4.2. Bernoulli Numbers

On the contents of the lecture. In this lecture we give explicit formulas
for telescoping powers. These formulas involve a remarkable sequence of numbers,
which were discovered by Jacob Bernoulli. They will appear in formulas for sums
of series of reciprocal powers. In particular, we will see that %2, the sum of Euler
series, contains the second Bernoulli number %.

Summation Polynomials. Jacob Bernoulli found a general formula for the
sum EZ:1 k?. To be precise he discovered that there is a sequence of numbers
Bo,Bl, BQ, - ,Bn, ... such that
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nq—i-l k

(4.2.1) qu ZBk
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The first 11 of the Bernoulli numbers are 1, — 2, 6,O 30, )13 30, )56
right-hand side of (4.2.1) is a polynomial of degree ¢ + 1 in n. Let us denote this
polynomial by ¢,+1(n). It has the following remarkable property: dt,41(z) =
(1 + 2)?. Indeed the latter equality holds for any natural value n of the variable,
hence it holds for all x, because two polynomials coinciding in infinitely many
points coincide. Replacing in (4.2.1) ¢ + 1 by m, n by z and reversing the order of
summation, one gets the following:

B m (’ITL— 1)m k—1
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R (m —1)*=t
= kZ:OBm_k %l .’L'k

Today’s lecture is devoted to the proof of this Bernoulli theorem.

Telescoping powers. Newton’s Formula represents x™ as a factorial poly-

nomlal Z/S_ ‘skko,m 2%, where A*0™ denotes the value of 6¥z™ at = = 0. Since
sa% = ka™, one immediately gets a formula for a polynomial ¢4 (z) which

telescopes = in the form

o kam
bin(@) = Y

!
P k+1)!
This polynomial has the property ¢pn,41(n) = > ,_ é k™ for all n.

The polynomials ¢,,,(x), as follows from Lemma 4.1.2, are characterized by two
conditions:

Agp(z) =™ 1, dm(1) = 0.
LEMMA 4.2.1 (on differentiation). ¢, (z) = ¢},,1(0) + md,,(z).

Proor. Differentiation of Ady41(z) = 2™ gives Al . (z) = ma™ . The
polynomial me,, has the same differences, hence A(¢}, . (x) — m¢y,(z)) = 0. By
Lemma 4.1.2 this implies that ¢, | () —me,, () is constant. Therefore, ¢;, ., () -
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m¢m($) = ¢;n+1(0) - m¢m(0)' But ¢m(1) = 0 and ¢m(0) = ¢m(1) - 6¢m(0)
0—-0m"1=0.

o

Bernoulli polynomials. Let us introduce the m-th Bernoulli number B,
as ¢;,,1(0), and define the Bernoulli polynomial of degree m > 0 as By, (z) =
mom(z) + By, The Bernoulli polynomial By(z) of degree 0 is defined as identically
equal to 1. Consequently B,,(0) = By, and B}, ,(0) = (m + 1)B,,.

The Bernoulli polynomials satisfy the following condition:

ABy(z) = maz™™'  (m > 0).

In particular, AB,,(0) = 0 for m > 1, and therefore we get the following boundary
conditions for Bernoulli polynomials:

B,,(0) = B,,(1) = B,,, for m > 1, and
B1(0) = —Bi(1) = By.

The Bernoulli polynomials, in contrast to ¢,,(x), are normed: their leading
coefficient is equal to 1 and they have a simpler rule for differentiation:

Bl () = mBy,_1(2)

Indeed, B;, (z) = m¢!, (z) = m((m—1)¢pm—1(x)+¢,,(0)) = mBy,—1(x), by Lemma
4.2.1.

Differentiating By, (z) at 0, k times, we get By (0) = mE=LB! . (0) =
mk;l(m —k+ 1By = mEBm,k. Hence the Taylor formula gives the following
representation of the Bernoulli polynomial:

’ITLEB —k
B,,(z) = Z Taz’“.
k=0 ’

Characterization theorem. The following important property of Bernoulli
polynomials will be called the Balance property:

(4.2.2) /01 By (z)dx =0 (m >0).

