
4.4. Gamma FuntionOn the ontents of the leture. Euler's Gamma-funtion is the funtionresponsible for in�nite produts. An in�nite produt whose terms are values ofa rational funtion at integers is expressed in terms of the Gamma-funtion. Inpartiular it will help us prove Euler's fatorization of sin.Telesoping problem. Given a funtion f(x), �nd a funtion F (x) suh thatÆF = f . This is the telesoping problem for funtions. In partiular, for f = 0any periodi funtion of period 1 is a solution. In the general ase, to any solutionof the problem we an add a 1-periodi funtion and get another solution. Thegeneral solution has the form F (x) + k(t) where F (x) is a partiular solution andk(t) is a 1-periodi funtion, alled the periodi onstant.The Euler-Malaurin formula gives a formal solution of the problem, but theEuler-Malaurin series rarely onverges. Another formal solution is(4.4.1) F (x) = � 1Xk=0 f(x+ k):Trigamma. Now let us try to telesope the Euler series. The series (4.4.1)onverges for f(x) = 1xm provided m � 2 and x 6= �n for natural n > 1. Inpartiular, the funtion(4.4.2) � (x) = 1Xk=1 1(x+ k)2is analyti; it is alled the trigamma funtion and it telesopes � 1(1+x)2 . Its value� (0) is just the sum of the Euler series.This funtion is distinguished among others funtions telesoping � 1(1+x)2 byits �nite variation.Theorem 4.4.1. There is a unique funtion � (x) suh that Æ� (x) = � 1(1+x)2 ,var� [0;1℄ <1 and � (0) =P1k=1 1k2 .Proof. Sine � is monotone, one has var� [0;1℄ = P1k=0 jÆ� j = P1k=1 1k2 <1. Suppose f(x) is another funtion of �nite variation telesoping 1(1+x)2 . Thenf(x) � � (x) is a periodi funtion of �nite variation. It is obvious that suh afuntion is onstant, and this onstant is 0 if f(1) = � (1). �Digamma. The series �P1k=0 1x+k , whih formally telesopes 1x , is divergent.However the series �P1k=0 � 1x+k � 1k [k 6= 0℄� is onvergent and it telesopes 1x ,beause adding a onstant does not a�et the di�erenes. Indeed,� 1Xk=0� 1x+1+k � 1k [k 6= 0℄�+ 1Xk=0 � 1x+k � 1k [k 6= 0℄� = � 1Xk=0 Æ 1x+k = 1x :The funtion(4.4.3) z(x) = � + 1Xk=1�1k � 1x+ k�112



4.4 gamma funtion 113is alled thedigamma funtion. Here  is the Euler onstant. The digamma fun-tion is an analyti funtion, whose derivative is the trigamma funtion, and whosedi�erene is 11+x .Monotoniity distinguishes z among others funtion telesoping 11+x .Theorem 4.4.2. There is a unique monotone funtion z(x) suh that Æz(x) =11+x and z(0) = �.Proof. Suppose f(x) is a monotone funtion telesoping 11+x . Denote by v thevariation of f�z on [0; 1℄. Then the variation of f�z over [1; n℄ is nv. On the otherhand, varf [1; n℄ =Pnk=1 1k < lnn+ . Hene the variation of f(x)�z(x) on [1; n℄is less than 2( + lnn). Hene v for any n satis�es the inequality nv � 2( + lnn).Sine limn!1 lnnn = 0, we get v = 0. Hene f � z is onstant, and it is zero iff(1) = z(1). �Lemma 4.4.3. z0 = � .Proof. To prove that z0(x) = � (x), onsider F (x) = R x1 � (t) dt. This fun-tion is monotone, beause F 0(x) = � (x) � 0. Further (ÆF )0 = ÆF 0 = Æ� (x) =� 1(1+x)2 . It follows that ÆF = 11+x + , where  is a onstant. By Theorem 4.4.2 itfollows that F (x+ 1)� x�  = z(x). Hene z(x)0 = F 0(x+ 1) +  = � (x). Thisproves that z0 is di�erentiable and has �nite variation. As Æz(x) = 11+x it followsthat Æz0(x) = � 1(1+x)2 . We get that z0(x) = � (x) by