
3.6. Analyti FuntionsOn the ontents of the leture. This leture introdues the reader intothe phantastially beautiful world of analyti funtions. Integral Cauhy formula,Taylor series, Fundamental Theorem of Algebra. The reader will see all of thesetreasures in a single leture.Theorem 3.6.1 (Integral Cauhy Formula). If funtion f is omplex di�eren-tiable in the domain D, then for any interior point z 2 D one has:f(z) = 12�i I�D f(�) dz� � zProof. The funtion f(z)z�z0 has its only singular point inside the irle. Thisis z0, whih is a simple pole. The residue of f(z)z�z0 by Lemma 3.5.7 is equal tolimz!z0(z � z0) f(z)z�z0 = limz!z0 f(z) = f(z0). And by the formula (3.5.5) theintegral is equal to 2�if(z0). �Lemma 3.6.2. LetP1k=1 fk be a series of virtually monotone omplex funtions,whih is termwise majorized by a onvergent positive series P1k=1 k on a monotoneurve � (that is jfk(z)j � k for natural k and z 2 �) and suh that F (z) =P1k=1 fk(z) is virtually monotone. Then(3.6.1) 1Xk=1 Z� fk(z) dz = Z� 1Xk=1 fk(z) dz:Proof. By the Estimation Lemma 3.5.4 one has the following inequalities:(3.6.2) ����Z� fk(z) dz���� � 4k diam�; �����Z� 1Xk=n fk(z) dz����� � 4 diam� 1Xk=n k:Set Fn(z) = Pn�1k=1 fk(z). By the left inequality of (3.6.2), the module of dif-ferene between R� Fn(z) dz = Pn�1k=1 R� fk(z) dz and the left-hand side of (3.6.1)does not exeed 4 diam�P1k=n k. Hene this module is in�nitesimally small asn tends to in�nity. On the other hand, by the right inequality of (3.6.2) one gets��R� Fn(z) dz � R� F (z) dz�� � 4 diam�P1k=n k. This implies that the di�erene be-tween the left-hand and right-hand sides of (3.6.1) is in�nitesimally small as n tendsto in�nity. But this di�erene does not depend on n. Hene it is zero. �Lemma 3.6.3. If a real funtion f de�ned over an interval [a; b℄ is loallybounded, then it is bounded.Proof. The proof is by ontradition. Suppose that f is unbounded. Dividethe interval [a; b℄ in half. Then the funtion has to be unbounded at least on oneof the halves. Consider this half and divide it in half. Choose the half wherethe funtion is unbounded. So we onstrut a nested in�nite sequene of intervalsonverging to a point, whih oinides with the intersetion of all the intervals. Andf is obviously not loally bounded at this point. �Corollary 3.6.4. A omplex funtion f(z) ontinuous on the boundary of adomain D is bounded on �D. 89



90 3.6 analyti funtionsProof. Consider a path p : [a; b℄! �D. Then jf(p(t))j is ontinuous on [a; b℄,hene it is loally bounded, hene it is bounded. Sine �D an be overed by imagesof �nitely many paths this implies boundedness of f over �D. �Theorem 3.6.5. If a funtion f(z) is omplex di�erentiable in the disk jz�z0j �R, then for jz � z0j < Rf(z) = 1Xk=0(z � z0)k I Rz0 f(�)(� � z0)k+1 d�;where the series on the right-hand side absolutely onverges for jz � z0j < R.Proof. Fix a point z suh that jz� z0j < R and onsider � as a variable. Forj� � z0j > jz � z0j one has(3.6.3) 1� � z = 1(� � z0)� (z � z0) = 1� � z0 11� z�z0��z0 = 1Xk=0 (z � z0)k(� � z0)k+1 :On the irle j� � z0j = R the series on the right-hand side is majorized by theonvergent series P1k=0 jz�z0jkRk+1 for r > jz � z0j. The funtion f(�) is bounded onj� � z0j = R by Corollary 3.6.4. Therefore after multipliation of (3.6.3) by f(�)all the onditions of Lemma 3.6.2 are satis�ed. Termwise integration gives:f(z) = I Rz0 f(�)� � z d� = 1Xk=0(z � z0)k I Rz0 f(�) d�(� � z0)k+1 : �Analyti funtions. A funtion f(z) of omplex variable is alled an analytifuntion in a point z0 if there is a positive " suh that f(z) = P1k=0 ak(z � z0)kfor all z from a disk jz� z0j � " and the series absolutely onverges. Sine one andi�erentiate power series termwise (Theorem 3.3.9), any funtion whih is analytiat z is also omplex di�erentiable at z. Theorem 3.6.5 gives a onverse. Thus, weget the following:Corollary 3.6.6. A funtion f(z) is analyti at z if and only if it is omplexdi�erentiable in some neighborhood of z.Theorem 3.6.7. If f is analyti at z then f 0 is analyti at z. If f and g areanalyti at z then f + g, f � g, fg are analyti at z. If f is analyti at z and g isanalyti at f(z) then g(f(z)) is analyti at z.Proof. Termwise di�erentiation of the power series representing f in a neigh-borhood of z gives the power series for its derivative. Hene f 0 is analyti. Thedi�erentiability of f � g, fg and g(f(z)) follow from orresponding di�erentiationrules. �Lemma 3.6.8 (Isolated Zeroes). If f(z) is analyti and is not identially equalto 0 in some neighborhood of z0, then f(z) 6= 0 for all z 6= z0 suÆiently lose toz0. Proof. Let f(z) = P1k=0 k(z � z0)k in a neighborhood U of z0. Let mbe the �rst nonzero oeÆient. Then P1k=m k(z � z0)k�m onverges in U to adi�erentiable funtion g(z) by Theorem 3.3.9. Sine g(z0) = m 6= 0 and g(z) is



