
4.1. Newton SeriesOn the 
ontents of the le
ture. The formula with the binomial series wasengraved on Newton's gravestone in 1727 at Westminster Abbey.Interpolation problem. Suppose we know the values of a fun
tion f at somepoints 
alled interpolation nodes and we would like to interpolate the value of f atsome point, not 
ontained in the data. This is the so-
alled interpolation problem.Interpolation was applied in the 
omputation of logarithms, maritime navigation,astronomi
al observations and in a lot of other things.A natural idea is to 
onstru
t a polynomial whi
h takes given values at theinterpolation nodes and 
onsider its value at the point of interest as the interpola-tion. Values at n + 1 points de�ne a unique polynomial of degree n, whi
h takesjust these values at these points. In 1676 Newton dis
overed a formula for thispolynomial, whi
h is now 
alled Newton's interpolation formula.Consider the 
ase, when interpolation nodes are natural numbers. Re
all thatthe di�eren
e of a fun
tion f is the fun
tion denoted Æf and de�ned by Æf(x) =f(x + 1) � f(x). De�ne iterated di�eren
es Ækf by indu
tion: Æ0f = f , Æk+1f =Æ(Ækf). Re
all that xk denotes the k-th fa
torial power xk = x(x�1) : : : (x�k+1).Lemma 4.1.1. For any polynomial P (x), its di�eren
e �P (x) is a polynomialof degree one less.Proof. The proof is by indu
tion on the degree of P (x). The di�eren
e is
onstant for any polynomial of degree 1. Indeed, Æ(ax + b) = a. Suppose thelemma is proved for polynomials of degree � n and let P (x) = Pn+1k=0 akxk be apolynomial of degree n + 1. Then P (x) � an+1xn+1 = Q(x) is a polynomial ofdegree � n. �P (x) = �axn+1 +�Q(x). By the indu
tion hypothesis, �Q(x) hasdegree � n� 1 and, as we know, �xn+1 = (n+ 1)xn has degree n. �Lemma 4.1.2. If �P (x) = 0, and P (x) is a polynomial, then P (x) is 
onstant.Proof. If �P (x) = 0, then degree of P (x) 
annot be positive by Lemma 4.1.1,hen
e P (x) is 
onstant. �Lemma 4.1.3 (Newton Polynomial Interpolation Formula). For any polynomialP (x)(4.1.1) P (x) = 1Xk=0 �kP (0)k! xk:Proof. If P (x) = ax + b, then �0P (0) = b, �1P (0) = a and ÆkP (x) = 0 fork > 1. Hen
e the Newton series (4.1.1) turns into b+ax. This proves our assertionfor polynomials of degree � 1. Suppose it is proved for polynomials of degree n.Consider P (x) of degree n + 1. Then �P (x) = P1k=1 �kP (0)k! xk by the indu
tionhypothesis. Denote by Q(x) the Newton series P1k=0 �kP (0)k! xk for P (x).96



4.1 newton series 97Then �Q(x) = 1Xk=0 �kP (0)k! (x+ 1)k � 1Xk=0 �kP (0)k! xk= 1Xk=0 �kP (0)k! �xk= 1Xk=0 �kP (0)k! kxk�1= 1Xk=0 �kP (0)(k � 1)!xk�1= 1Xk=0 Æk(ÆP (0))k! xk= �P (x):Hen
e �(P (x) � Q(x)) = 0 and P (x) = Q(x) + 
. Sin
e P (0) = Q(0), one gets
 = 0. This proves P (x) = Q(x). �Lemma 4.1.4 (Lagrange Formula). For any sequen
e fykgnk=0, the polynomialLn(x) =Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k has the property Ln(k) = yk for 0 � k � n.Proof. For x = k, all terms of the sum Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k but thek-th vanish, and xkx�k is equal to k!(n� k)!(�1)n�k. �Lemma 4.1.5. For any fun
tion f and for any natural number m � n one hasf(m) =Pnk=0 Ækf(0)k! mk.Proof. Consider the Lagrange polynomial Ln su
h that Ln(k) = f(k) fork � n. Then ÆkLn(0) = Ækf(0) for all k � n and ÆkLn(0) = 0 for k > n,be
ause the degree of Ln is n. Hen
e, Ln(x) = P1k=0 Ækf(0)k! xk = Pnk=0 Ækf(0)k! xkby Lemma 4.1.3. Putting x = m in the latter equality, one gets f(m) = Ln(m) =Pnk=0 Ækf(0)k! mk. �We see that the Newton polynomial gives a solution for the interpolation prob-lem and our next goal is to estimate the interpolation error.Theorem on extremal values. The least upper bound of a set of numbersA is 
alled the supremum of A and denoted by supA. In parti
ular, the ultimatesum of a positive series is the supremum of its partial sums. And the variation ofa fun
tion on an interval is the supremum of its partial variations.Dually, the greatest lower bound of a set A is 
alled the in�num and denotedby inf A.Theorem 4.1.6 (Weierstrass). If a fun
tion f is 
ontinuous on an interval[a; b℄, then it takes maximal and minimal values on [a; b℄.Proof. The fun
tion f is bounded by Lemma 3.6.3. Denote by B the supre-mum of the set of values of f on [a; b℄. If f does not take the maximum value, thenf(x) 6= B for all x 2 [a; b℄. In this 
ase 1B�f(x) is a 
ontinuous fun
tion on [a; b℄.



