
4.2. Bernoulli NumbersOn the 
ontents of the le
ture. In this le
ture we give expli
it formulasfor teles
oping powers. These formulas involve a remarkable sequen
e of numbers,whi
h were dis
overed by Ja
ob Bernoulli. They will appear in formulas for sumsof series of re
ipro
al powers. In parti
ular, we will see that �26 , the sum of Eulerseries, 
ontains the se
ond Bernoulli number 16 .Summation Polynomials. Ja
ob Bernoulli found a general formula for thesum Pnk=1 kq . To be pre
ise he dis
overed that there is a sequen
e of numbersB0; B1; B2; : : : ; Bn; : : : su
h that(4.2.1) nXk=1 kq = q+1Xk=0Bk qk�1nq+1�kk! :The �rst 11 of the Bernoulli numbers are 1;� 12 ; 16 ; 0;� 130 ; 0; 142 ; 0;� 130 ; 0; 566 . Theright-hand side of (4.2.1) is a polynomial of degree q + 1 in n. Let us denote thispolynomial by  q+1(n). It has the following remarkable property: Æ q+1(x) =(1 + x)q . Indeed the latter equality holds for any natural value n of the variable,hen
e it holds for all x, be
ause two polynomials 
oin
iding in in�nitely manypoints 
oin
ide. Repla
ing in (4.2.1) q +1 by m, n by x and reversing the order ofsummation, one gets the following: m(x) = mXk=0Bm�k (m� 1)m�k�1(m� k)! xk= mXk=0Bm�k (m� 1)!k!(m� k)!xk= mXk=0Bm�k (m� 1)k�1k! xk :Today's le
ture is devoted to the proof of this Bernoulli theorem.Teles
oping powers. Newton's Formula represents xm as a fa
torial poly-nomial Pnk=0 Æk0mk! xk , where �k0m denotes the value of Ækxm at x = 0. Sin
eÆxk = kxk�1, one immediately gets a formula for a polynomial �m+1(x) whi
hteles
opes xm in the form �m+1(x) = 1Xk=0 �k0m(k + 1)!xk+1This polynomial has the property �m+1(n) =Pn�1k=0 km for all n.The polynomials �m(x), as follows from Lemma 4.1.2, are 
hara
terized by two
onditions: ��m(x) = xm�1; �m(1) = 0:Lemma 4.2.1 (on di�erentiation). �0m+1(x) = �0m+1(0) +m�m(x).Proof. Di�erentiation of ��m+1(x) = xm gives ��0m+1(x) = mxm�1. Thepolynomial m�m has the same di�eren
es, hen
e �(�0m+1(x) �m�m(x)) = 0. ByLemma 4.1.2 this implies that �0m+1(x)�m�m(x) is 
onstant. Therefore, �0m+1(x)�102



4.2 bernoulli numbers 103m�m(x) = �0m+1(0) �m�m(0). But �m(1) = 0 and �m(0) = �m(1) � Æ�m(0) =0� 0m�1 = 0. �Bernoulli polynomials. Let us introdu
e the m-th Bernoulli number Bmas �0m+1(0), and de�ne the Bernoulli polynomial of degree m > 0 as Bm(x) =m�m(x)+Bm. The Bernoulli polynomial B0(x) of degree 0 is de�ned as identi
allyequal to 1. Consequently Bm(0) = Bm and B0m+1(0) = (m+ 1)Bm.The Bernoulli polynomials satisfy the following 
ondition:�Bm(x) = mxm�1 (m > 0):In parti
ular, �Bm(0) = 0 for m > 1, and therefore we get the following boundary
onditions for Bernoulli polynomials:Bm(0) = Bm(1) = Bm for m > 1, andB1(0) = �B1(1) = B1:The Bernoulli polynomials, in 
ontrast to �m(x), are normed : their leading
oeÆ
ient is equal to 1 and they have a simpler rule for di�erentiation:B0m(x) = mBm�1(x)Indeed, B0m(x) = m�0m(x) = m((m�1)�m�1(x)+�0m(0)) = mBm�1(x), by Lemma4.2.1.Di�erentiating Bm(x) at 0, k times, we get B(k)m (0) = mk�1B0m�k+1(0) =mk�1(m� k + 1)Bm�k = mkBm�k. Hen
e the Taylor formula gives the followingrepresentation of the Bernoulli polynomial:Bm(x) = mXk=0 mkBm�kk! xk :Chara
terization theorem. The following important property of Bernoullipolynomials will be 
alled the Balan
e property :(4.2.2) Z 10 Bm(x) dx = 0 (m > 0):Indeed, R 10 Bm(x) dx = R 10 (m+ 1)B0m+1(x) dx = �Bm+1(0) = 0.The Balan
e property and the Di�erentiation rule allow us to evaluate Bernoullipolynomials re
ursively. Thus, B1(x) has 1 as leading 
oeÆ
ient and zero integralon [0; 1℄; this allows us to identify B1(x) with x � 1=2. Integration of B1(x) givesB2(x) = x2 � x + C, where C is de�ned by (4.2.2) as � R 10 x2 dx = 16 . IntegratingB2(x) we get B3(x) modulo a 
onstant whi
h we �nd by (4.2.2) and so on. Thuswe obtain the following theorem:Theorem 4.2.2 (
hara
terization). If a sequen
e of polynomials fPn(x)g sat-is�es the following 
onditions:� P0(x) = 1,� R 10 Pn(x) dx = 0 for n > 0,� P 0n(x) = nPn�1(x) for n > 0,then Pn(x) = Bn(x) for all n.



