
4.6. Divergent SeriesOn the 
ontents of the le
ture. \Divergent series is a pure handiwork ofDiable. It is a full nonsense to say that 12n � 22n + 32n � � � � = 0. Do you keepto die laughing about this?" (N.H. Abel letter to . . . ). The twist of fate: now onesays that that the above mentioned equality holds in Abel's sense.The earliest analysts thought that any series, 
onvergent or divergent, has asum given by God and the only problem is to �nd it 
orre
tly. Sometimes theydisagreed what is the 
orre
t answer. In the nineteenth 
entury divergent serieswere expelled from mathemati
s as a \handiwork of Diable" (N.H. Abel). Laterthey were rehabilitated (see G.H. Hardy's book Divergent Series1). Euler remainsthe unsurpassed master of divergent series. For example, with the help of divergentseries he dis
overed Riemann's fun
tional equation of the �-fun
tion a hundredyears before Riemann.Evaluations with divergent series. Euler wrote: \My pen is 
lever thanmyself." Before we develop a theory let us simply follow to Euler's pen. Thefundamental equality is(4.6.1) 1 + x+ x2 + x3 + � � � = 11� x :Now we, following Euler, suppose that this equality holds for all x 6= 1. In these
ond le
ture we were 
onfused by some unexpe
ted properties of divergent series.But now in 
ontrast with the se
ond le
ture we do not hurry up to land. Let uslook around.Substituting x = �ey in (4.6.1) one gets1� ey + e2y � e3y + � � � = 11 + ey :On the other hand(4.6.2) 11 + ey = 1ey � 1 � 2e2y � 1 :Sin
e(4.6.3) zez � 1 = 1Xk=0 Bkk! zk:One derives from (4.6.2) via (4.6.3)(4.6.4) 1ey + 1 = 1Xk=1 Bk(1� 2k)k! yk�1:Let us di�erentiate repeatedly n-times the equality (4.6) by y. The left-hand sidegives P1k=0(�1)kkneky . In parti
ular for y = 0 we get P1k=0(�1)kkn. We get onthe right-hand side by virtue of (4.6.4) the following� ddy�n 11 + ey = Bn+1(1� 2n+1)n+ 1 :Combining these results we get the following equality(4.6.5) 1n � 2n + 3n � 4n + � � � = Bn+1(2n+1 � 1)n+ 1 :1G.H. Hardy, Divergent Series, Oxford University Press, 1949.124



4.6 divergent series 125Sin
e odd Bernoulli numbers vanish, we get12n � 22n + 32n � 42n + � � � = 0:Consider an even analyti
 fun
tion f(x), su
h that f(0) = 0. In this 
ase f(x)is presented by a power series a1x2 + a2x4 + a3x6 + : : : , then1Xk=1(�1)k�1 f(kx)k2 = 1Xk=1 (�1)k�1k2 1Xn=1 anx2nk2n= 1Xn=1 anx2n 1Xk=1(�1)k�1k2n�2= a1x2(1� 1 + 1� 1 + : : : )= a1x22 :In parti
ular, for f(x) = 1� 
osx this equality turns into(4.6.6) 1Xk=1(�1)k�1 1� 
os kxk2 = x24 :For x = � the equality (4.6.6) gives1 + 132 + 152 + 172 + � � � = �28 :Sin
e 1Xk=0 1(2k + 1)2 = 1Xk=1 1k2 � 1Xk=1 1(2k)2 = �1� 14� 1Xk=1 1k2one derives the sum of the Euler series:1Xk=1 1k2 = �26 :We see that 
al
ulations with divergent series sometimes give brilliant results.But sometimes they give the wrong result. Indeed the equality (4.6.6) generally isuntrue, be
ause on the left-hand side we have a periodi
 fun
tion and on the right-hand side a non-periodi
 one. But it is true for x 2 [��; �℄. Termwise di�erentiationof (4.6.6) gives the true equality (3.4.2), whi
h we know from Le
ture 3.4.Euler's sum of a divergent series. Now we develop a theory justifyingthe above evaluations. Euler writes that the value of an in�nite expression (inparti
ular the sum of a divergent series) is equal to the value of a �nite expressionwhose expansion gives this in�nite expression. Hen
e, numeri
al equalities arise bysubstituting a numeri
al value for a variable in a generating fun
tional identity. Toevaluate the sum of a series P1k=0 ak Euler usually 
onsiders its power generatingfun
tion g(z) represented by the power series P1k=0 akzk, and supposes that thesum of the series is equal to g(1).To be pre
ise suppose that the power seriesP1k=0 akzk 
onverges in a neighbor-hood of 0 and there is an analyti
 fun
tion g(z) de�ned in a domain U 
ontaininga path p from 0 to 1 and su
h that g(z) = P1k=0 akzk for z suÆ
iently 
lose to 0and 1 is a regular point of g. Then the series P1k=0 ak is 
alled Euler summableand the value g(1) is 
alled its analyti
 Euler sum with respe
t to p. And we willuse a spe
ial sign ' to denote the analyti
al sum.