Theorem 4.4.1. �Telesoping the logarithm. To telesope the logarithm, we start with theformal solution �P1k=0 ln(x+k). To derease the divergene, addP1k=1 ln k term-wise. We get� lnx�P1k=1(ln(x+k)�ln k) = � lnx�P1k=1 ln(1+ xk ). We know thatln(1+x) is lose to x, but the series still diverges. Now onvergene an be reahedby the subtration of xk from the k-th term of the series. This substration hangesthe di�erene. Let us evaluate the di�erene of F (x) = � lnx�P1k=1(ln(1+ xk )� xk ).The di�erene of the n-th term of the series is�ln �1 + x+1k �� x+1k �� �ln �1 + xk �� xk �= �ln(x+ k + 1)� ln k � x+1k �� �ln(x+ k)� ln k � xk �= Æ ln(x+ k)� 1k :HeneÆF (x) = �Æ lnx�P1k=1 �Æ ln(x+ k)� 1k �= limn!1 ��Æ lnx�Pn�1k=1 �Æ ln(x+ k)� 1k ��= limn!1 �lnx� ln(n+ x) +Pn�1k=1 1k�= lnx+ limn!1(ln(n)� ln(n+ x)) + limn!1 �Pn�1k=1 1k � lnn�= lnx+ :As a result, we get the following formula for a funtion, whih telesopes thelogarithm:(4.4.4) �(x) = �x� lnx� 1Xk=1 �ln�1 + xk�� xk� :



114 4.4 gamma funtionTheorem 4.4.4. The series (4.4.4) onverges absolutely for all x exept nega-tive integers. It presents a funtion �(x) suh that �(1) = 0 and Æ�(x) = lnx.Proof. The inequality x1+x � ln(1 + x) � x implies(4.4.5) j ln(1 + x)� xj � ���� x1 + x � x���� = ���� x21 + x ���� :Denote by " the distane from x to the losest negative integer. Then due to(4.4.5), the series P1k=1 ln ��1 + yk �� yk � is termwise majorized by the onvergentseriesP1k=1 x2"k2 . This proves the absolute onvergene of (4.4.4).Sine limn!1Pn�1k=1 (ln(1 + 1k )� 1k ) = limn!1(lnn�Pn�1k=1 1k ) = �, one gets�(1) = 0. �Convexity. There are a lot of funtions that telesope the logarithm. Theproperty whih distinguishes � among others is onvexity.Throughout the leture � and � are nonnegative and omplementary to eahother, that is �+ � = 1. The funtion f is alled onvex if, for any x, y, it satis�esthe inequality:(4.4.6) f(�x+ �y) � �f(x) + �f(y) 8� 2 [0; 1℄:Immediately from the de�nition it follows thatLemma 4.4.5. Any linear funtion ax+ b is onvex.Lemma 4.4.6. Any sum (even in�nite) of onvex funtions is a onvex funtion.The produt of a onvex funtion by a positive onstant is a onvex funtion.Lemma 4.4.7. If f(p) = f(q) = 0 and f is onvex, then f(x) � 0 for allx =2 [p; q℄.Proof. If x > q then q = x�+ p� for � = q�px�p . Hene f(q) � f(x)�+ f(p)� =f(x), and it follows that f(x) � f(q) = 0. For x < p one has p = x� + q� for� = q�pq�x . Hene 0 = f(p) � f(x)� + f(q)� = f(x). �Lemma 4.4.8. If f 00 is nonnegative then f is onvex.Proof. Consider the funtion F (t) = f(l(t)), where l(t) = x� + y�. Newton'sformula for F (t) with nodes 0, 1 gives F (t) = F (0) + ÆF (0)t + 12F 00(�)t2. SineF 00(�) = (y � x)2f 00(�) > 0, and t2 = t(t � 1) < 0 we get the inequality F (t) �F (0)�+ tF (1). Sine F (�) = f(x�+ y�) this is just the inequality of onvexity. �Lemma 4.4.9. If f is onvex, then 0 � f(a) + �Æf(a)� f(a+ �) � Æ2f(a� 1)for any a and any � 2 [0; 1℄Proof. Sine a + � = �a + �(a + 1) we get f(a + �) � f(a)� + f(a + 1)� =f(a)+�Æf(a). On the other hand, the onvex funtion f(a+x)�f(a)�xÆf(a�1)has roots �1 and 0. By Lemma 4.4.7 it is nonnegative for x > 0. Hene f(a+ �) �f(a)+ �Æf(a�1). It follows that f(a)+ �Æf(a)�f(a+ �) � f(a)+ �Æf(a)�f(a)��Æf(a� 1) = �Æ2f(a� 1). �Theorem 4.4.10. �(x) is the unique onvex funtion that telesopes lnx andsatis�es �(1) = 1.



