
4.1. Newton SeriesOn the ontents of the leture. The formula with the binomial series wasengraved on Newton's gravestone in 1727 at Westminster Abbey.Interpolation problem. Suppose we know the values of a funtion f at somepoints alled interpolation nodes and we would like to interpolate the value of f atsome point, not ontained in the data. This is the so-alled interpolation problem.Interpolation was applied in the omputation of logarithms, maritime navigation,astronomial observations and in a lot of other things.A natural idea is to onstrut a polynomial whih takes given values at theinterpolation nodes and onsider its value at the point of interest as the interpola-tion. Values at n + 1 points de�ne a unique polynomial of degree n, whih takesjust these values at these points. In 1676 Newton disovered a formula for thispolynomial, whih is now alled Newton's interpolation formula.Consider the ase, when interpolation nodes are natural numbers. Reall thatthe di�erene of a funtion f is the funtion denoted Æf and de�ned by Æf(x) =f(x + 1) � f(x). De�ne iterated di�erenes Ækf by indution: Æ0f = f , Æk+1f =Æ(Ækf). Reall that xk denotes the k-th fatorial power xk = x(x�1) : : : (x�k+1).Lemma 4.1.1. For any polynomial P (x), its di�erene �P (x) is a polynomialof degree one less.Proof. The proof is by indution on the degree of P (x). The di�erene isonstant for any polynomial of degree 1. Indeed, Æ(ax + b) = a. Suppose thelemma is proved for polynomials of degree � n and let P (x) = Pn+1k=0 akxk be apolynomial of degree n + 1. Then P (x) � an+1xn+1 = Q(x) is a polynomial ofdegree � n. �P (x) = �axn+1 +�Q(x). By the indution hypothesis, �Q(x) hasdegree � n� 1 and, as we know, �xn+1 = (n+ 1)xn has degree n. �Lemma 4.1.2. If �P (x) = 0, and P (x) is a polynomial, then P (x) is onstant.Proof. If �P (x) = 0, then degree of P (x) annot be positive by Lemma 4.1.1,hene P (x) is onstant. �Lemma 4.1.3 (Newton Polynomial Interpolation Formula). For any polynomialP (x)(4.1.1) P (x) = 1Xk=0 �kP (0)k! xk:Proof. If P (x) = ax + b, then �0P (0) = b, �1P (0) = a and ÆkP (x) = 0 fork > 1. Hene the Newton series (4.1.1) turns into b+ax. This proves our assertionfor polynomials of degree � 1. Suppose it is proved for polynomials of degree n.Consider P (x) of degree n + 1. Then �P (x) = P1k=1 �kP (0)k! xk by the indutionhypothesis. Denote by Q(x) the Newton series P1k=0 �kP (0)k! xk for P (x).96



4.1 newton series 97Then �Q(x) = 1Xk=0 �kP (0)k! (x+ 1)k � 1Xk=0 �kP (0)k! xk= 1Xk=0 �kP (0)k! �xk= 1Xk=0 �kP (0)k! kxk�1= 1Xk=0 �kP (0)(k � 1)!xk�1= 1Xk=0 Æk(ÆP (0))k! xk= �P (x):Hene �(P (x) � Q(x)) = 0 and P (x) = Q(x) + . Sine P (0) = Q(0), one gets = 0. This proves P (x) = Q(x). �Lemma 4.1.4 (Lagrange Formula). For any sequene fykgnk=0, the polynomialLn(x) =Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k has the property Ln(k) = yk for 0 � k � n.Proof. For x = k, all terms of the sum Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k but thek-th vanish, and xkx�k is equal to k!(n� k)!(�1)n�k. �Lemma 4.1.5. For any funtion f and for any natural number m � n one hasf(m) =Pnk=0 Ækf(0)k! mk.Proof. Consider the Lagrange polynomial Ln suh that Ln(k) = f(k) fork � n. Then ÆkLn(0) = Ækf(0) for all k � n and ÆkLn(0) = 0 for k > n,beause the degree of Ln is n. Hene, Ln(x) = P1k=0 Ækf(0)k! xk = Pnk=0 Ækf(0)k! xkby Lemma 4.1.3. Putting x = m in the latter equality, one gets f(m) = Ln(m) =Pnk=0 Ækf(0)k! mk. �We see that the Newton polynomial gives a solution for the interpolation prob-lem and our next goal is to estimate the interpolation error.Theorem on extremal values. The least upper bound of a set of numbersA is alled the supremum of A and denoted by supA. In partiular, the ultimatesum of a positive series is the supremum of its partial sums. And the variation ofa funtion on an interval is the supremum of its partial variations.Dually, the greatest lower bound of a set A is alled the in�num and denotedby inf A.Theorem 4.1.6 (Weierstrass). If a funtion f is ontinuous on an interval[a; b℄, then it takes maximal and minimal values on [a; b℄.Proof. The funtion f is bounded by Lemma 3.6.3. Denote by B the supre-mum of the set of values of f on [a; b℄. If f does not take the maximum value, thenf(x) 6= B for all x 2 [a; b℄. In this ase 1B�f(x) is a ontinuous funtion on [a; b℄.