126 4.6 divergent seriesBy the Uniqueness Theorem 3.6.9 the value of analyti
 sum of a series isuniquely de�ned for a �xed p. But this value generally speaking depends on thepath. For example, let us 
onsider the fun
tion p1 + x. Its binomial series forx = �2 turns into�1 + 1� 12! � 1 � 33! � 1 � 3 � 54! � � � � � (2k � 1)!!(k + 1)! � : : : :For p(t) = ei�t one sums up this series to i, be
ause it is generated by the fun
tionexp ln(1+z)2 de�ned in the upper half-plane. And along p(t) = e�i�t this series issummable to �i by exp � ln(1+z)2 de�ned in the lower half-plane.For a �xed path the analyti
 Euler sum evidently satis�es the Shift, Multipli-
ation and Addition Formulas of the �rst le
ture. But we see that the analyti
 sumof a real series may be purely imaginary. Hen
e the rule ImP1k=0 ak 'P1k=0 Im akfails for the analyti
 sum. The Euler sum along [0; 1℄ 
oin
ides with the Abel sumof the series in the 
ase when both of them exist.In above evaluations we apply termwise di�erentiation to fun
tional series. Ifthe Euler sum P1k=1 fk(z) is equal to F (z) for all z in a domain this does notguarantee the possibility of termwise di�erentiation. To guarantee it we supposethat the fun
tion generating the equality P1k=1 fk(z) ' F (z) analyti
ally dependson z. To formalize the last 
ondition we have to introdu
e analyti
 fun
tions of twovariables.Power series of two variables. A power series of two variables z; w is de�nedas a formal unordered sum Pk;m akmzkwm, over N � N | the set of all pairs ofnonnegative integers.For a fun
tion of two variables f(z; w) one de�nes its partial derivative �f(z0;w0)�zwith respe
t to z at the point (z0; w0) as the limit of f(z0+�z;w0)�f(z0;w0)�z as �ztends to 0.Lemma 4.6.1. If P akmzk1wm1 absolutely 
onverges, then both Pakmzkwm andPmakmzkwm�1 absolutely 
onverge provided jzj < jz1j, jwj < jw1j. And for any�xed z, su
h that jzj < jz1j the fun
tion Pmakzkwm�1 is the partial derivative ofPakmzkwm with respe
t to w.Proof. Sin
eP jakmjjz1jkjw1jm <1 the same is true forP jakmjjzjkjwjm forjzj < jz1j, jwj < jw1j. By the Sum Partition Theorem we get the equalityX akmzkwm = 1Xm=0wm 1Xk=0 akmzk:For any �xed z the right-hand side of this equality is a power series with respe
t tow as the variable. By Theorem 3.3.9 its derivative by w, whi
h 
oin
ides with thepartial derivative of the left-hand side, is equal to1Xm=0mwm�1 1Xk=0 akmzk =Xmakmwm�1zk: �Analyti
 fun
tions of two variables. A fun
tion of two variables F (z; w)is 
alled analyti
 at the point (z0; w0) if for (z; w) suÆ
iently 
lose to (z0; w0) it
an be presented as a sum of a power series of two variables.



4.6 divergent series 127Theorem 4.6.2.(1) If f(z; w) and g(z; w) are analyti
 fun
tions, then f+g and fg are analyti
fun
tions.(2) If f1(z); f2(z) and g(z; w) are analyti
 fun
tions, then g(f1(z); f2(w)) andf1(g(z; w)) are analyti
 fun
tions.(3) The partial derivative of any analyti
 fun
tion is an analyti
 fun
tion.Proof. The third statement follows from Lemma 4.6.1. The proofs of the �rstand the se
ond statements are straightforward and we leave them to the reader. �Fun
tional analyti
al sum. Let us say that a series P1k=1 fk(z) of analyti
fun
tions is analyti
ally summable to a fun
tion F (z) in a domain U � C alonga path p in C � C , su
h that p(0) 2 U � 0 and p(1) 2 U � 1, if there exists ananalyti
 fun
tion of two variables F (z; w), de�ned on a domain W 
ontaining p,U � 0, U � 1, su
h that for any z0 2 U the following two 
onditions are satis�ed:(1) F (z0; 1) = F (z0).(2) F (z; w) =P f (k)m (z0)k! (z � z0)kwm for suÆ
iently small jwj and jz � z0j.Let us remark that the analyti
 sum does not 
hange if we 
hange p keeping itinside W . That is why one says that the sum is evaluated along the domain W .To denote the fun
tional analyti
al sum we use the sign �=. And we will writealso �=W and �=p to spe
ify the domain or the path of summation.The fun
tion F (z; w) will be 
alled the generating fun
tion for the analyti
alequality P1k=1 fk(z) �= F (z).Lemma 4.6.3. If f(z) is an analyti
 fun
tion in a domain U 
ontaining 0, su
hthat f(z) = P1k=0 akzk for suÆ
iently small jzj, then f(z) �=W P1k=0 akzk in Ufor W = f(z; w) j wz 2 Ug.Proof. The generating fun
tion of this analyti
al equality is f((z�z0)w). �Lemma 4.6.4 (on substitution). If F (z) �=p P1k=0 fk(z) in U and g(z) is ananalyti
 fun
tion, then F (g(z)) �=g(p) P1k=0 fk(g(z)) in g�1(U).Proof. Indeed, if F (z; w) generates F (z) �=p P1k=0 fk(z), then F (g(z); w))generates F (g(z)) �=g(p) P1k=0 fk(g(z)). �N. H. Abel was the �rst to have some doubts about the legality of termwisedi�erentiation of fun
tional series. The following theorem justi�es this operationfor analyti
 fun
tions.Theorem 4.6.5. If P1k=1 fk(z) �=p F (z) in U then P1k=1 f 0k(z) �=p F 0(z) in U .Proof. Let F (z; w) be a generating fun
tion for P1k=1 fk(z) �=p F (z). Wedemonstrate that its partial derivative by z (denoted F 0(z; w)) is the generatingfun
tion for P1k=1 f 0k(z) �=p F 0(z). Indeed, lo
ally in a neighborhood of (z0; 0) onehas F (z; w) =P f (k)m (z0)k! wm(z� z0)k. By virtue of Lemma 4.6.1 its derivative by zis F 0(z; w) =P f (k)m (z0)(k�1)! wm(z � z0)k�1 =P f 0(k)m (z0)k! wm(z � z0)k. �The dual theorem on termwise integration is the following one.Theorem 4.6.6. Let P1k=1 fk �= F be generated by F (z; w) de�ned on W =U � V . Then for any path q in U one has Rq F (z) dz 'P1k=1 Rq fk(z) dz.