Indeed, [ By (z)de = [, (m + 1)Bl,,,(z) dz = AByyi1(0) = 0.

The Balance property and the Differentiation rule allow us to evaluate Bernoulli
polynomials recursively. Thus, B (z) has 1 as leading coefficient and zero integral
on [0,1]; this allows us to identify B;(z) with  — 1/2. Integration of B;(z) gives
By(z) = 22 — x + C, where C is defined by (4.2.2) as — fol a?dr = L. Integrating
By () we get Bs(x) modulo a constant which we find by (4.2.2) and so on. Thus
we obtain the following theorem:

THEOREM 4.2.2 (characterization). If a sequence of polynomials {P,(z)} sat-
isfies the following conditions:
e Py(z) =1,
. fol P,(z)dx =0 for n >0,
e P/ (z) =nP,_1(x) forn >0,
then P, (xz) = By, (z) for all n.
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Analytic properties.
LeEMMA 4.2.3 (on reflection). By (z) = (=1)"By(1 —z) for any n.

Proor. We prove that the sequence T,,(z) = (—1)"By(1 — ) satisfies all the
conditions of Theorem 4.2.2. Indeed, Ty = By =1,

/01 T (z) dz = (—1)" /10 By (x) dz = 0

and

To(@)' 1)"B, (1 —x)
)*nBpn_1(1 —z)(1 — )’
)" B, (x)

nTn_1 (:E)

1
1

(_
(_
(_

O

LEMMA 4.2.4 (on roots). For any odd n > 1 the polynomial By (z) has on [0,1]
just three roots: 0, %, 1.

ProOF. For odd n, the reflection Lemma 4.2.3 implies that B, (3) = —Bn(3),
that is By(3) = 0. Furthermore, for n > 1 one has By (1) — B,(0) = n0"~! = 0.
Hence B,(1) = B,(0) for any Bernoulli polynomial of degree n > 1. By the
reflection formula for an odd n one obtains B, (0) = —By(1). Thus any Bernoulli
polynomial of odd degree greater than 1 has roots 0, %, 1.

The proof that there are no more roots is by contradiction. In the opposite
case consider B, (x), of the least odd degree > 1 which has a root « different from
the above mentioned numbers. Say o < 3. By Rolle’s Theorem 4.1.7 B/, () has
at least three roots 8, < B2 < B3 in (0,1). To be precise, 81 € (0,a), B2 € (a,1),
B3 € (3,1). Then Bj,_1(z) has the same roots. By Rolle’s Theorem B],_,(z) has
at least two roots in (0,1). Then at least one of them differs from % and is a root
of B,,_2(z). By the minimality of n one concludes n — 2 = 1. However, B;(x) has

the only root % This is a contradiction. d

THEOREM 4.2.5. B, = 0 for any odd n > 1. For n = 2k, the sign of B,
is (=1)**1. For any even n one has either B, = max,cjo1]Bn(z) or B, =
min,cpo,1) Bn(z). The first occurs for positive B, the second for negative.

PROOF. Bogt1 = Bay1(0) = 0 for & > 0 by Lemma 4.2.4. Above we have
found that By = %. Suppose we have established that B, > 0 and that this is
the maximal value for Bs(z) on [0,1]. Let us prove that Bagio < 0 and it is
the minimal value for Bajy2(x) on [0,1]. The derivative of Bag41 in this case is
positive at the ends of [0, 1], hence Bag41(z) is positive for 0 < z < % and negative
for % < x < 1, by Lemma 4.2.4 on roots and the Theorem on Intermediate Values.
Hence, B, ,(x) > 0 for z < 1 and B}, ,(z) < 0 for # > . Therefore, Byj12(x)
takes the maximal value in the middle of [0,1] and takes the minimal values at
the ends of [0,1]. Since the integral of the polynomial along [0,1] is zero and
the polynomial is not constant, its minimal value has to be negative. The same
arguments prove that if By is negative and minimal, then Bsg.o is positive and
maximal. |
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LeEMMA 4.2.6 (Lagrange Formula). If f is a differentiable function on [a,b],
then there is a £ € (a,b), such that