3.6 analyti funtions 91ontinuous at z0, the inequality g(z) 6= 0 holds for all z suÆiently lose to z0. Asf(z) = g(z)(z � z0)m, the same is true for f(z). �Theorem 3.6.9 (Uniqueness Theorem). If two power series P1k=0 ak(z � z0)kand P1k=0 bk(z� z0)k onverge in a neighborhood of z0 and their sums oinide forsome in�nite sequene fzkg1k=1 suh that zk 6= z0 for all k and limk!1 zk = z0,then ak = bk for all k.Proof. Set k = ak � bk. Then f(z) = P1k=0 k(z � z0)k has a non-isolatedzero at z0. Hene f(z) = 0 in a neighborhood of z0. We get a ontraditionby onsidering the funtion g(z) = P1k=m k(z � z0)k�m, whih is nonzero for allz suÆiently lose to z0 (f. the proof of the Isolated Zeroes Lemma 3.6.8), andsatis�es the equation f(z) = g(z)(z � z0)m. �Taylor series. Set f (0) = f and by indution de�ne the (k + 1)-th derivativef (k+1) of f as the derivative of its k-th derivative f (k). For the �rst and the seondderivatives one prefers the notation f 0 and f 00. For example, the k-th derivative ofzn is nkzn�k. (Reall that nk = n(n� 1) : : : (n� k + 1).)The following series is alled the Taylor series of a funtion f at point z0:1Xk=0 f (k)(z0)k! (z � z0)k:The Taylor series is de�ned for any analyti funtion, beause an analyti fun-tion has derivative of any order due to Theorem 3.6.7.Theorem 3.6.10. If a funtion f is analyti in the disk jz � z0j < r thenf(z) =P1k=0 f (k)(z0)k! (z � z0)k for any z from the disk.Proof. By Theorem 3.6.5, f(z) is presented in the disk by a onvergent powerseries P1k=0 ak(z � z0)k . To prove our theorem we prove that(3.6.4) ak = I Rz0 f(�)(� � z0)k+1 d� = f (k)(z0)k! :Indeed, a0 = f(z0) and termwise di�erentiatiion of P1k=0 ak(z � z0)k applied ntimes gives f (n)(z) = P1k=n knak(z � z0)k. Putting z = z0, one gets f (n)(z0) =nnan = ann!. �Theorem 3.6.11 (Liouville). If a funtion f is analyti and bounded on thewhole omplex plane, then f is onstant.Proof. If f is analyti on the whole plane then f(z) =P1k=0 akzk, where akis de�ned by (3.6.4). If jf(z)j � B by the Estimation Lemma 3.5.4 one gets(3.6.5) jakj = �����I R0 f(�)zk+1 d������ � 4 � 4 BRk+1 Rp2 = CRk :Consequently ak for k > 0 is in�nitesimally small as R tends to in�nity. But akdoes not depend on R, hene it is 0. Therefore f(z) = a0. �Theorem 3.6.12 (Fundamental Theorem of Algebra). Any nononstant poly-nomial P (z) has a omplex root.



92 3.6 analyti funtionsProof. If P (z) has no roots the funtion f(z) = 1P (z) is analyti on the wholeplane. Sine limz!1 f(z) = 0 the inequality jf(z)j < 1 holds for jzj = R if R issuÆiently large. Therefore the estimation (3.6.5) for the k-th oeÆient of f holdswith B = 1 for suÆiently large R. Hene the same arguments as in proof of theLiouville Theorem 3.6.11 show that f(z) is onstant. This is a ontradition. �
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Figure 3.6.1. Analyti ontinuationAnalyti ontinuation.Lemma 3.6.13. If an analyti funtion f(z) has �nitely many singular pointsin a domain D and a non isolated zero at a point z0 2 D then f(z) = 0 for allregular z 2 D.Proof. For any nonsingular point z 2 D, we onstrut a sequene of suÆ-iently small disks D0; D1; D2; : : : ; Dn without singular points with the followingproperties: 1) z0 2 D0 � U ; 2) z 2 Dn; 3) zk, the enter of Dk, belongs to Dk�1for all k > 0. Then by indution we prove that f(Dk) = 0. First step: if z0 is anon-isolated zero of f , then the Taylor series of f vanishes at z0 by the UniquenessTheorem 3.6.9. But this series represents f(z) on D0 due to Theorem 3.6.10, sineD0 does not ontain singular points. Hene, f(D0) = 0. Suppose we have provedalready that f(Dk) = 0. Then zk+1 is a non-isolated zero of f by the third propertyof the sequene fDkgnk=0. Consequently, the same arguments as above for k = 0prove that f(Dk+1) = 0. And �nally we get f(z) = 0. �Consider any formula whih you know from shool about trigonometri fun-tions. For example, tan(x + y) = tanx+tany1�tanx tan y . The above lemma implies thatthis formula remains true for omplex x and y. Indeed, onsider the funtionT (x; y) = tan(x + y) � tanx+tan y1�tanx tan y . For a �xed x the funtion T (x; y) is analytiand has �nitely many singular points in any disk. This funtion has non-isolatedzeroes in all real points, hene this funtion is zero in any disk interseting the realline. This implies that T (x; y) is zero for all y. The same arguments applied toT (x; y) with �xed y and variable x prove that T (x; y) is zero for all omplex x; y.The same arguments prove the following theorem.



