4.1. Newton Series

On the contents of the lecture. The formula with the binomial series was
engraved on Newton’s gravestone in 1727 at Westminster Abbey.

Interpolation problem. Suppose we know the values of a function f at some
points called interpolation nodes and we would like to interpolate the value of f at
some point, not contained in the data. This is the so-called interpolation problem.
Interpolation was applied in the computation of logarithms, maritime navigation,
astronomical observations and in a lot of other things.

A natural idea is to construct a polynomial which takes given values at the
interpolation nodes and consider its value at the point of interest as the interpola-
tion. Values at n + 1 points define a unique polynomial of degree n, which takes
just these values at these points. In 1676 Newton discovered a formula for this
polynomial, which is now called Newton’s interpolation formula.

Consider the case, when interpolation nodes are natural numbers. Recall that
the difference of a function f is the function denoted df and defined by df(z) =
f(xz + 1) — f(z). Define iterated differences 6* f by induction: §°f = f, 6*t1f =
5(6% ). Recall that 2% denotes the k-th factorial power 2% = z(z—1) ... (x—k+1).

LEMMA 4.1.1. For any polynomial P(x), its difference AP(z) is a polynomial
of degree one less.

PRrOOF. The proof is by induction on the degree of P(x). The difference is
constant for any polynomial of degree 1. Indeed, d(ax + b) = a. Suppose the

lemma is proved for polynomials of degree < n and let P(x) = Zi& arz® be a

polynomial of degree n + 1. Then P(z) — app12™ = Q(z) is a polynomial of
degree < n. AP(z) = Aaz™™ + AQ(x). By the induction hypothesis, AQ(x) has

degree < n —1 and, as we know, Az"™ = (n 4+ 1)z™ has degree n. O

LemMA 4.1.2. If AP(x) =0, and P(x) is a polynomial, then P(x) is constant.

Proor. If AP(x) = 0, then degree of P(x) cannot be positive by Lemma 4.1.1,
hence P(x) is constant. O

LeEmMA 4.1.3 (Newton Polynomial Interpolation Formula). For any polynomial
P(x)

o0
A*P(0) x
(4.1.1) P(z) =) PR
k=0
PROOF. If P(z) = ax + b, then A°P(0) = b, A'P(0) = a and 6*P(z) = 0 for
k > 1. Hence the Newton series (4.1.1) turns into b+ ax. This proves our assertion
for polynomials of degree < 1. Suppose it is proved for polynomials of degree n.

Consider P(z) of degree n + 1. Then AP(z) = > 2, Ak,i(o) 2% by the induction
hypothesis. Denote by @Q(z) the Newton series Y 7, Akf!(o) 2 for P(x).
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Then
AQ(z) = i A’“Z(O) (z + 1)E — i A’“Z(O) z*
k=0 ) k=0 '
— AFP(0
_ Z Akp k=1
AFP(0) =
B kZ:O &—1)" '
_ 56O
!
= AP(z).
Hence A(P(z) — Q(z)) = 0 and P(z) = Q(z) + ¢. Since P(0) = Q(0), one gets
¢ = 0. This proves P(z) = Q(z). O

LEMMA 4.1.4 (Lagrange Formula). For any sequence {yi}}_,, the polynomial
n4l
Ly(z) = ZZZQ(—l)”_kyi’“ﬁ has the property Ln(k) =y, for 0 <k <n.

El(n—k)! o—k
Proor. For xk: k, all terms of the sum ZZZO(—l)”*’“WnkLk)' L but the
k-th vanish, and —— is equal to k!(n — k)!(=1)"*. 0

LEmMmA 4.1.5. For any function f and for any natural number m < n one has
flm) = 5y “HOmt

Proor. Consider the Lagrange polynomial L,, such that L, (k) = f(k) for
k < n. Then 6*L,(0) = §*f(0) for all k& < n and 6kL ( ) = 0 for k > n,

because the degree of Ly, is n. Hence, Ly(z) = Yo, TH 04k = ZZ—O : e .
by Lemma 4.1.3. Putting z = m in the latter equality, one gets fim) =L,(m) =

k
Yo SR x

We see that the Newton polynomial gives a solution for the interpolation prob-
lem and our next goal is to estimate the interpolation error.

Theorem on extremal values. The least upper bound of a set of numbers
A is called the supremum of A and denoted by sup A. In particular, the ultimate
sum of a positive series is the supremum of its partial sums. And the variation of
a function on an interval is the supremum of its partial variations.

Dually, the greatest lower bound of a set A is called the infinum and denoted
by inf A.

THEOREM 4.1.6 (Weierstrass). If a function f is continuous on an interval
[a,b], then it takes mazimal and minimal values on [a,b].