(4.2.3) f(b) = f(a) + f'(f)M_

b—a

ProOF. The function g(z) = f(z) — (x — a)%ﬁ(a) is differentiable on [a, b]
and g(b) = g(a) = 0. By Rolle’s Theorem ¢'(¢§) = 0 for some & € [a,b]. Hence

' = W Substitution of this value of f'(£) in (4.2.3) gives the equality. O

Generating function. The following function of two variables is called the
generating function of Bernoulli polynomials.

o0 k
(4.2.4) Bla,t) =Y Bk(:v)%
k=0 ’

Since By, < f—,i, the series on the right-hand side converges for ¢t < 2 for any z. Let us

differentiate it termwise as a function of z, for a fixed t. We get > p- , kBj—1(z) tk—k, =
tB(z,t). Consequently (In B(z,t))!, = IBB;”((;’;)) =t and In B(z,t) = ot + ¢(t), where
the constant ¢(t) depends on t. It follows that B(z,t) = exp(xt)k(t), where k(t) =
exp(c(t)). For z = 0 we get B(0,t) = k(t) = X4y Bk%. To find k(t) consider
the difference B(z + 1,t) — B(x,t). It is equal to exp(at + t)k(t) — exp(xt). On
the other hand the difference is Y -, ABk(:c)% =3 k:Bk_l(:c)% = tB(z,t).
Comparing these expressions we get explicit formulas for the generating functions
of Bernoulli numbers:

and Bernoulli polynomials:

0-—-1 k
t texp(tz)
k=+

From (4.2.4) one gets t = (expt — 1) > o, Bk%. Substituting expt — 1 =
Zzozl Z—k, in this equality, by the Uniqueness Theorem 3.6.9, one gets the equalities
for the coefficients of the power series

n

ank _
Z m =0 for n > 1.
k=1

Add % to both sides of this equality and multiply both sides by n! to get

n k
B v
(4.2.5) B, = ’;:

forn > 1.
k=0
The latter equality one memorizes via the formula B™ = (B + 1)", where after
expansion of the right hand side, one should move down all the exponents at B
turning the powers of B into Bernoulli numbers.
Now we are ready to prove that

m k-1
(42.6)  ém(l+az)= w - i—m = ZBm—k%xk = P ().
k=0 ’
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Putting z = 0 in the right hand side one gets 1,,,(0) = By, (m — 1) = BW'". The
left-hand side takes the same value at & = 0, because By, (1) = Bp(0) = By,. It
remains to prove the equality of the coefficients in (4.2.6) for positive de grees

B (x+1) 1 m_Bm—k &
_—_— = — _— ]_
- E (1+x)

m k!
k=0

:_Zm Bm kzk:kj‘xj

!
=0 7

Now let us change the summation order and change the summation index of the
interior sum by ¢ = m — k.
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Now we change mm(i;z(_”.%i)i by (mf?:)imi and apply the identity (4.2.5).

Problems.

1. Evaluate fol B,,(z) sin 27z dz.

2. Expand z* — 32 + 2z — 1 as a polynomial in (z — 2).

3. Calculate the first 20 Bernoulli numbers.

4. Prove the inequality |By(z)| < |Bn| for even n.

5. Prove the inequality | B, ( )| < §1Bn-1] for odd n.

6. Prove that LW — & £ d:v-i—fol () By () da.

7. Prove that £ +f(1) f flz)do + 2LO f f"(x)Bs(z) dz.

8. Deduce AB, ( ) = nz" ! from the balance property and the differentiation
rule.

9. Prove that B, (z) = B,,(1 — z), using the generating function.

10. Prove that Ba,1 = 0, using the generating function.

11. Prove that By, (nz) = n™ ' Y170 By, (z + ).

12. Evaluate B, (3).

13. Prove that Ba(z) = P(Bs(z)), where P(z) is a polynomial with positive coef-
ficient (Jacobi Theorem).

14. Prove that B, = Z,ﬁo(—l)kiioln.

*15. Prove that By, +)" 55 [k + 1 is prime and k is divisor of /] is an integer (Staudt

Theorem).