4.4 gamma funtion 115Proof. Convexity of � follows from the onvexity of the summands of itsseries. The summands are onvex beause their seond derivatives are nonnegative.Suppose there is another onvex funtion f(x) whih telesopes the logarithmtoo. Then �(x) = f(x) � �(x) is a periodi funtion, Æ� = 0. Let us prove that�(x) is onvex. Consider a pair ; d, suh that j�dj � 1. Sine f(�+d�)��f()��f(d) � 0, as f is onvex, one has�(� + d�)� ��() � ��(d) = (f(� + d�)� �f()� �f(d))� (�(� + d�)� ��()� ��(d))� ��() + ��(d)��(� + d�):First, prove that � satis�es the following "-relaxed inequality of onvexity:(4.4.7) �(� + d�) � ��() + ��(d) + ":Inreasing  and d by 1, we do not hange the inequality as Æ� = 0. Due to thisfat, we an inrease  and d to satisfy 1�1 < "3 . Set L(x) = �() + (x� ) ln . ByLemma 4.4.9 for x 2 [; +1℄ one has j�x�L(x)j � Æ2�(� 1) = ln � ln(� 1) =ln(1 + 1�1 ) � 1�1 < "3 . Sine j�(x) � L(x)j < "3 for x = ; d; +d2 , it follows that��() + ��(d) � �(� + d�) di�ers from �L() + �L(d) � L(� + d�) = 0 by lessthan by ". The inequality (4.4.7) is proved. Passing to the limit as " tends to 0,one eliminates ".Hene �(x) is onvex on any interval of length 1 and has period 1. Then �(x)is onstant. Indeed, onsider a pair a; b with ondition b � 1 < a < b. Thena = (b� 1)� + b� for � = b� a. Hene f(a) � f(b)� + f(b� 1)� = f(b). �Lemma 4.4.11. �00(1 + x) = � (x).Proof. The funtion F (x) = R x1 z(t) dt is onvex beause its seond derivativeis � . The di�erene of F 0 = z is 11+x . Hene ÆF (x) = ln(x+1)+, where  is someonstant. It follows that F (x� 1)� x+  = �(x). Hene � is twie di�erentiableand its seond derivative is � . �Gamma funtion. Now we de�ne Euler's gamma funtion �(x) as exp(�(x)),where �(x) is the funtion telesoping the logarithm. Exponentiating (4.4.4) givesa representation of the Gamma funtion in so-alled anonial Weierstrass form:(4.4.8) �(x) = e�xx 1Yk=1 �1 + xk��1 e xk :Sine Æ ln �(x) = lnx, one gets the following harateristi equation of the Gammafuntion(4.4.9) �(x+ 1) = x�(x):Sine �(1) = 0, aording to (4.4.4), one proves by indution that �(n) = (n� 1)!using (4.4.9).A nonnegative funtion f is alled logarithmially onvex if ln f(x) is onvex.Theorem 4.4.12 (haraterization). �(x) is the unique logarithmially onvexfuntion de�ned for x > 0, whih satis�es equation (4.4.9) for all x > 0 and takesthe value 1 at 1.