98 4.1 newton seriesHen
e it is bounded by Lemma 3.6.3. But the di�eren
e B� f(x) takes arbitrarilysmall values, be
ause B�" does not bound f(x). Therefore 1B�f(x) is not bounded.This is in 
ontradi
tion to Lemma 3.6.3, whi
h states that a lo
ally bounded fun
-tion is bounded. The same arguments prove that f(x) takes its minimal value on[a; b℄. �Theorem 4.1.7 (Rolle). If a fun
tion f is 
ontinuous on the interval [a; b℄,di�erentiable in interval (a; b) and f(a) = f(b), then f 0(
) = 0 for some 
 2 (a; b).Proof. If the fun
tion f is not 
onstant on [a; b℄ then either its maximal valueor its minimal value di�ers from f(a) = f(b). Hen
e at least one of its extremalvalues is taken in some point 
 2 (a; b). Then f 0(
) = 0 by Lemma 3.2.1. �Lemma 4.1.8. If an n-times di�erentiable fun
tion f(x) has n+1 roots in theinterval [a; b℄, then f (n)(�) = 0 for some � 2 (a; b).Proof. The proof is by indu
tion. For n = 1 this is Rolle's theorem. Letfxkgnk=0 be a sequen
e of roots of f . By Rolle's theorem any interval (xi; xi+1)
ontains a root of f 0. Hen
e f 0 has n� 1 roots, and its (n� 1)-th derivative has aroot. But the (n� 1)-th derivative of f 0 is the n-th derivative of f . �Theorem 4.1.9 (Newton Interpolation Formula). Let f be an n + 1 timesdi�erentiable fun
tion on I � [0; n℄. Then for any x 2 I there is � 2 I su
h thatf(x) = nXk=0 Ækf(0)k! xk + f (k+1)(�)(k + 1)! xk+1:Proof. The formula holds for x 2 f0; 1; : : : ng and any �, due to Lemma 4.1.5,be
ause xn+1 = 0 for su
h x. For other x one has xn+1 6= 0, hen
e there is C su
hthat f(x) =Pnk=0 Ækf(0)k! xk+Cxk+1. The fun
tion F (y) = f(y)�Pnk=0 Ækf(0)k! xk�Cyk+1 has roots 0; 1; : : : ; n; x. Hen
e its (n + 1)-th derivative has a root � 2 I .Sin
ePnk=0 Ækf(0)k! xk is a polynomial of degree n its (n+1)-th derivative is 0. Andthe (n + 1)-th derivatives of Cxn+1 and Cxn+1 
oin
ide, be
ause their di�eren
eis a polynomial of degree n. Hen
e 0 = F (n+1)(�) = f (n+1)(�) � C(n + 1)! andC = f (n+1)(�)(n+1)! . �Binomial series. The series P1k=0 Ækf(0)k! xk is 
alled the Newton series of afun
tion f . The Newton series 
oin
ides with the fun
tion at all natural points.And sometimes it 
onverges to the fun
tion. The most important example of su
h
onvergen
e is given by the so-
alled binomial series.Consider the fun
tion (1 + x)y . This is a fun
tion of two variables. Fix x andevaluate its di�eren
e with respe
t to y. One has Æy(1+x)y = (1+x)y+1�(1+x)y =(1+x)y(1+x�1) = x(1+x)y. This simple formula allows us immediately to evaluateÆky (1 + x)y = xk(1 + x)y . Hen
e the Newton series for (1 + x)y as fun
tion of y is(4.1.2) (1 + x)y = 1Xk=0 xkykk! :For �xed y and variable x, the formula (4.1.2) represents the famous Newton bino-mial series. Our proof is not 
orre
t. We applied Newton's interpolation formula,proved only for polynomials, to an exponential fun
tion. But Newton's original



