4.3. Euler-Maclaurin Formula

On the contents of the lecture. From this lecture we will learn how Euler
managed to calculate eighteen digit places of the sum .~ k%

Symbolic derivation. Taylor expansion of a function f at point z gives

Hence

k=1
where D is the operation of differentiation. One expresses this equality symbolically
as

(4.3.1) d=expD —1.

We are searching for F' such that F(n) = Ez;ll f(k) for all n. Then 0F(z) = f(z),
or symbolically F' = 6 'f. So we have to invert the operation of the difference.
From (4.3.1), the inversion is given formally by the formula (expD — 1)~!. This
function has a singularity at 0 and cannot be expanded into a power series in D.
However we know the expansion

t = By .
- = g
expt—1 Z k
k=0
This allows us to give a symbolic solution of our problem in the form

1 B
5-1=p! _ Dk 1_p1_21 2k 22k y2k-1
expD -1 Z 2 + I; 2k!
Here we take into account that By = 1, B = —% and Byp11 = 0 for k£ > 0.
Since 22;11 (k) = F(n) — F(1), the latter symbolic formula gives the following
summation formula:

k=1 1

+ Z B”“ (FZD () — FEE (1)),

For f(x) = 2™ this formula gives the Bernoulli polynomial ¢,41.-

Euler’s estimate. Euler applied this formula to f(z) = > and estimated

- (x+9)
the sum » ;7 kiz In this case the k-th derivative of (E==)e )2 at 1 has absolute

value g’%‘,til’ Hence the module of the k-th term of the summation formula does

not exceed k10k+2 For an accuracy of eighteen digit places it is sufficient to sum
up the first fourteen terms of the series, only eight of them do not vanish. Euler
conjectured, and we will prove, that the value of error does not exceed of the value of
the first rejected term, which is ;2% Since Big = — 35T this gives the promised
accuracy.
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FIGURE 4.3.1. Bernoulli numbers

We see from the table (Figure 4.3.1) that increasing of the number of considered
terms does not improve accuracy noticeably.

Summation formula with remainder. In this lecture we assume that all
functions under consideration are differentiable as many times as needed.

LEMMA 4.3.1. For any function f(z) on [0,1] one has

S+ /f d:c—/f \Bi(«

PROOF. Recall that By (z) = z — %, hence fo 7)B; (z)dr = fo 1) df (z).
Now, integration by parts gives

| @-pa@=300+0)- [ @

O

Consider the periodic Bernoulli polynomials Bp{x} = Bp(z — [z]). Then
B; {z} = mBp,_1{z} for non integer x.

Let us denote by Y. aj the sum 1a,, + Zz;lmrl ak + 2an.

LEMMA 4.3.2. For any natural p, g and any function f(x) one has

:/qu(:v)dx—/qu'(x)Bl{x}dx.

PROOF. Applying Lemma 4.3.1 to f(z + k) one gets
1
(f(k+1)+f /fx+k d$+/fx+kB1()d

E+1 k41
:/ () dm+/ f'(x)Bi{z} dx.
k k

Summing up these equalities for k£ from p to ¢, one proves the lemma. a

LEMMA 4.3.3. For m > 0 and a function f one has

q

@33 [ @)Butey e = 22 ~ £0) — [ @B o) da.

4

PROOF. Since By, {z}dzx = dB",‘n*ijiw} and By, t1{k} = Bp41 for any natural

k, the formula (4.3.3) is obtained by a simple integration by parts. O
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THEOREM 4.3.4. For any function f and natural numbers n and m one has:

m—1

(4.3.4) / flz dm+k2 ka11 (r9m) - 19 )

+ % / £ (2) By {z} da.

PRrROOF. The proof is by induction on m. For m = 1, formula (4.3.4) is just
given by Lemma 4.3.2. Suppose (4.3.4) is proved for m. The remainder

_1\ym+1 n
% /1 £ (@) By fa} da

can be transformed by virtue of Lemma 4.3.3 into

CUE Bt i) — 1) + S [ B (b ) o

Since odd Bernoulli numbers vanish, (—1 )m“BmH = By 41 for m > 0. a

Estimation of the remainder. For m = oo, (4.3.4) turns into (4.3.2). De-
note

R, = ﬂ/nf(m)(w)B {z}dzx

m m! 1 m )

This is the so-called remainder of Euler-Maclaurin formula.
LEMMA 4.3.5. Ry, = Rom1 for any m > 1.

PRrROOF. Because Bap+1 = 0, the only thing which changes in (4.3.4) when
one passes from 2m to 2m + 1 is the remainder. Hence its value does not change
either. O

LEMMA 4.3.6. If f(z) is monotone on [0, 1] then

sen / F(&) Bom 1 () dz = sgn(f (1) — £(0)) sgn Bam.