98 4.1 newton seriesHene it is bounded by Lemma 3.6.3. But the di�erene B� f(x) takes arbitrarilysmall values, beause B�" does not bound f(x). Therefore 1B�f(x) is not bounded.This is in ontradition to Lemma 3.6.3, whih states that a loally bounded fun-tion is bounded. The same arguments prove that f(x) takes its minimal value on[a; b℄. �Theorem 4.1.7 (Rolle). If a funtion f is ontinuous on the interval [a; b℄,di�erentiable in interval (a; b) and f(a) = f(b), then f 0() = 0 for some  2 (a; b).Proof. If the funtion f is not onstant on [a; b℄ then either its maximal valueor its minimal value di�ers from f(a) = f(b). Hene at least one of its extremalvalues is taken in some point  2 (a; b). Then f 0() = 0 by Lemma 3.2.1. �Lemma 4.1.8. If an n-times di�erentiable funtion f(x) has n+1 roots in theinterval [a; b℄, then f (n)(�) = 0 for some � 2 (a; b).Proof. The proof is by indution. For n = 1 this is Rolle's theorem. Letfxkgnk=0 be a sequene of roots of f . By Rolle's theorem any interval (xi; xi+1)ontains a root of f 0. Hene f 0 has n� 1 roots, and its (n� 1)-th derivative has aroot. But the (n� 1)-th derivative of f 0 is the n-th derivative of f . �Theorem 4.1.9 (Newton Interpolation Formula). Let f be an n + 1 timesdi�erentiable funtion on I � [0; n℄. Then for any x 2 I there is � 2 I suh thatf(x) = nXk=0 Ækf(0)k! xk + f (k+1)(�)(k + 1)! xk+1:Proof. The formula holds for x 2 f0; 1; : : : ng and any �, due to Lemma 4.1.5,beause xn+1 = 0 for suh x. For other x one has xn+1 6= 0, hene there is C suhthat f(x) =Pnk=0 Ækf(0)k! xk+Cxk+1. The funtion F (y) = f(y)�Pnk=0 Ækf(0)k! xk�Cyk+1 has roots 0; 1; : : : ; n; x. Hene its (n + 1)-th derivative has a root � 2 I .SinePnk=0 Ækf(0)k! xk is a polynomial of degree n its (n+1)-th derivative is 0. Andthe (n + 1)-th derivatives of Cxn+1 and Cxn+1 oinide, beause their di�ereneis a polynomial of degree n. Hene 0 = F (n+1)(�) = f (n+1)(�) � C(n + 1)! andC = f (n+1)(�)(n+1)! . �Binomial series. The series P1k=0 Ækf(0)k! xk is alled the Newton series of afuntion f . The Newton series oinides with the funtion at all natural points.And sometimes it onverges to the funtion. The most important example of suhonvergene is given by the so-alled binomial series.Consider the funtion (1 + x)y . This is a funtion of two variables. Fix x andevaluate its di�erene with respet to y. One has Æy(1+x)y = (1+x)y+1�(1+x)y =(1+x)y(1+x�1) = x(1+x)y. This simple formula allows us immediately to evaluateÆky (1 + x)y = xk(1 + x)y . Hene the Newton series for (1 + x)y as funtion of y is(4.1.2) (1 + x)y = 1Xk=0 xkykk! :For �xed y and variable x, the formula (4.1.2) represents the famous Newton bino-mial series. Our proof is not orret. We applied Newton's interpolation formula,proved only for polynomials, to an exponential funtion. But Newton's original