3.6 analyti funtions 93Theorem 3.6.14. If some analyti relation between analyti funtions holds ona urve �, it holds for any z 2 C , whih an be onneted with � by a paths avoidingsingular points of the funtions.Lemma 3.6.15. sin t � 2t� for t 2 [0; �=2℄.Proof. Let f(t) = sin t� 2t� . Then f 0(x) = os t� 2� . Set y = aros 2� . Thenf 0(x) � 0 for x 2 [0; y℄. Therefore f is nondereasing on [0; y℄, and nonnegative,beause f(0) = 0. On the interval [y; �=2℄ the derivative of f is negative. Henef(x) is non-inreasing and nonnegative, beause its value on the end of the intervalis 0. �Lemma 3.6.16 (Jordan). Let f(z) be an analyti funtion in the upper half-plane suh that limz!1 f(z) = 0. Denote by �R the upper half of the irle jzj = R.Then for any natural m(3.6.6) limR!1 Z�R f(z) exp(miz) dz = 0:Proof. Consider the parametrization z(t) = R os t+Ri sin t, t 2 [0; �℄ of �R.Then the integral (3.6.6) turns into(3.6.7) Z �0 f(z) exp(iRm os t�Rm sin t) d(R os t+ Ri sin t)= Z �0 Rf(z) exp(iRm os t) exp(�Rm sin t)(� sin t+ i os t) dt:If jf(z)j � B on �R, then jf(z) exp(iRm os t)(� sin t + i os t)j � B on �R. Andthe module of the integral (3.6.7) an be estimated from above byBR Z �0 exp(�Rm sin t) dt:Sine sin(� � t) = sin t, the latter integral is equal to 2BR R �=20 exp(�Rm sin t) dt.Sine sin t � 2t� , the latter integral does not exeed2BR Z �=20 exp(�2Rmt=�) dt = 2BR1� exp(�Rm)2Rm � Bm:Sine B an be hosen arbitrarily small for suÆiently large R, this proves thelemma. �Evaluation of R +1�1 sinxx dx = limN!1 R N�N sinxx dx. Sine sinx = Im eix ourintegral is equal to Im R +1�1 eizz dz. Set �(r) = fz j jzj = r; Im z � 0g. This is asemiirle. Let us orient it ounter-lokwise, so that its initial point is r.Consider the domain D(R) bounded by the semiirles ��(r), �(R) and theintervals [�R;�r℄, [r; R℄, where r = 1R and R > 1. The funtion eizz has no singularpoints inside D(R). Hene H�D(R) eizz dz = 0. Hene for any R(3.6.8) Z �R�r eizz dz + Z Rr eizz dz = Z�(r) eizz dz � Z�(R) eizz dz:The seond integral on the right-hand side tends to 0 as R tends to in�nity due toJordan's Lemma 3.6.16. The funtion eizz has a simple pole at 0, hene the �rst



94 3.6 analyti funtions
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−R Figure 3.6.2. The domain D(R)integral on the right-hand side of (3.6.8) tends to �i res eizz = �i due to Remark3.5.8. As a result, the right-hand side of (3.6.8) tends to �i as R tends to in�nity.Consequently the left-hand side of (3.6.8) also tends to �i as R !1. The imagi-nary part of left-hand side of (3.6.8) is equal to R R�R sinxx dx� R r�r sinxx dx. The lastintegral tends to 0 as r ! 0, beause j sinxx j � 1. Hene R R�R sinxx dx tends to � asR!1. Finally R +1�1 sinxx dx = �.Problems.1. Prove that an even analyti funtion f , i.e., a funtion suh that f(z) = f(�z),has a Taylor series at 0 onsisting only of even powers.2. Prove that analyti funtion whih has a Taylor series only with even powersis an even funtion.3. Prove: If an analyti funtion f(z) takes real values on [0; 1℄, then f(x) is realfor any real x.4. Evaluate R +1�1 11+x4 dx.5. Evaluate R +��� d�5+3 os� .6. Evaluate R10 x2(x2+a2)2 dx (a > 0).7. Evaluate R +1�1 x sinxx2+4x+20 dx.8. Evaluate R10 os axx2+b2 dx (a; b > 0).