PROOF. The function f is bounded by Lemma 3.6.3. Denote by B the supre-
mum of the set of values of f on [a,b]. If f does not take the maximum value, then
f(x) # B for all z € [a,b]. In this case B+f($) is a continuous function on [a, b].
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Hence it is bounded by Lemma 3.6.3. But the difference B — f(z) takes arbitrarily
small values, because B — ¢ does not bound f(z). Therefore B+f($) is not bounded.
This is in contradiction to Lemma 3.6.3, which states that a locally bounded func-

tion is bounded. The same arguments prove that f(z) takes its minimal value on
[a, b]. O

THEOREM 4.1.7 (Rolle). If a function f is continuous on the interval [a,b],
differentiable in interval (a,b) and f(a) = f(b), then f'(c) =0 for some c € (a,b).

PRrOOF. If the function f is not constant on [a, b] then either its maximal value
or its minimal value differs from f(a) = f(b). Hence at least one of its extremal
values is taken in some point ¢ € (a,b). Then f'(¢) =0 by Lemma 3.2.1. O

LeEmMMA 4.1.8. If an n-times differentiable function f(x) has n+ 1 roots in the
interval [a,b], then £ (&) =0 for some & € (a,b).

PrOOF. The proof is by induction. For n = 1 this is Rolle’s theorem. Let
{zr}}_o be a sequence of roots of f. By Rolle’s theorem any interval (z;, ;1)
contains a root of f'. Hence f’ has n — 1 roots, and its (n — 1)-th derivative has a
root. But the (n — 1)-th derivative of f' is the n-th derivative of f. O

THEOREM 4.1.9 (Newton Interpolation Formula). Let f be an n + 1 times
differentiable function on I D [0,n]. Then for any x € I there is £ € I such that

nosk (k+1)

k=0

PRrOOF. The formula holds for z € {0,1,...n} and any £, due to Lemma 4.1.5,
because 2 =0 for such . For other z one has z™+ # 0, hence there is C' such

that f( ) =D 0 , 2* + 2", The function F(y) = f(y) — > 0‘5 f,(o) k_
Cy* has roots 0, 1, LN, T Hence its (n 4+ 1)-th derivative has a root & € I.

Since > p_ 0 (0) isa polynomlal of degree n its (n + 1)-th derivative is 0. And

the (n + 1)-th derlvatlves of Ca™ and Cz™t! coincide, because their difference
is a polynomial of degree n. Hence 0 = F("t1(¢) = f(”H)(f) C(n + 1)! and
c=100 0

k
Binomial series. The series .-, 2 i,(o) 2 is called the Newton series of a

function f. The Newton series coincides with the function at all natural points.
And sometimes it converges to the function. The most important example of such
convergence is given by the so-called binomial series.

Consider the function (1 4+ x)¥. This is a function of two variables. Fix x and
evaluate its difference with respect to y. One has §, (1+z)¥ = (1+z)?™ —(1+z)¥ =
(14+2)Y(1+z—1) = z(1+x)¥. This simple formula allows us immediately to evaluate
65(1+ x)¥ = 2¥(1 + 2)¥. Hence the Newton series for (1 + z)¥ as function of y is

b
K

(4.1.2) (1+z)¥ =
k=0

For fixed y and variable z, the formula (4.1.2) represents the famous Newton bino-

mial series. Our proof is not correct. We applied Newton’s interpolation formula,

proved only for polynomials, to an exponential function. But Newton’s original
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proof was essentially of the same nature. Instead of interpolation of the whole
function, he interpolated coefficients of its power series expansion. Newton consid-
ered the discovery of the binomial series as one of his greatest discoveries. And the
role of the binomial series in further developments is very important.

For example, Newton expands into a power series arcsinz in the following
way. One finds the derivative of arcsinz by differentiating identity sinarcsinz = .

This differentiation gives cos(arcsin z) arcsin’ # = 1. Hence arcsin’z = —L-— =

1 COoSs arcsin @
(1 —2?)~2. Since

—l - % N 2"?_1 22k
(4.1.3) (1—2?)"2 Z Z Sal :

k=0 =i

one gets the series for arcsin by termwise integration of (4.1.3). The result is

= (2 = 1)l gRAL

It was more than a hundred years after the discovery Newton’s Binomial The-
orem that it was first completely proved by Abel.

THEOREM 4.1.10. For any complex z and ¢ such that |z| < 1, the series
h
Yo T absolutely converges to (1 + 2)¢ = exp ((In(1 + 2)).

ProOF. The analytic function exp (ln(1 + z) of variable z has no singular
pomts in the disk |z| < 1, hence its Taylor series converges to it. The derivative
of (14 2)¢ by zis ¢(1 + z)C 1. The k-th derlvatlve is ¢&(1 4 2)¢=*. In particular,
the value of k-th derivative for z = 0 is equal to C—. Hence the Taylor series of the

k_k
function is Y5, S5 O

On the boundary of convergence. Since (1+2)¢ has its only singular point
on the circle |z| = 1, and this point is —1, the binomial series for all z on the circle
has (1 + 2)¢ as its Abel’s sum. In particular, for z = 1 one gets

> _k

The series on the left-hand side converges for x > 0. Indeed, the series becomes
alternating starting with £ > z. The ratio ’Zﬁ of modules of terms next to each
other is less then one. Hence the moduli of the terms form a monotone decreasing

sequence onward k > z. And to apply the Leibniz Theorem 2.4.3, one needs only

I

“r = 0. Transform this limit into lim, . £ [TpZ 11(E -1).

