
4.5. The CotangentOn the ontents of the leture. In this leture we perform what waspromised at the beginning: we sum up the Euler series and expand sinx intothe produt. We will see that sums of series of reiproal powers are expressed viaBernoulli numbers. And we will see that the funtion responsible for the summationof the series is the otangent.An ingenious idea, whih led Euler to �nding the sumP1k=1 1k2 , is the follow-ing. One an onsider sinx as a polynomial of in�nite degree. This polynomial hasas roots all points of the type k�. Any ordinary polynomial an be expanded intoa produt Q(x � xk) where xk are its roots. By analogy, Euler onjetured thatsinx an be expanded into the produtsinx = 1Yk=�1(x� k�):This produt diverges, but an be modi�ed to a onvergent one by division of then-th term by �n�. The division does not hange the roots. The modi�ed produtis(4.5.1) 1Yk=�1�1� xk�� = x 1Yk=1�1� x2k2�2� :Two polynomials with the same roots an di�er by a multipliative onstant. To�nd the onstant, onsider x = �2 . In this ase we get the inverse to the Wallisprodut in (4.5.1) multiplied by x = �2 . Hene the value of (4.5.1) is 1, whihoinides with sin �2 . Thus it is natural to expet that sinx oinides with theprodut (4.5.1).There is another way to tame Q1k=�1(x � k�). Taking the logarithm, weget a divergent series P1k=�1 ln(x � k�), but ahieve onvergene by termwisedi�erentiation. Sine the derivative of ln sinx is otx, it is natural to expet thatotx oinides with the following funtion(4.5.2) tg(x) = 1Xk=�1 1x� k� = 1x + 1Xk=1 2xx2 � k2�2 :Cotangent expansion. The expansion zez�1 =P1k=0 Bkk! zk allows us to get apower expansion for ot z. Indeed, representing ot z by Euler's formula one getsieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1 = i+ 2ie2iz � 1 = i+ 1z 2ize2iz � 1 = i+ 1z 1Xk=0 Bkk! (2iz)k:The term of the last series orresponding to k = 1 is 2izB1 = �iz. Multiplied by1z , it turns into �i, whih eliminates the �rst i. The summand orresponding tok = 0 is 1. Taking into aount that B2k+1 = 0 for k > 0, we getot z = 1z + 1Xk=1(�1)k 4kB2k(2k)! z2k�1:118



4.5 the otangent 119Power expansion of tg(z). Substituting1z2 � n2�2 = � 1n2�2 11� z2n2�2 = � 1Xk=0 z2k(n�)2k+2into (4.5.2) and hanging the order of summation, one gets:1Xn=1 1Xk=0 z2k(n�)2k+2 = 1Xk=0 z2k�2k+2 1Xn=1 1n2k+2 :The hange of summation order is legitimate in the disk jzj < 1, beause the seriesabsolutely onverges there. This proves the following:Lemma 4.5.1. tg(z)� 1z is an analyti funtion in the disk jzj < 1. The n-thoeÆient of the Taylor series of tg(z) � 1z at 0 is equal to 0 for even n and isequal to 1�n+1 P1k=1 1kn+1 for any odd n.Thus the equality ot z = tg(z) would imply the following remarkable equality:(�1)n 4nB2n2n! = � 1�2n 1Xk=1 1k2nIn partiular, for n = 1 it gives the sum of Euler series as �26 .Exploring the otangent.Lemma 4.5.2. j ot zj � 2 provided j Im zj � 1.Proof. Set z = x + iy. Then jeizj = jeix�yj = e�y. Therefore if y � 1, thenje2izj = e�2y � 1e2 < 13 . Hene je2iz + 1j � 1e2 + 1 < 43 and je2iz � 1j � 1� 1e2 > 23 .Thus the absolute value ofot z = ieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1is less than 2. For y � 1 the same arguments work for the representation of ot zas i 1+e�2iz1�e�2iz . �Lemma 4.5.3. j ot(�=2 + iy)j � 4 for all y.Proof. ot(�=2 + iy) = os(�=2+iy)sin(�=2+iy) = � sin iyos iy = et�e�tet+e�t . The module of thenumerator of this fration does not exeed e� e�1 for t 2 [�1; 1℄ and the denomi-nator is greater than 1. This proves the inequality for y 2 [�1; 1℄. For other y thisis the previous lemma. �Let us denote by �Z the set fk� j k 2 Zg of �-integers.Lemma 4.5.4. The set of singular points of ot z is �Z. All these points aresimple poles with residue 1.Proof. The singular points of ot z oinide with the roots of sin z. The rootsof sin z are roots of the equation eiz = e�iz whih is equivalent to e2iz = 1. Sineje2izj = je�2 Im zj one gets Im z = 0. Hene sin z has no roots beyond the realline. And all its real roots as we know have the form fk�g. Sine limz!0 z ot z =limz!0 z os zsin z = limz!0 zsin z = 1sin0 0 = 1, we get that 0 is a simple pole of ot z