128 4.6 divergent seriesProof. The generating fun
tion for integrals is de�ned as Rq F (z; w) dz. �The proof of the following theorem is left to the reader.Theorem 4.6.7. If P1k=0 fk �=p F and P1k=0 gk �=p G then P1k=0(fk + gk) �=pF +G, P1k=1 fk �=p F � f0, P1k=0 
fk �=p 
FRevision of evaluations. Now we are ready to revise the above evaluationequipped with the theory of analyti
 sums. Sin
e all 
onsidered generating fun
tionsin this paragraph are single valued, the results do not depend on the 
hoi
e of thepath of summation. That is why we drop the indi
ations of path below.The equality (4.6.1) is the analyti
al equivalen
e generated by 11�tx . The nextequality (4.6.7) is the analyti
al equivalen
e by Lemma 4.6.4. The equality (4.6.3)is analyti
al equivalen
e due to Lemma 4.6.3. Termwise di�erentiation of (4.6.7) is
orre
t by virtue of Theorem 4.6.5. Therefore the equality (4.6.5) is obtained by therestri
tion of an analyti
al equivalen
e. Hen
e the Euler sum of P1k=1(�1)kk2n isequal to 0. Sin
e the seriesP1k=1(�1)kk2nzk 
onverges for jzj < 1 its value 
oin
ideswith the value of the generating fun
tion. And the limit limz!1�0P1k=1(�1)kk2nzkgives the Euler sum, whi
h is zero. Hen
e as a result of our 
al
ulations we havefound Abel's sum P1k=1(�1)kk2n = 0.Now we 
hoose another way to evaluate the Euler series. Substituting x = e�i�in (4.6.1) for 0 < � < 2� one gets1 + ei� + e2i� + e3i� + : : : �= 11� ei� ;1 + e�i� + e�2i� + e�3i� + : : : �= 11� e�i� :(4.6.7)Termwise addition of the above lines gives for � 2 (0; 2�) the following equality(4.6.8) 
os � + 
os 2� + 
os 3� + � � � �= �12 :Integration of (4.6.8) from � to x with subsequent repla
ement of x by � givesby Theorem 4.6.6: 1Xk=1 sin k�k �= � � �2 (0 < � < 2�):A se
ond integration of the same type gives1Xk=1 
os k� � (�1)kk2 �= (� � �)24 :Putting � = �2 we get 1Xk=1 (�1)k+1k2 � 14 1Xk=1 (�1)k+1k2 ' �216 :Therefore 1Xk=1 (�1)k+1k2 = �212 :



4.6 divergent series 129Sin
e 1Xk=1 1k2 = 1Xk=1 (�1)k+1k2 + 2 1Xk=1 1(2k)2one gets 1Xk=1 1k2 = 12 1Xk=1 (�1)k+1k2 = �26 :Problems.1. Prove that the analyti
 sum of 
onvolution of two series is equal to the produ
tof analyti
 sums of the series.2. Suppose that for all n 2 N one has An ' P1k=0 an;k and Bn ' P1k=0 ak;n.Prove that the equalityP1k=0 Ak =P1k=0 Bk holds provided there is an analyti
fun
tion F (z; w) 
oin
iding withP ak;nzkwn for suÆ
iently small jwj,jzj whi
his de�ned on a domain 
ontaining a path joining (0; 0) with (1; 1) analyti
allyextended to (1; 1) (i.e., (1; 1) is a regular point of F (z; w)).