4.1 newton series 99proof was essentially of the same nature. Instead of interpolation of the wholefun
tion, he interpolated 
oeÆ
ients of its power series expansion. Newton 
onsid-ered the dis
overy of the binomial series as one of his greatest dis
overies. And therole of the binomial series in further developments is very important.For example, Newton expands into a power series ar
sinx in the followingway. One �nds the derivative of ar
sinx by di�erentiating identity sin ar
sinx = x.This di�erentiation gives 
os(ar
sinx) ar
sin0 x = 1. Hen
e ar
sin0 x = 1
os ar
sinx =(1� x2)� 12 . Sin
e(4.1.3) (1� x2)� 12 = 1Xk=0 (�x2)k(� 12 )kk! = 1Xk=0 (2k � 1)!!2k!! x2k;one gets the series for ar
sin by termwise integration of (4.1.3). The result isar
sinx = 1Xk=0 (2k � 1)!!2k!! x2k+12k + 1 :It was more than a hundred years after the dis
overy Newton's Binomial The-orem that it was �rst 
ompletely proved by Abel.Theorem 4.1.10. For any 
omplex z and � su
h that jzj < 1, the seriesP1k=0 zk�kk! absolutely 
onverges to (1 + z)� = exp (� ln(1 + z)).Proof. The analyti
 fun
tion exp � ln(1 + z) of variable z has no singularpoints in the disk jzj < 1, hen
e its Taylor series 
onverges to it. The derivativeof (1 + z)� by z is �(1 + z)��1. The k-th derivative is �k(1 + z)��k. In parti
ular,the value of k-th derivative for z = 0 is equal to �k. Hen
e the Taylor series of thefun
tion is P1k=0 �kzkk! . �On the boundary of 
onvergen
e. Sin
e (1+z)� has its only singular pointon the 
ir
le jzj = 1, and this point is �1, the binomial series for all z on the 
ir
lehas (1 + z)� as its Abel's sum. In parti
ular, for z = 1 one gets1Xk=0 xkk! = 2x:The series on the left-hand side 
onverges for x > 0. Indeed, the series be
omesalternating starting with k > x. The ratio k�xk+1 of modules of terms next to ea
hother is less then one. Hen
e the moduli of the terms form a monotone de
reasingsequen
e onward k > x. And to apply the Leibniz Theorem 2.4.3, one needs onlyto prove that limn!1 xnn! = 0. Transform this limit into limn!1 xn Qn�1k=1 (xk � 1).The produ
t Qn�1k=1 (xk � 1) 
ontains at most x terms whi
h have moduli greaterthan 1, and all terms of the produ
t do not ex
eed x. Hen
e the absolute valueof this produ
t does not ex
eed xx. And our sequen
e fxnn! g is majorized by anin�nitesimally small fxx+1n g. Hen
e it is in�nitesimally small.Plain binomial theorem. For a natural exponent the binomial series 
ontainsonly �nitely many nonzero terms. In this 
ase it turns into (1 + x)n =Pnk=0 nkxkk! .