4.1 newton series 99proof was essentially of the same nature. Instead of interpolation of the wholefuntion, he interpolated oeÆients of its power series expansion. Newton onsid-ered the disovery of the binomial series as one of his greatest disoveries. And therole of the binomial series in further developments is very important.For example, Newton expands into a power series arsinx in the followingway. One �nds the derivative of arsinx by di�erentiating identity sin arsinx = x.This di�erentiation gives os(arsinx) arsin0 x = 1. Hene arsin0 x = 1os arsinx =(1� x2)� 12 . Sine(4.1.3) (1� x2)� 12 = 1Xk=0 (�x2)k(� 12 )kk! = 1Xk=0 (2k � 1)!!2k!! x2k;one gets the series for arsin by termwise integration of (4.1.3). The result isarsinx = 1Xk=0 (2k � 1)!!2k!! x2k+12k + 1 :It was more than a hundred years after the disovery Newton's Binomial The-orem that it was �rst ompletely proved by Abel.Theorem 4.1.10. For any omplex z and � suh that jzj < 1, the seriesP1k=0 zk�kk! absolutely onverges to (1 + z)� = exp (� ln(1 + z)).Proof. The analyti funtion exp � ln(1 + z) of variable z has no singularpoints in the disk jzj < 1, hene its Taylor series onverges to it. The derivativeof (1 + z)� by z is �(1 + z)��1. The k-th derivative is �k(1 + z)��k. In partiular,the value of k-th derivative for z = 0 is equal to �k. Hene the Taylor series of thefuntion is P1k=0 �kzkk! . �On the boundary of onvergene. Sine (1+z)� has its only singular pointon the irle jzj = 1, and this point is �1, the binomial series for all z on the irlehas (1 + z)� as its Abel's sum. In partiular, for z = 1 one gets1Xk=0 xkk! = 2x:The series on the left-hand side onverges for x > 0. Indeed, the series beomesalternating starting with k > x. The ratio k�xk+1 of modules of terms next to eahother is less then one. Hene the moduli of the terms form a monotone dereasingsequene onward k > x. And to apply the Leibniz Theorem 2.4.3, one needs onlyto prove that limn!1 xnn! = 0. Transform this limit into limn!1 xn Qn�1k=1 (xk � 1).The produt Qn�1k=1 (xk � 1) ontains at most x terms whih have moduli greaterthan 1, and all terms of the produt do not exeed x. Hene the absolute valueof this produt does not exeed xx. And our sequene fxnn! g is majorized by anin�nitesimally small fxx+1n g. Hene it is in�nitesimally small.Plain binomial theorem. For a natural exponent the binomial series ontainsonly �nitely many nonzero terms. In this ase it turns into (1 + x)n =Pnk=0 nkxkk! .