120 4.5 the otangentwith residue 1 and the other poles have the same residue beause of periodiity ofot z. �Lemma 4.5.5. Let f(z) be an analyti funtion on a domain D. Suppose thatf has in D �nitely many singular points, they are not �-integers and D has no�-integer point on its boundary. ThenI�D f(�) ot �d� = 2�i 1Xk=�1 f(k�)[k� 2 D℄+ 2�iXz2D resz(f(z) ot z)[z =2 �Z℄:Proof. In our situation every singular point of f(z) ot z in D is either a�-integer or a singular point of f(z). Sine resz=k� ot z = 1, it follows thatresz=k� f(z) ot z = f(k�). Hene the onlusion of the lemma is a diret on-sequene of Residue Theory. �Exploring tg(z).Lemma 4.5.6. tg(z + �) = tg(z) for any z.Proof.tg(z + �) = limn!1 nXk=�n 1z + � � k�= limn!1 n�1Xk=�n�1 1z + k�= limn!1 1z � (n+ 1)� + limn!1 1z � n� + limn!1 (n�1)Xk=�(n�1) 1z + � � k�= 0+ 0+ tg(z): �Lemma 4.5.7. The series representing tg(z) onverges for any z whih is nota �-integer. j tg(z)j � 2 for all z suh that j Im zj > �.Proof. For any z one has jz2 � k2�2j � k2 for k > jzj. This provides theonvergene of the series. Sine tg(z) has period �, it is suÆient to prove theinequality of the lemma in the ase x 2 [0; �℄, where z = x + iy. In this asejyj � jxj and Re z2 = x2 � y2 � 0. Then Re(z2 � k2�2) � �k2�2. It follows thatjz2�k2�2j � k2�2. Hene j tg(z)j is termwise majorized by 1�+P1k=1 1k2�2 < 2. �Lemma 4.5.8. j tg(z)j � 3 for any z with Re z = �2 .Proof. In this ase Re(z2 � k2�2) = �24 � y2 � k2�2 � �k2 for all k � 1.Hene jC(z)j � 2� +P1k=1 1k2 � 1 + 2 = 3. �Lemma 4.5.9. For any z 6= k� and domain D whih ontains z and whoseboundary does not ontain �-integers, one has(4.5.3) I�D tg(�)� � z d� = 2�i tg(z) + 2�i 1Xk=�1 1k� � z [k� 2 D℄:



4.5 the otangent 121Proof. As was proved in Leture 3.6, the series P1k=�1 1(��z)(��k�) admitstermwise integration. The residues of 1(��z)(��k�) are 1k��z at k� and 1z�k� at z.Hene I�D 1(� � z)(� � k�)d� = (2�i 1z�k� for k� =2 D,0 if k� 2 D.It follows that I�D tg(�)� � z d� = 2�i 1Xk=�1 1z � k� [k� =2 D℄= 2�i tg(z)� 1Xk=�1 1z � k� [k� 2 D℄: �Lemma 4.5.10. tg(z) is an analyti funtion de�ned on the whole plane, havingall �-integers as its singular points, where it has residues 1.Proof. Consider a point z =2 �Z. Consider a disk D, not ontaining �-integerswith enter at z. Then formula (4.5.3) transforms to the Cauhy Integral Formula.And our assertion is proved by termwise integration of the power expansion of 1��zjust with the same arguments as was applied there. The same formula (4.5.3) allowsus to evaluate the residues. �Theorem 4.5.11. ot z = 1z +P1k=1 2zz2�k2�2 .Proof. Consider the di�erene R(z) = ot z � tg(z). This is an analytifuntion whih has �-integers as singular points and has residues 0 in all of these.Hene R(z) = 12�i H�D R(�)��z d� for any z =2 �Z. We will prove that R(z) is onstant.Let z0 and � be a pair of di�erent points not belonging to �Z. Then for any D suhthat �D \ �Z= ? one hasR(z)�R(z0) = 12�i I�D R(�)� 1� � z � 1� � z0� d�= 12�i I�D R(z)(z � z0)(� � z)(� � z0) :(4.5.4)Let us de�ne Dn for a natural n > 3 as the retangle bounded by the lines Re z =�(�=2 � n�), Im z = �n�. Sine jR(z)j � 7 by Lemmas 4.5.2, 4.5.3, 4.5.7, and4.5.8 the integrand of (4.5.4) eventually is bounded by 7jz�z0jn2 . The ontour ofintegration onsists of four monotone urves of diameter < 2n�. By the EstimationLemma 3.5.4, the integral an be estimated from above by 32�n7jz�z0jn2 . Hene thelimit of our integral as n tends to in�nity is 0. This implies R(z) = R(z0). HeneR(z) is onstant and the value of the onstant we �nd by putting z = �=2. Asot�=2 = 0, the value of the onstant istg(�=2) = limn!1 nXk=�n 1�=2� k� = 2� limn!1 nXk=�n 11� 2k :



122 4.5 the otangentThis limit is zero beausenXk=�n 11� 2k = 0Xk=�n 11� 2k + nXk=1 11� 2k = nXk=0 12k + 1 + nXk=1� 12k � 1 = 12n+ 1 :�Summation of series by ot z.Theorem 4.5.12. For any rational funtion R(z), whih is not singular inintegers and has degree � �2, one has P1k=�1R(n) = �Pz res� ot(�z)R(z).Proof. In this ase the integral limn!1 H�Dn=pi R(z)� ot�z = 0. Henethe sum of all residues of R(z)� ot�z is zero. The residues at �-integers givesP1k=�1R(k). The rest gives �Pz res� ot(�z)R(z). �Fatorization of sinx. Theorem 4.5.11 with �z substituted for z gives the se-ries � ot�z =P1k=�1 1z�k . The half of the series on the right-hand side onsistingof terms with nonnegative indies represents a funtion, whih formally telesopes� 1z . The negative half telesopes 1z . Let us biset the series into nonnegative andnegative halves and add P1k=�1 1k [k 6= 0℄ to provide onvergene:�1Xk=�1� 1z � k + 1k�+ 1Xk=0� 1z � k + 1k + 1�= 1Xk=1��1k + 1z + k�+ 1Xk=1� 1z + 1� k + 1k� :The �rst of the series on the right-hand side represents �z(z) � , the seond isz(�z+1)+. We get the following omplement formula for the digamma funtion:�z(z) +z(1� z) = � ot�z:Sine �00(z+1) = z0(z) = � (z) (Lemma 4.4.11) it follows that �0(1+z) = z(z)+and �0(�z) = �(z(1�z)+). Therefore �0(1+z)+�0(�z) = � ot�z. Integrationof the latter equality gives ��(1 + z)��(�z) = ln sin�z + . Changing z by �zwe get �(1 � z) + �(z) = � ln sin�z + . Exponentiating gives �(1 � z)�(�z) =1sin�z . One de�nes the onstant by putting z = 12 . On the left-hand side one gets�( 12 )2 = �, on the right-hand side, . Finally we get the omplement formula forthe Gamma-funtion:(4.5.5) �(1� z)�(z) = �sin�z :Now onsider the produt Q1k=1(1� x2k2 ). Its anonial form is(4.5.6) 1Yn=1n�1� xn� e xno�1 1Yn=1n�1 + xn� e� xno�1 :The �rst produt of (4.5.6) is equal to � exx�(�x) , and the seond one is e�xx�(�x) .Therefore the whole produt is � 1x2�(x)�(�x) . Sine �(1 � x) = �x�(�x) we getthe following result 1�(x)�(1� x) = x 1Yk=1�1� x2k2� :



4.5 the otangent 123Comparing this to (4.5.5) and substituting �x for x we get the Euler formula:sinx = x 1Yk=1�1� x2�2k2� :Problems.1. Expand tan z into a power series.2. Evaluate P1k=1 11+k2 .3. Evaluate P1k=1 11+k4 .