The product Hz;ll(% — 1) contains at most x terms which have moduli greater
than 1, and all terms of the product do not exceed x. Hence the absolute value

of this product does not exceed z¥. And our sequence {wi} is majorized by an

to prove that lim,,

infinitesimally small {m

} Hence it is infinitesimally small.

Plain binomial theorem. For a natural exponent the binomial series contains
only finitely many nonzero terms. In this case it turns into (14 2)" = >} _, ~ o
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Because (a +b)" = a™(1 + £)", one gets the following famous formula

n+1 n&
n _ kin—k
(a+b)" = Z e b v,
k=0

This is the formula that is usually called Newton’s Binomial Theorem. But this
simple formula was known before Newton. In Europe it was proved by Pascal in
1654. Newton’s discovery concerns the case of non integer exponents.

Symbolic calculus. One defines the shift operation S* for a function f by
the formula S®f(x) = f(z + a). Denote by 1 the identity operation and by S = S!.
Hence S° = 1. The composition of two operations is written as a product. So, for
any a and b one has the following sum formula S?S? = Se+b,

We will consider only so-called linear operations. An operation O is called linear
if O(f+g) =O(f)+0(g) for all f,g and O(kf) = kEO(f) for any constant k. Define
the sum A+ B of operations A and B by the formula (A+B)f = Af+ Bf. Further,
define the product of an operation A by a number k as (kA)f = k(Af). For linear
operations O, U, V one has the distributivity law O(U + V) = OU + OV. If the
operations under consideration commute UV = VU, (for example, all iterations
of the same operation commute) then they obey all usual numeric laws, and all
identities which hold for numbers extend to operations. For example, U? — V? =
(U—=V)({U + V), or the plain binomial theorem.

Let us say that an operation O is decreasing if for any polynomial P the degree
of O(P) is less than the degree of P. For example, the operation of difference
d = S — 1 and the operation D of differentiation Df(z) = f'(z) are decreasing.
For a decreasing operation O, any power series Z;’;O arOF defines an operation
at least on polynomials, because this series applied to a polynomial contains only
finitely many terms. Thus we can apply analytic functions to operations.

For example, the binomial series (1+8)¥ = > .2, (Skk—?!’h represents SY. And the

ko ke
equality SY = .2, 61«—‘1!/’ which is in fact the Newton Polynomial Interpolation

Formula, is a direct consequence of binomial theorem. Another example, consider
> = k sk
8, =S% —1. Then S% =1 +6, and S* = (1 +J,)". Further, 8% = Y}_, 0= =

k. k
o %("‘Z‘) . Now we follow Euler’s method to “substitute n = oo”. Then
’ k

nd, converts into zD, and % turns into 1. As result we get the Taylor formula

ST = EZ":O ”’kk]!)k. Our proof is copied from the Euler proof in his Introductio of

lim,, oo (1 4+ £)" = 307, “Z—I,c This substitution of infinity means passing to the
limit. This proof is sufficient for decreasing operations on polynomials because the
series contains only finitely many nonzero terms. In the general case problems of
convergence arise.

The binomial theorem was the main tool for the expansion of functions into
power series in Euler’s times. FEuler also applied it to get power expansions for
trigonometric functions.

The Taylor expansion for z = 1 gives a symbolic equality S = exp D. Hence
D=InS=In(1+4) = o (—1)**! %. We get a formula for numerical differenti-
ation. Symbolic calculations produce formulas which hold at least for polynomials.
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Problems.

n&z&yn_k

Prove (z + y)™ :kzzzo .

n n“on—k
Evaluate ), _ 772" ".

k
Prove: If p is prime, then % is divisible by p.
n";

Prove: 77 = =0k

Deduce the plain binomial theorem from multiplication of series for exponenta.
One defines the Catalan number ¢, as the number of correct placement of
brackets in the sum a; + a2 + -+ + a,. Prove that Catalan numbers satisfy
the following recursion equation ¢,, = ZZ;S CrCn—p and deduce a formula for
Catalan numbers.

Prove that A¥z"z™ =0 for z = 0 and k < n.

n le
. Prove that Y ;_,(-1)*% =0.

&

. Get a differential equation for the binomial series and solve it.
10.
11.

Prove (a +b)" = >} _, z—?aﬁbu.

Prove: A sequence {ay,} such that A%a;, > 0 satisfies the inequality max{a,...,a,} >
ay, for any k betwee;i 1 and n.
Prove > o (—1)k %ﬁ 2¢/2 cos LT
Prove Zk:O(_l)kék—Jrl)! = 22/2gin 2T,
Prove A™0? is divisible by p!. .
Prove that A0P = Y320 (—1)" k2 kp.

Prove cos? z + sin? = 1 via power series.