100 4.1 newton seriesBe
ause (a+ b)n = an(1 + ba )n, one gets the following famous formula(a+ b)n = n+1Xk=0 nkk! akbn�k:This is the formula that is usually 
alled Newton's Binomial Theorem. But thissimple formula was known before Newton. In Europe it was proved by Pas
al in1654. Newton's dis
overy 
on
erns the 
ase of non integer exponents.Symboli
 
al
ulus. One de�nes the shift operation Sa for a fun
tion f bythe formula Saf(x) = f(x+a). Denote by 1 the identity operation and by S = S1.Hen
e S0 = 1. The 
omposition of two operations is written as a produ
t. So, forany a and b one has the following sum formula SaSb = Sa+b.We will 
onsider only so-
alled linear operations. An operationO is 
alled linearif O(f+g) = O(f)+O(g) for all f; g and O(kf) = kO(f) for any 
onstant k. De�nethe sum A+B of operations A and B by the formula (A+B)f = Af+Bf . Further,de�ne the produ
t of an operation A by a number k as (kA)f = k(Af). For linearoperations O, U , V one has the distributivity law O(U + V ) = OU + OV . If theoperations under 
onsideration 
ommute UV = V U , (for example, all iterationsof the same operation 
ommute) then they obey all usual numeri
 laws, and allidentities whi
h hold for numbers extend to operations. For example, U2 � V 2 =(U � V )(U + V ), or the plain binomial theorem.Let us say that an operation O is de
reasing if for any polynomial P the degreeof O(P ) is less than the degree of P . For example, the operation of di�eren
eÆ = S � 1 and the operation D of di�erentiation Df(x) = f 0(x) are de
reasing.For a de
reasing operation O, any power series P1k=0 akOk de�nes an operationat least on polynomials, be
ause this series applied to a polynomial 
ontains only�nitely many terms. Thus we 
an apply analyti
 fun
tions to operations.For example, the binomial series (1+ Æ)y =P1k=0 Ækykk! represents Sy. And theequality Sy = P1k=0 Ækykk! , whi
h is in fa
t the Newton Polynomial InterpolationFormula, is a dire
t 
onsequen
e of binomial theorem. Another example, 
onsiderÆn = S xn � 1. Then S xn = 1+ Æn and Sx = (1+ Æn)n. Further, Sx =Pnk=0 nkÆknk! =P1k=0 nknk (nÆn)kk! . Now we follow Euler's method to \substitute n = 1". ThennÆn 
onverts into xD, and nknk turns into 1. As result we get the Taylor formulaSx = P1k=0 xkDkk! . Our proof is 
opied from the Euler proof in his Introdu
tio oflimn!1(1 + xn )n = P1k=0 xkk! . This substitution of in�nity means passing to thelimit. This proof is suÆ
ient for de
reasing operations on polynomials be
ause theseries 
ontains only �nitely many nonzero terms. In the general 
ase problems of
onvergen
e arise.The binomial theorem was the main tool for the expansion of fun
tions intopower series in Euler's times. Euler also applied it to get power expansions fortrigonometri
 fun
tions.The Taylor expansion for x = 1 gives a symboli
 equality S = expD. Hen
eD = lnS = ln(1+Æ) =P1k=1(�1)k+1 Ækk . We get a formula for numeri
al di�erenti-ation. Symboli
 
al
ulations produ
e formulas whi
h hold at least for polynomials.



4.1 newton series 101Problems.1. Prove (x+ y)n =Pnk=0 nkxkyn�kk! .2. Evaluate Pnk=0 nkk! 2n�k.3. Prove: If p is prime, then pkk! is divisible by p.4. Prove: nkk! = nn�k(n�k)! .5. Dedu
e the plain binomial theorem from multipli
ation of series for exponenta.6. One de�nes the Catalan number 
n as the number of 
orre
t pla
ement ofbra
kets in the sum a1 + a2 + � � � + an. Prove that Catalan numbers satisfythe following re
ursion equation 
n = Pn�1k=0 
k
n�k and dedu
e a formula forCatalan numbers.7. Prove that �kxnxm = 0 for x = 0 and k < n.8. Prove that Pnk=0(�1)k nkk! = 0.9. Get a di�erential equation for the binomial series and solve it.10. Prove (a+ b)n =Pnk=0 nkk! akbn�k.11. Prove: A sequen
e fakg su
h that �2ak � 0 satis�es the inequality maxfa1; : : : ; ang �ak for any k between 1 and n.12. ProveP1k=0(�1)k x2k2k! = 2x=2 
os x�4 .13. ProveP1k=0(�1)k x2k+1(2k+1)! = 2x=2 sin x�4 .14. Prove �n0p is divisible by p!.�15. Prove that �n0p =Pn�1k=0 (�1)n�k nkk! kp.16. Prove 
os2 x+ sin2 x = 1 via power series.