104 4.2 bernoulli numbersAnalyti
 properties.Lemma 4.2.3 (on re
e
tion). Bn(x) = (�1)nBn(1� x) for any n.Proof. We prove that the sequen
e Tn(x) = (�1)nBn(1 � x) satis�es all the
onditions of Theorem 4.2.2. Indeed, T0 = B0 = 1,Z 10 Tn(x) dx = (�1)n Z 01 Bn(x) dx = 0and Tn(x)0 = (�1)nB0n(1� x)= (�1)nnBn�1(1� x)(1� x)0= (�1)n+1nBn�1(x)= nTn�1(x): �Lemma 4.2.4 (on roots). For any odd n > 1 the polynomial Bn(x) has on [0; 1℄just three roots: 0; 12 ; 1.Proof. For odd n, the re
e
tion Lemma 4.2.3 implies that Bn( 12 ) = �Bn( 12 ),that is Bn( 12 ) = 0. Furthermore, for n > 1 one has Bn(1) � Bn(0) = n0n�1 = 0.Hen
e Bn(1) = Bn(0) for any Bernoulli polynomial of degree n > 1. By there
e
tion formula for an odd n one obtains Bn(0) = �Bn(1). Thus any Bernoullipolynomial of odd degree greater than 1 has roots 0; 12 ; 1.The proof that there are no more roots is by 
ontradi
tion. In the opposite
ase 
onsider Bn(x), of the least odd degree > 1 whi
h has a root � di�erent fromthe above mentioned numbers. Say � < 12 . By Rolle's Theorem 4.1.7 B0n(x) hasat least three roots �1 < �2 < �3 in (0; 1). To be pre
ise, �1 2 (0; �), �2 2 (�; 12 ),�3 2 ( 12 ; 1). Then Bn�1(x) has the same roots. By Rolle's Theorem B0n�1(x) hasat least two roots in (0; 1). Then at least one of them di�ers from 12 and is a rootof Bn�2(x). By the minimality of n one 
on
ludes n� 2 = 1. However, B1(x) hasthe only root 12 . This is a 
ontradi
tion. �Theorem 4.2.5. Bn = 0 for any odd n > 1. For n = 2k, the sign of Bnis (�1)k+1. For any even n one has either Bn = maxx2[0;1℄Bn(x) or Bn =minx2[0;1℄Bn(x). The �rst o

urs for positive Bn, the se
ond for negative.Proof. B2k+1 = B2k+1(0) = 0 for k > 0 by Lemma 4.2.4. Above we havefound that B2 = 16 . Suppose we have established that B2k > 0 and that this isthe maximal value for B2k(x) on [0; 1℄. Let us prove that B2k+2 < 0 and it isthe minimal value for B2k+2(x) on [0; 1℄. The derivative of B2k+1 in this 
ase ispositive at the ends of [0; 1℄, hen
e B2k+1(x) is positive for 0 < x < 12 and negativefor 12 < x < 1, by Lemma 4.2.4 on roots and the Theorem on Intermediate Values.Hen
e, B02k+2(x) > 0 for x < 12 and B02k+2(x) < 0 for x > 12 . Therefore, B2k+2(x)takes the maximal value in the middle of [0; 1℄ and takes the minimal values atthe ends of [0; 1℄. Sin
e the integral of the polynomial along [0; 1℄ is zero andthe polynomial is not 
onstant, its minimal value has to be negative. The samearguments prove that if B2k is negative and minimal, then B2k+2 is positive andmaximal. �



4.2 bernoulli numbers 105Lemma 4.2.6 (Lagrange Formula). If f is a di�erentiable fun
tion on [a; b℄,then there is a � 2 (a; b), su
h that(4.2.3) f(b) = f(a) + f 0(�)f(b)� f(a)b� a :Proof. The fun
tion g(x) = f(x) � (x � a) f(b)�f(a)b�a is di�erentiable on [a; b℄and g(b) = g(a) = 0. By Rolle's Theorem g0(�) = 0 for some � 2 [a; b℄. Hen
ef 0(�) = f(b)�f(a)b�a . Substitution of this value of f 0(�) in (4.2.3) gives the equality. �Generating fun
tion. The following fun
tion of two variables is 
alled thegenerating fun
tion of Bernoulli polynomials.(4.2.4) B(x; t) = 1Xk=0Bk(x) tkk!Sin
e Bk � k!2k , the series on the right-hand side 
onverges for t < 2 for any x. Let usdi�erentiate it termwise as a fun
tion of x, for a �xed t. We getP1k=0 kBk�1(x) tkk! =tB(x; t). Consequently (lnB(x; t))0x = B0x(x;t)B(x;t) = t and lnB(x; t) = xt+ 
(t), wherethe 
onstant 
(t) depends on t. It follows that B(x; t) = exp(xt)k(t), where k(t) =exp(
(t)). For x = 0 we get B(0; t) = k(t) = P1k=0 Bk tkk! . To �nd k(t) 
onsiderthe di�eren
e B(x + 1; t) � B(x; t). It is equal to exp(xt + t)k(t) � exp(xt). Onthe other hand the di�eren
e is P1k=0�Bk(x) tkk! = P1k=0 kBk�1(x) tkk! = tB(x; t).Comparing these expressions we get expli
it formulas for the generating fun
tionsof Bernoulli numbers: k(t) = texp t� 1 = 1Xk=0 Bkk! tk;and Bernoulli polynomials:B(x; t) = 0�1Xk=+Bk(x) tkk! = t exp(tx)exp t� 1 :From (4.2.4) one gets t = (exp t � 1)P1k=0 Bk tkk! . Substituting exp t � 1 =P1k=1 tkk! in this equality, by the Uniqueness Theorem 3.6.9, one gets the equalitiesfor the 
oeÆ
ients of the power seriesnXk=1 Bn�k(n� k)!k! = 0 for n > 1.Add Bnn! to both sides of this equality and multiply both sides by n! to get(4.2.5) Bn = nXk=0 Bknkk! for n > 1.The latter equality one memorizes via the formula Bn = (B + 1)n, where afterexpansion of the right hand side, one should move down all the exponents at Bturning the powers of B into Bernoulli numbers.Now we are ready to prove that(4.2.6) �m(1 + x) = Bm(x+ 1)m � Bmm = mXk=0Bm�k (m� 1)k�1k! xk =  m(x):



106 4.2 bernoulli numbersPutting x = 0 in the right hand side one gets  m(0) = Bm(m � 1)�1 = Bmm . Theleft-hand side takes the same value at x = 0, be
ause Bm(1) = Bm(0) = Bm. Itremains to prove the equality of the 
oeÆ
ients in (4.2.6) for positive degrees.Bm(x+ 1)m = 1m mXk=0 mkBm�kk! (1 + x)k= 1m mXk=0 mkBm�kk! kXj=0 kjxjj!Now let us 
hange the summation order and 
hange the summation index of theinterior sum by i = m� k. = 1m mXj=0 xjj! mXk=j mkBm�kk! kj= 1m mXj=0 xjj! m�jXi=0 mm�iBi(m� i)! (m� i)jNow we 
hange mm�i(m�i)j(m�i)! by (m�j)imji! and apply the identity (4.2.5).= mXj=0 xjmjmj! m�jXi=0 Bi(m� j)ii!= mXj=0 (m� 1)j�1xjj! Bm�j :Problems.1. Evaluate R 10 Bn(x) sin 2�x dx.2. Expand x4 � 3x2 + 2x� 1 as a polynomial in (x� 2).3. Cal
ulate the �rst 20 Bernoulli numbers.4. Prove the inequality jBn(x)j � jBnj for even n.5. Prove the inequality jBn(x)j � n4 jBn�1j for odd n.6. Prove that f(0)+f(1)2 = R 10 f(x) dx + R 10 f 0(x)B1(x) dx.7. Prove that f(0)+f(1)2 = R 10 f(x) dx + �f 0(0)2 � R 10 f 00(x)B2(x) dx.8. Dedu
e �Bn(x) = nxn�1 from the balan
e property and the di�erentiationrule.9. Prove that Bn(x) = Bn(1� x), using the generating fun
tion.10. Prove that B2n+1 = 0, using the generating fun
tion.11. Prove that Bm(nx) = nm�1Pn�1k=0 Bm �x+ kn�.12. Evaluate Bn( 12 ).13. Prove that B2k(x) = P (B2(x)), where P (x) is a polynomial with positive 
oef-�
ient (Ja
obi Theorem).14. Prove that Bn =P1k=0(�1)k�k0nk+1 .�15. Prove that Bm+P 1k+1 [k + 1 is prime and k is divisor of m℄ is an integer (StaudtTheorem).


