
4.3. Euler-Malaurin FormulaOn the ontents of the leture. From this leture we will learn how Eulermanaged to alulate eighteen digit plaes of the sum P1k=0 1k2 .Symboli derivation. Taylor expansion of a funtion f at point x givesf(x+ 1) = 1Xk=0 f (k)(x)k! :Hene Æf(x) = 1Xk=1 Dkf(x)k! ;whereD is the operation of di�erentiation. One expresses this equality symboliallyas(4.3.1) Æ = expD� 1:We are searhing for F suh that F (n) =Pn�1k=1 f(k) for all n. Then ÆF (x) = f(x),or symbolially F = Æ�1f . So we have to invert the operation of the di�erene.From (4.3.1), the inversion is given formally by the formula (expD � 1)�1. Thisfuntion has a singularity at 0 and annot be expanded into a power series in D.However we know the expansion texp t� 1 = 1Xk=0 Bkk! tk:This allows us to give a symboli solution of our problem in the formÆ�1 = D�1 DexpD� 1 = 1Xk=0 Bkk! Dk�1 = D�1 � 121+ 1Xk=1 B2k2k! D2k�1:Here we take into aount that B0 = 1, B1 = � 12 and B2k+1 = 0 for k > 0.Sine Pn�1k=1 f(k) = F (n) � F (1), the latter symboli formula gives the followingsummation formula:(4.3.2) n�1Xk=1 f(k) = Z n1 f(x) dx� f(n)� f(1)2 + 1Xk=1 B2k(2k)! (f (2k�1)(n)� f (2k�1)(1)):For f(x) = xm this formula gives the Bernoulli polynomial �m+1.Euler's estimate. Euler applied this formula to f(x) = 1(x+9)2 and estimatedthe sum P1k=10 1k2 . In this ase the k-th derivative of 1(x+9)2 at 1 has absolutevalue (k+1)!10k+2 . Hene the module of the k-th term of the summation formula doesnot exeed Bkk10k+2 . For an auray of eighteen digit plaes it is suÆient to sumup the �rst fourteen terms of the series, only eight of them do not vanish. Euleronjetured, and we will prove, that the value of error does not exeed of the value ofthe �rst rejeted term, whih is B1616�1018 . Sine B16 = � 3617510 this gives the promisedauray. 107



108 4.3 euler-malaurin formulaB1 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20� 12 16 � 130 142 � 130 566 � 6912730 76 � 3617510 43867798 � 174611330Figure 4.3.1. Bernoulli numbersWe see from the table (Figure 4.3.1) that inreasing of the number of onsideredterms does not improve auray notieably.Summation formula with remainder. In this leture we assume that allfuntions under onsideration are di�erentiable as many times as needed.Lemma 4.3.1. For any funtion f(x) on [0; 1℄ one has12(f(1) + f(0)) = Z 10 f(x) dx� Z 10 f 0(x)B1(x) dx:Proof. Reall that B1(x) = x� 12 , hene R 10 f 0(x)B1(x) dx = R 10 (x� 12 ) df(x).Now, integration by parts givesZ 10 (x � 12) df(x) = 12(f(1) + f(0))� Z 10 f(x) dx: �Consider the periodi Bernoulli polynomials Bmfxg = Bm(x � [x℄). ThenB0mfxg = mBm�1fxg for non integer x.Let us denote by Pnm ak the sum 12am +Pn�1k=m+1 ak + 12an.Lemma 4.3.2. For any natural p, q and any funtion f(x) one hasqXp f(k) = Z qp f(x) dx � Z qp f 0(x)B1fxg dx:Proof. Applying Lemma 4.3.1 to f(x+ k) one gets12(f(k + 1) + f(k)) = Z 10 f(x+ k) dx+ Z 10 f 0(x+ k)B1(x) dx= Z k+1k f(x) dx+ Z k+1k f 0(x)B1fxg dx:Summing up these equalities for k from p to q, one proves the lemma. �Lemma 4.3.3. For m > 0 and a funtion f one has(4.3.3) Z qp f(x)Bmfxg dx = Bm+1m+ 1(f(q)� f(p))� Z qp f 0(x)Bm+1fxg dx:Proof. Sine Bmfxgdx = dBm+1fxgm+1 and Bm+1fkg = Bm+1 for any naturalk, the formula (4.3.3) is obtained by a simple integration by parts. �



4.3 euler-malaurin formula 109Theorem 4.3.4. For any funtion f and natural numbers n and m one has:(4.3.4) nX1 f(k) = Z n1 f(x) dx+ m�1Xk=1 Bk+1(k + 1)! �f (k)(n)� f (k)(1)�+ (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:Proof. The proof is by indution on m. For m = 1, formula (4.3.4) is justgiven by Lemma 4.3.2. Suppose (4.3.4) is proved for m. The remainder(�1)m+1m! Z n1 f (m)(x)Bmfxg dxan be transformed by virtue of Lemma 4.3.3 into(�1)m+1Bm+1(m+ 1)! (f (m)(n)� f (m)(1)) + (�1)m+2(m+ 1)! Z n1 Bm+1fxgf (m+1)(x) dx:Sine odd Bernoulli numbers vanish, (�1)m+1Bm+1 = Bm+1 for m > 0. �Estimation of the remainder. For m = 1, (4.3.4) turns into (4.3.2). De-note Rm = (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:This is the so-alled remainder of Euler-Malaurin formula.Lemma 4.3.5. R2m = R2m+1 for any m > 1.Proof. Beause B2m+1 = 0, the only thing whih hanges in (4.3.4) whenone passes from 2m to 2m + 1 is the remainder. Hene its value does not hangeeither. �Lemma 4.3.6. If f(x) is monotone on [0; 1℄ thensgnZ 10 f(x)B2m+1(x) dx = sgn(f(1)� f(0)) sgnB2m:Proof. Sine B2m+1(x) = �B2m+1(1� x), the hange x ! 1� x transformsthe integral R 10:5 f(x)B2m+1(x) dx to � R 0:50 f(1� x)B2m+1(x) dx:Z 10 f(x)B2m+1(x) dx = Z 0:50 f(x)B2m+1(x) dx + Z 10:5 f(x)B2m+1(x) dx= Z 0:50 (f(x)� f(1� x))B2m+1(x) dx:B2m+1(x) is equal to 0 at the end-points of [0; 0:5℄ and has onstant sign on (0; 0:5),hene its sign on the interval oinides with the sign of its derivative at 0, that is,it is equal to sgnB2m. The di�erene f(x) � f(1 � x) also has onstant sign asx < 1 � x on (0; 0:5) and its sign is sgn(f(1) � f(0)). Hene the integrand hasonstant sign. Consequently the integral itself has the same sign as the integrandhas. �Lemma 4.3.7. If f (2m+1)(x) and f (2m+3)(x) are omonotone for x � 1 thenR2m = �m B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)); 0 � �m � 1:



110 4.3 euler-malaurin formulaProof. The signs of R2m+1 and R2m+3 are opposite. Indeed, by Lemma 4.2.5sgnB2m = � sgnB2m+2, and sgn(f (2m+1)(n) � f (2m+1)(1)) = sgn(f (2m+3)(n) �f (2m+3)(1) due to the omonotonity ondition. Hene sgnR2m+1 = � sgnR2m+3by Lemma 4.3.6.Set T2m+2 = B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)):Then T2m+2 = R2m+1�R2m+2. By Lemma 4.3.5, T2m+2 = R2m+1�R2m+3. SineR2m+3 and R2m+1 have opposite signs, it follows that sgnT2m+2 = sgnR2m+1 andjT2m+2j � jR2m+1j. Hene �m = R2m+1T2m+2 = R2mT2m+2 belongs to [0; 1℄. �Theorem 4.3.8. If f (k) and f (k+2) are omonotone for any k > 1, then����� nX1 f(k)� Z n1 f(x) dx� mXk=1 B2k(2k)! �f (2k�1)(n)� f (2k�1)(1)������� ���� B2m+2(2m+ 2)! �f (2m+1)(n)� f (2m+1)(1)����� :Hene the value of the error whih gives the summation formula (4.3.2) withm terms has the same sign as the �rst rejeted term, and its absolute value doesnot exeed the absolute value of the term.Theorem 4.3.9. Suppose that R11 jf (k)(x)j dx <1, limx!1 f (k)(x) = 0 and f (k)is omonotone with f (k+2) for all k � K for some K. Then there is a onstant Csuh that for any m > K for some �m 2 [0; 1℄(4.3.5) nXk=1 f(k) = C + f(n)2 + Z n1 f(x) dx + mXk=1 B2k(2k)!f (2k�1)(n)+ �m B2m+2(2m+ 2)!f (2m+1)(n):Lemma 4.3.10. Under the ondition of the theorem, for any m � K,(4.3.6) (�1)mm! Z 1p f (m)(x)Bmfxg dx = ��m B2m+2(2m+ 2)!f (2m+1)(p):Proof. By Lemma 4.3.7,(�1)m+1m! Z qp f (m)(x)Bmfxg dx = �m B2m+2(2m+ 2)! (f (2m+1)(q)� f (2m+1)(p)):To get (4.3.6), pass to the limit as q tends to in�nity. �Proof of Theorem 4.3.9. To get (4.3.5) we hange the form of the remain-der RK for (4.3.4). SineZ n1 BKfxgf (K) dx = Z 11 BKfxgf (K)(x) dx � Z 1n BKfxgf (K)(x) dx;



4.3 euler-malaurin formula 111applying the equality (4.3.3) to the interval [n;1), one gets� (�1)k+1Bkk! Z 1n Bkfxgf (k)(x) dx= (�1)k+1Bk+1(k + 1)! f (k)(n)� (�1)k+2Bk+1(k + 1)! Z 1n Bk+1fxgf (k+1)(x) dx:Iterating this formula one getsRK = Z 11 BKfxgf (K) dx+ mXk=K Bk+1(k + 1)!f (k)(n)+ (�1)mm! Z 1n Bmfxgf (m)(x) dx:Here we take into aount the equalities (�1)kBk = Bk and (�1)m+2 = (�1)m.Now we substitute this expression of RK into (4.3.4) and set(4.3.7) C = (�1)K+1 Z 11 BKfxgf (K)(x) dx � f(1)2 � K�1Xk=1 Bk+1(k + 1)!f (k)(1): �Stirling formula. The logarithm satis�es all the onditions of Theorem 4.3.9with K = 2. Its k-th derivative at n is equal to (�1)k+1(k�1)!nk . Thus (4.3.5) for thelogarithm turns intonXk=1 ln k = n lnn� n+ � + ln n2 + mXk=1 B2k2k(2k � 1)n2k�1 + �mB2m+2(2m+ 2)(2m+ 1)n2k�1 :By (4.3.7), the onstant is � = Z 11 B2fxgx2 dx� B22 :But we already know this onstant as � = 12 ln 2�. For m = 0, the above formulagives the most ommon form of Stirling formula:n! = p2�nnne�n+ �12n :Problems.1. Write the Euler-Malaurin series telesoping 1x .2. Prove the uniqueness of the onstant in Euler-Malaurin formula.3. Calulate ten digit plaes of P1k=1 1n3 .4. Calulate eight digit plaes of P1000000k=1 1k .5. Evaluate ln 1000! with auray 10�4.