116 4.4 gamma funtionProof. Logarithmial onvexity of �(x) follows from the onvexity of �(x).Further �(1) = exp�(1) = 1. If f is a logarithmially onvex funtion satisfyingthe gamma-equation, then ln f satis�es all the onditions of Theorem 4.4.4. Hene,ln f(x) = �(x) and f(x) = �(x). �Theorem 4.4.13 (Euler). For any x � 0 one has �(x) = R10 tx�1e�t dt.Let us hek that the integral satis�es all the onditions of Theorem 4.4.12.For x = 1 the integral gives R10 e�t dt = �e�t j10 = 1. The integration by partsR10 txe�t dt = � R10 tx de�t = �txe�t j10 + R10 e�txtx�1 dx proves that it satis-�es the gamma-equation (4.4.9). It remains to prove logarithmi onvexity of theintegral.Lemma 4.4.14 (mean riterium). If f is a monotone funtion whih satis�esthe following mean inequality 2f(x+y2 ) � f(x) + f(y) for all x; y then f is onvex.Proof. We have to prove the inequality f(x�+y�) � �f(x)+�f(y) = L(�) forall �, x and y. Set F (t) = f(x+(y�x)t); than F also satis�es the mean inequality.And to prove our lemma it is suÆient to prove that F (t) � L(t) for all t 2 [0; 1℄.First we prove this inequality only for all binary rational numbers t, that isfor numbers of the type m2n , m � 2n. The proof is by indution on n, the degreeof the denominator. If n = 0, the statement is true. Suppose the inequalityF (t) � L(t) is already proved for frations with denominators of degree � n.Consider r = m2n+1 , with odd m = 2k + 1. Set r� = k2n , r+ = k+12n . By theindution hypothesis F (r�) � L(r�). Sine r = r++r�2 , by the mean inequalityone has F (r) � f(r+)+f(r�)2 � L(r+)+L(r�)2 = L( r++r�2 ) = L(r).Thus our inequality is proved for all binary rational t. Suppose F (t) > L(t)for some t. Consider two binary rational numbers p, q suh that t 2 [p; q℄ andjq� pj < F (t)�L(t)jf(y)�f(x)j . In this ase jL(p)�L(t)j � jp� tjjf(y)� f(x)j < jF (t)�L(t)j.Therefore F (p) � L(p) < F (t). The same arguments give F (q) < F (t). This isa ontradition, beause t is between p and q and its image under a monotonemapping has to be between images of p and q. �Lemma 4.4.15 (Cauhy-Bunyakovski-Shwarz).(4.4.10)  Z ba f(x)g(x) dx!2 � Z ba f2(x) dx Z ba g2(x) dx:Proof. Sine R ba (f(x) + tg(x))2 dx � 0 for all t, the disriminant of the fol-lowing quadrati equation is non-negative:(4.4.11) t2 Z ba g2(x) dx + 2t Z ba f(x)g(x) dx + Z ba f2(x) dx = 0:This disriminant is 4�R ba f(x)g(x) dx�2 � 4 R ba f2(x) dx R ba g2(x) dx. �Now we are ready to prove the logarithmi onvexity of the Euler integral.The integral is obviously an inreasing funtion, hene by the mean riterion it issuÆient to prove the following inequality:(4.4.12) �Z 10 t x+y2 �1e�t dt�2 � Z 10 tx�1e�t dt Z 10 ty�1e�t dt:



4.4 gamma funtion 117This inequality turns into the Cauhy-Bunyakovski-Shwarz inequality (4.4.10) forf(x) = t x�12 e�t=2 and g(t) = t y�12 e�t=2.Evaluation of produts. From the anonial Weierstrass form it follows that1Yn=1f(1� x=n) exp(x=n)g = �exx�(�x) ;(4.4.13) 1Yn=1f(1 + x=n) exp(�x=n)g = e�xx�(x) :One an evaluate a lot of produts by splitting them into parts whih have thisanonial form (4.4.13). For example, onsider the produt Q1k=1 �1� x2k2 �. Divi-sion by n2 transforms it into Q1k=1 (1� 12n )�1(1 + 12n )�1. Introduing multiplierse 12n and e� 12n , one gets a anonial form(4.4.14) 1Yn=1��1� 12n� e 12n��1 1Yn=1��1 + 12n� e� 12n��1 :Now we an apply (4.4.13) for x = 12 . The �rst produt of (4.4.14) is equal to� 12�(�1=2)e�=2, and the seond one is 12�(1=2)e=2. Sine aording to the har-ateristi equation for �-funtion, �(1=2) = � 12�(1=2), one gets �(1=2)2=2 as thevalue of Wallis produt. Sine the Wallis produt is �2 , we get �(1=2) = p�.Problems.1. Evaluate the produt Q1n=1 �1 + xn� �1 + 2xn � �1� 3xn �.2. Evaluate the produt Q1k=1 k(5+k)(3+k)(2+k) .3. Prove: The sum of logarithmially onvex funtions is logarithmially onvex.4. Prove �(x) = limn!1 n!nxx�nx .5. Prove Q1k=1 kx+k �k+1k �x = �(x+ 1).6. Prove Legendre's doubling formula �(2x)�(0:5) = 22x�1�(x+ 0:5)�(x).


