
4.3. Euler-Ma
laurin FormulaOn the 
ontents of the le
ture. From this le
ture we will learn how Eulermanaged to 
al
ulate eighteen digit pla
es of the sum P1k=0 1k2 .Symboli
 derivation. Taylor expansion of a fun
tion f at point x givesf(x+ 1) = 1Xk=0 f (k)(x)k! :Hen
e Æf(x) = 1Xk=1 Dkf(x)k! ;whereD is the operation of di�erentiation. One expresses this equality symboli
allyas(4.3.1) Æ = expD� 1:We are sear
hing for F su
h that F (n) =Pn�1k=1 f(k) for all n. Then ÆF (x) = f(x),or symboli
ally F = Æ�1f . So we have to invert the operation of the di�eren
e.From (4.3.1), the inversion is given formally by the formula (expD � 1)�1. Thisfun
tion has a singularity at 0 and 
annot be expanded into a power series in D.However we know the expansion texp t� 1 = 1Xk=0 Bkk! tk:This allows us to give a symboli
 solution of our problem in the formÆ�1 = D�1 DexpD� 1 = 1Xk=0 Bkk! Dk�1 = D�1 � 121+ 1Xk=1 B2k2k! D2k�1:Here we take into a

ount that B0 = 1, B1 = � 12 and B2k+1 = 0 for k > 0.Sin
e Pn�1k=1 f(k) = F (n) � F (1), the latter symboli
 formula gives the followingsummation formula:(4.3.2) n�1Xk=1 f(k) = Z n1 f(x) dx� f(n)� f(1)2 + 1Xk=1 B2k(2k)! (f (2k�1)(n)� f (2k�1)(1)):For f(x) = xm this formula gives the Bernoulli polynomial �m+1.Euler's estimate. Euler applied this formula to f(x) = 1(x+9)2 and estimatedthe sum P1k=10 1k2 . In this 
ase the k-th derivative of 1(x+9)2 at 1 has absolutevalue (k+1)!10k+2 . Hen
e the module of the k-th term of the summation formula doesnot ex
eed Bkk10k+2 . For an a

ura
y of eighteen digit pla
es it is suÆ
ient to sumup the �rst fourteen terms of the series, only eight of them do not vanish. Euler
onje
tured, and we will prove, that the value of error does not ex
eed of the value ofthe �rst reje
ted term, whi
h is B1616�1018 . Sin
e B16 = � 3617510 this gives the promiseda

ura
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108 4.3 euler-ma
laurin formulaB1 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20� 12 16 � 130 142 � 130 566 � 6912730 76 � 3617510 43867798 � 174611330Figure 4.3.1. Bernoulli numbersWe see from the table (Figure 4.3.1) that in
reasing of the number of 
onsideredterms does not improve a

ura
y noti
eably.Summation formula with remainder. In this le
ture we assume that allfun
tions under 
onsideration are di�erentiable as many times as needed.Lemma 4.3.1. For any fun
tion f(x) on [0; 1℄ one has12(f(1) + f(0)) = Z 10 f(x) dx� Z 10 f 0(x)B1(x) dx:Proof. Re
all that B1(x) = x� 12 , hen
e R 10 f 0(x)B1(x) dx = R 10 (x� 12 ) df(x).Now, integration by parts givesZ 10 (x � 12) df(x) = 12(f(1) + f(0))� Z 10 f(x) dx: �Consider the periodi
 Bernoulli polynomials Bmfxg = Bm(x � [x℄). ThenB0mfxg = mBm�1fxg for non integer x.Let us denote by Pnm ak the sum 12am +Pn�1k=m+1 ak + 12an.Lemma 4.3.2. For any natural p, q and any fun
tion f(x) one hasqXp f(k) = Z qp f(x) dx � Z qp f 0(x)B1fxg dx:Proof. Applying Lemma 4.3.1 to f(x+ k) one gets12(f(k + 1) + f(k)) = Z 10 f(x+ k) dx+ Z 10 f 0(x+ k)B1(x) dx= Z k+1k f(x) dx+ Z k+1k f 0(x)B1fxg dx:Summing up these equalities for k from p to q, one proves the lemma. �Lemma 4.3.3. For m > 0 and a fun
tion f one has(4.3.3) Z qp f(x)Bmfxg dx = Bm+1m+ 1(f(q)� f(p))� Z qp f 0(x)Bm+1fxg dx:Proof. Sin
e Bmfxgdx = dBm+1fxgm+1 and Bm+1fkg = Bm+1 for any naturalk, the formula (4.3.3) is obtained by a simple integration by parts. �



4.3 euler-ma
laurin formula 109Theorem 4.3.4. For any fun
tion f and natural numbers n and m one has:(4.3.4) nX1 f(k) = Z n1 f(x) dx+ m�1Xk=1 Bk+1(k + 1)! �f (k)(n)� f (k)(1)�+ (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:Proof. The proof is by indu
tion on m. For m = 1, formula (4.3.4) is justgiven by Lemma 4.3.2. Suppose (4.3.4) is proved for m. The remainder(�1)m+1m! Z n1 f (m)(x)Bmfxg dx
an be transformed by virtue of Lemma 4.3.3 into(�1)m+1Bm+1(m+ 1)! (f (m)(n)� f (m)(1)) + (�1)m+2(m+ 1)! Z n1 Bm+1fxgf (m+1)(x) dx:Sin
e odd Bernoulli numbers vanish, (�1)m+1Bm+1 = Bm+1 for m > 0. �Estimation of the remainder. For m = 1, (4.3.4) turns into (4.3.2). De-note Rm = (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:This is the so-
alled remainder of Euler-Ma
laurin formula.Lemma 4.3.5. R2m = R2m+1 for any m > 1.Proof. Be
ause B2m+1 = 0, the only thing whi
h 
hanges in (4.3.4) whenone passes from 2m to 2m + 1 is the remainder. Hen
e its value does not 
hangeeither. �Lemma 4.3.6. If f(x) is monotone on [0; 1℄ thensgnZ 10 f(x)B2m+1(x) dx = sgn(f(1)� f(0)) sgnB2m:Proof. Sin
e B2m+1(x) = �B2m+1(1� x), the 
hange x ! 1� x transformsthe integral R 10:5 f(x)B2m+1(x) dx to � R 0:50 f(1� x)B2m+1(x) dx:Z 10 f(x)B2m+1(x) dx = Z 0:50 f(x)B2m+1(x) dx + Z 10:5 f(x)B2m+1(x) dx= Z 0:50 (f(x)� f(1� x))B2m+1(x) dx:B2m+1(x) is equal to 0 at the end-points of [0; 0:5℄ and has 
onstant sign on (0; 0:5),hen
e its sign on the interval 
oin
ides with the sign of its derivative at 0, that is,it is equal to sgnB2m. The di�eren
e f(x) � f(1 � x) also has 
onstant sign asx < 1 � x on (0; 0:5) and its sign is sgn(f(1) � f(0)). Hen
e the integrand has
onstant sign. Consequently the integral itself has the same sign as the integrandhas. �Lemma 4.3.7. If f (2m+1)(x) and f (2m+3)(x) are 
omonotone for x � 1 thenR2m = �m B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)); 0 � �m � 1:



110 4.3 euler-ma
laurin formulaProof. The signs of R2m+1 and R2m+3 are opposite. Indeed, by Lemma 4.2.5sgnB2m = � sgnB2m+2, and sgn(f (2m+1)(n) � f (2m+1)(1)) = sgn(f (2m+3)(n) �f (2m+3)(1) due to the 
omonotonity 
ondition. Hen
e sgnR2m+1 = � sgnR2m+3by Lemma 4.3.6.Set T2m+2 = B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)):Then T2m+2 = R2m+1�R2m+2. By Lemma 4.3.5, T2m+2 = R2m+1�R2m+3. Sin
eR2m+3 and R2m+1 have opposite signs, it follows that sgnT2m+2 = sgnR2m+1 andjT2m+2j � jR2m+1j. Hen
e �m = R2m+1T2m+2 = R2mT2m+2 belongs to [0; 1℄. �Theorem 4.3.8. If f (k) and f (k+2) are 
omonotone for any k > 1, then����� nX1 f(k)� Z n1 f(x) dx� mXk=1 B2k(2k)! �f (2k�1)(n)� f (2k�1)(1)������� ���� B2m+2(2m+ 2)! �f (2m+1)(n)� f (2m+1)(1)����� :Hen
e the value of the error whi
h gives the summation formula (4.3.2) withm terms has the same sign as the �rst reje
ted term, and its absolute value doesnot ex
eed the absolute value of the term.Theorem 4.3.9. Suppose that R11 jf (k)(x)j dx <1, limx!1 f (k)(x) = 0 and f (k)is 
omonotone with f (k+2) for all k � K for some K. Then there is a 
onstant Csu
h that for any m > K for some �m 2 [0; 1℄(4.3.5) nXk=1 f(k) = C + f(n)2 + Z n1 f(x) dx + mXk=1 B2k(2k)!f (2k�1)(n)+ �m B2m+2(2m+ 2)!f (2m+1)(n):Lemma 4.3.10. Under the 
ondition of the theorem, for any m � K,(4.3.6) (�1)mm! Z 1p f (m)(x)Bmfxg dx = ��m B2m+2(2m+ 2)!f (2m+1)(p):Proof. By Lemma 4.3.7,(�1)m+1m! Z qp f (m)(x)Bmfxg dx = �m B2m+2(2m+ 2)! (f (2m+1)(q)� f (2m+1)(p)):To get (4.3.6), pass to the limit as q tends to in�nity. �Proof of Theorem 4.3.9. To get (4.3.5) we 
hange the form of the remain-der RK for (4.3.4). Sin
eZ n1 BKfxgf (K) dx = Z 11 BKfxgf (K)(x) dx � Z 1n BKfxgf (K)(x) dx;



4.3 euler-ma
laurin formula 111applying the equality (4.3.3) to the interval [n;1), one gets� (�1)k+1Bkk! Z 1n Bkfxgf (k)(x) dx= (�1)k+1Bk+1(k + 1)! f (k)(n)� (�1)k+2Bk+1(k + 1)! Z 1n Bk+1fxgf (k+1)(x) dx:Iterating this formula one getsRK = Z 11 BKfxgf (K) dx+ mXk=K Bk+1(k + 1)!f (k)(n)+ (�1)mm! Z 1n Bmfxgf (m)(x) dx:Here we take into a

ount the equalities (�1)kBk = Bk and (�1)m+2 = (�1)m.Now we substitute this expression of RK into (4.3.4) and set(4.3.7) C = (�1)K+1 Z 11 BKfxgf (K)(x) dx � f(1)2 � K�1Xk=1 Bk+1(k + 1)!f (k)(1): �Stirling formula. The logarithm satis�es all the 
onditions of Theorem 4.3.9with K = 2. Its k-th derivative at n is equal to (�1)k+1(k�1)!nk . Thus (4.3.5) for thelogarithm turns intonXk=1 ln k = n lnn� n+ � + ln n2 + mXk=1 B2k2k(2k � 1)n2k�1 + �mB2m+2(2m+ 2)(2m+ 1)n2k�1 :By (4.3.7), the 
onstant is � = Z 11 B2fxgx2 dx� B22 :But we already know this 
onstant as � = 12 ln 2�. For m = 0, the above formulagives the most 
ommon form of Stirling formula:n! = p2�nnne�n+ �12n :Problems.1. Write the Euler-Ma
laurin series teles
oping 1x .2. Prove the uniqueness of the 
onstant in Euler-Ma
laurin formula.3. Cal
ulate ten digit pla
es of P1k=1 1n3 .4. Cal
ulate eight digit pla
es of P1000000k=1 1k .5. Evaluate ln 1000! with a

ura
y 10�4.