PROOF. Since Boyt1(x) = —Bapmy1(1 — ), the change © — 1 — x transforms
the integral fo 5 f(@)Bamy1(7) do to — 00'5 f(1 = 2)Bayt1(z) da:
0.5 1
[ #@Bam@yde = [ 1) Banis@ e+ [ 0B a)
0 0 0.5

- / (F(@) = F(1 = ) Bas (v) d.

Bam+1(z) is equal to 0 at the end-points of [0,0.5] and has constant sign on (0, 0.5),
hence its sign on the interval coincides with the sign of its derivative at 0, that is,
it is equal to sgn Bs,,. The difference f(z) — f(1 — x) also has constant sign as
x < 1—a2 on (0,0.5) and its sign is sgn(f(1) — f(0)). Hence the integrand has
constant sign. Consequently the integral itself has the same sign as the integrand
has. O

LeEMMA 4.3.7. If ™D (z) and f*™3)(z) are comonotone for x > 1 then

B m 2m 2m
Rom = b gty (FO7 0 () = £ (1), 06 <1
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Proor. The signs of Ra;41 and Rap3 are opposite. Indeed, by Lemma 4.2.5

sgn By, = —sgh Boyyo, and sgn(fCm ) (n) — fCmHU(1)) = sgn(fPm+3) (n) —
f@mH3)(1) due to the comonotonity condition. Hence sgn Ropi+1 = — sgn Rop i3
by Lemma 4.3.6.

Set

Tomio = %(f(zmﬂ)(n) _ f(2m+1)(1))_

Then T2m+2 = R2m+1 - R2m+2. By Lemma 435, T2m+2 = R2m+1 - R2m+3. Since

Ropt3 and Rap,1 have opposite signs, it follows that sgn T, 12 = sgn Ropy1 and

|Tom+2| > |R2m+1|. Hence 6, = 1;227’:3 = Tf“ belongs to [0, 1]. O

THEOREM 4.3.8. If f*) and f*+2) are comonotone for any k > 1, then

/ @ daz— (le)c (f(zk D(n )_f(%l)(l))‘

Hence the value of the error which gives the summation formula (4.3.2) with
m terms has the same sign as the first rejected term, and its absolute value does
not exceed the absolute value of the term.

THEOREM 4.3.9. Suppose that [~ |f¥)(z)|dz < oo, lim f*)(z) =0 and f*
Tr—r00

is comonotone with f**2) for all k > K for some K. Then there is a constant C
such that for any m > K for some 6, € [0,1]

(4.3.5) Zf /f )dz + 2

2k 1) )

Bomi2  c2m1)
+9m(2m+2)!f ().

LEMMA 4.3.10. Under the condition of the theorem, for any m > K,

(_]‘)m > m _ B2m 2 2m4-1
4s0) I [ @B s = <, e ),

Proor. By Lemma 4.3.7,

_1\ym+1 q 3
o [ £ @Bt e = 00 R () — O ),

To get (4.3.6), pass to the limit as ¢ tends to infinity. O

PRrROOF OF THEOREM 4.3.9. To get (4.3.5) we change the form of the remain-
der Rg for (4.3.4). Since

/n By {z} f5) dz = /Oo By {z} f5) () dx — /Oo BiA{z} fY () dx
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applying the equality (4.3.3) to the interval [n, 00), one gets

_1\k+1 00
_%/n Bk{x}f(’“)(x) dr

k4l _1\k+2 %
_ %Jc(k)(n) _ %/ﬂ Beyr {a} £+ () da.

Iterating this formula one gets

Y (K) — Bi L
Rk = /1 Br{z} f' do + k:EK i + 1)!f (n)

Tl LmBm{x}ow)dw.

Here we take into account the equalities (—1)*By = By, and (—1)™*2 = (-1)™.
Now we substitute this expression of Ry into (4.3.4) and set

© K-1
4.37) O = (—1)K+1/ Br{a} 5 (2) dz — @ -y %f(’“)(l)-
1 k=1 ’
O

Stirling formula. The logarithm satisfies all the conditions of Theorem 4.3.9

with K = 2. Its k-th derivative at n is equal to % Thus (4.3.5) for the
logarithm turns into
< Inn < Boy, 0 Boynyo
Ink=nlon - — .
kz:; ph=nmnontot oot kz;: 2E(2k — V)nZF-1 | (2m + 2)(2m + Ln2F1

By (4.3.7), the constant is

> B B
o= 2{2:6} dr — =2,
1 €T 2
But we already know this constant as ¢ = %ln 2w. For m = 0, the above formula
gives the most common form of Stirling formula:

O
n! =v2mnnte "1,

Problems.

Write the Euler-Maclaurin series telescoping %
Prove the uniqueness of the constant in Euler-Maclaurin formula.

Calculate ten digit places of Y ;~ #

Calculate eight digit places of Z}gO:OlOOOO %

Evaluate In 1000! with accuracy 10~%.
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