analytic function in a domain U containing 0, such

that f(z) = Y peoarz® for sufficiently small |z|, then f(z) Zw Y pegarz® in U
for W ={(z,w) | wz € U}.

ProOF. The generating function of this analytical equality is f((z —zo)w). O

LEMMA 4.6.4 (on substitution). If F(z) 22, Y2, fr(z) in U and g(z) is an
analytic function, then F(g(z)) =) Yo peo fr(9(2)) in g~ (U).

PRrOOF. Indeed, if F(z,w) generates F(z) =, > 7, fr(z), then F(g(z),w))
generates F(g(2)) =) Y i fr(9(2))- .

N. H. Abel was the first to have some doubts about the legality of termwise
differentiation of functional series. The following theorem justifies this operation
for analytic functions.

THEOREM 4.6.5. If 3.7 | fu(z) =, F(2) in U then Y | fi(2) =, F'(2) in U.

PROOF. Let F(z,w) be a generating function for > 27, fu(z) = F(z). We
demonstrate that its partial derivative by z (denoted F'(z,w)) is the generating
function for )~ fk( ) =p F'(2). Indeed, locally in a neighborhood of (zp,0) one

has F(z,w) =3 Lo ZO) m(z — zp)*. By virtue of Lemma 4.6.1 its derivative by z
is F'(z,w) = ¥ I 20) Mz = z)tt = Y Lu G0y gk, 0

The dual theorem on termwise integration is the following one.

THEOREM 4.6.6. Let > po fr = F be generated by F(z,w) defined on W =
U x V. Then for any path q in U one has [ F(z)dz ~ 377, [, fr(2)dz
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PRrROOF. The generating function for integrals is defined as fq F(z,w)dz. O

The proof of the following theorem is left to the reader.

THEOREM 4.6.7. If > 00 fr =p F and Y 1oy gk =p G then > po o (fr + 9k) =
F+G’ EZOZI fk gp F_f07 E?;Oka Ep CF

Revision of evaluations. Now we are ready to revise the above evaluation
equipped with the theory of analytic sums. Since all considered generating functions
in this paragraph are single valued, the results do not depend on the choice of the
path of summation. That is why we drop the indications of path below.

The equality (4.6.1) is the analytical equivalence generated by . The next
equality (4.6.7) is the analytical equivalence by Lemma 4.6.4. The equality (4.6.3)
is analytical equivalence due to Lemma 4.6.3. Termwise differentiation of (4.6.7) is
correct by virtue of Theorem 4.6.5. Therefore the equality (4.6.5) is obtained by the
restriction of an analytical equivalence. Hence the Euler sum of Y, (—1)*k*" is
equal to 0. Since the series Y2, (—1)*k*"z¥ converges for |z| < 1 its value coincides
with the value of the generating function. And the limit ZLirlnoz,;“;l(—l)kkmzk
gives the Euler sum, which is zero. Hence as a result of our calculations we have
found Abel’s sum >, (—=1)Fk>" = 0.

Now we choose another way to evaluate the Euler series. Substituting z = e
in (4.6.1) for 0 < € < 27 one gets

+if

14+ ei0 + 621'9 + 631'9 + ~ 1
= T
(4.6.7) boe
—i0 —2i0 —3i0 ~
]. + e +e +e +...= m

Termwise addition of the above lines gives for 8 € (0,27) the following equality

1
(4.6.8) cos(9+cos20—|—c0s39+---%—§.

Integration of (4.6.8) from 7 to & with subsequent replacement of x by 6 gives
by Theorem 4.6.6:
>, sin k6 LT

> 2m).
A 5 (0< 0 <2m)

k=1
A second integration of the same type gives

i coskf — (—1)* _ (7 —0)?
k2 4
k=1

Putting 6 = 5 we get

Therefore
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Since

o0 (o] o0
1 (_1)k+1 1

Zﬁzz k2 +QZ(2k)z
k=1 k=1 k=1

one gets
— 1 Ix(=DkFL g2
DEREPIEL depl.e
k=1 k=1

Problems.

1. Prove that the analytic sum of convolution of two series is equal to the product

of analytic sums of the series.

2. Suppose that for all n € N one has A, ~ Y 77 ank and B, ~ Y07 ak p.
Prove that the equality >~ Ay = > 5oy Bi holds provided there is an analytic
function F(z,w) coinciding with Y ay ,,2¥w™ for sufficiently small |w|,|z| which
is defined on a domain containing a path joining (0,0) with (1,1) analytically
extended to (1,1) (i-e., (1,1) is a regular point of F(z,w)).