100 4.1 newton seriesBeause (a+ b)n = an(1 + ba )n, one gets the following famous formula(a+ b)n = n+1Xk=0 nkk! akbn�k:This is the formula that is usually alled Newton's Binomial Theorem. But thissimple formula was known before Newton. In Europe it was proved by Pasal in1654. Newton's disovery onerns the ase of non integer exponents.Symboli alulus. One de�nes the shift operation Sa for a funtion f bythe formula Saf(x) = f(x+a). Denote by 1 the identity operation and by S = S1.Hene S0 = 1. The omposition of two operations is written as a produt. So, forany a and b one has the following sum formula SaSb = Sa+b.We will onsider only so-alled linear operations. An operationO is alled linearif O(f+g) = O(f)+O(g) for all f; g and O(kf) = kO(f) for any onstant k. De�nethe sum A+B of operations A and B by the formula (A+B)f = Af+Bf . Further,de�ne the produt of an operation A by a number k as (kA)f = k(Af). For linearoperations O, U , V one has the distributivity law O(U + V ) = OU + OV . If theoperations under onsideration ommute UV = V U , (for example, all iterationsof the same operation ommute) then they obey all usual numeri laws, and allidentities whih hold for numbers extend to operations. For example, U2 � V 2 =(U � V )(U + V ), or the plain binomial theorem.Let us say that an operation O is dereasing if for any polynomial P the degreeof O(P ) is less than the degree of P . For example, the operation of di�ereneÆ = S � 1 and the operation D of di�erentiation Df(x) = f 0(x) are dereasing.For a dereasing operation O, any power series P1k=0 akOk de�nes an operationat least on polynomials, beause this series applied to a polynomial ontains only�nitely many terms. Thus we an apply analyti funtions to operations.For example, the binomial series (1+ Æ)y =P1k=0 Ækykk! represents Sy. And theequality Sy = P1k=0 Ækykk! , whih is in fat the Newton Polynomial InterpolationFormula, is a diret onsequene of binomial theorem. Another example, onsiderÆn = S xn � 1. Then S xn = 1+ Æn and Sx = (1+ Æn)n. Further, Sx =Pnk=0 nkÆknk! =P1k=0 nknk (nÆn)kk! . Now we follow Euler's method to \substitute n = 1". ThennÆn onverts into xD, and nknk turns into 1. As result we get the Taylor formulaSx = P1k=0 xkDkk! . Our proof is opied from the Euler proof in his Introdutio oflimn!1(1 + xn )n = P1k=0 xkk! . This substitution of in�nity means passing to thelimit. This proof is suÆient for dereasing operations on polynomials beause theseries ontains only �nitely many nonzero terms. In the general ase problems ofonvergene arise.The binomial theorem was the main tool for the expansion of funtions intopower series in Euler's times. Euler also applied it to get power expansions fortrigonometri funtions.The Taylor expansion for x = 1 gives a symboli equality S = expD. HeneD = lnS = ln(1+Æ) =P1k=1(�1)k+1 Ækk . We get a formula for numerial di�erenti-ation. Symboli alulations produe formulas whih hold at least for polynomials.



4.1 newton series 101Problems.1. Prove (x+ y)n =Pnk=0 nkxkyn�kk! .2. Evaluate Pnk=0 nkk! 2n�k.3. Prove: If p is prime, then pkk! is divisible by p.4. Prove: nkk! = nn�k(n�k)! .5. Dedue the plain binomial theorem from multipliation of series for exponenta.6. One de�nes the Catalan number n as the number of orret plaement ofbrakets in the sum a1 + a2 + � � � + an. Prove that Catalan numbers satisfythe following reursion equation n = Pn�1k=0 kn�k and dedue a formula forCatalan numbers.7. Prove that �kxnxm = 0 for x = 0 and k < n.8. Prove that Pnk=0(�1)k nkk! = 0.9. Get a di�erential equation for the binomial series and solve it.10. Prove (a+ b)n =Pnk=0 nkk! akbn�k.11. Prove: A sequene fakg suh that �2ak � 0 satis�es the inequality maxfa1; : : : ; ang �ak for any k between 1 and n.12. ProveP1k=0(�1)k x2k2k! = 2x=2 os x�4 .13. ProveP1k=0(�1)k x2k+1(2k+1)! = 2x=2 sin x�4 .14. Prove �n0p is divisible by p!.�15. Prove that �n0p =Pn�1k=0 (�1)n�k nkk! kp.16. Prove os2 x+ sin2 x = 1 via power series.


