3.6. Analytic Functions

On the contents of the lecture. This lecture introduces the reader into
the phantastically beautiful world of analytic functions. Integral Cauchy formula,
Taylor series, Fundamental Theorem of Algebra. The reader will see all of these
treasures in a single lecture.

THEOREM 3.6.1 (Integral Cauchy Formula). If function f is complex differen-
tiable in the domain D, then for any interior point z € D one has:

fo - L f 1O

_27TZ 8D C—Z

Proor. The function £&L has its only singular point inside the circle. This

Z—Z0
is zp, which is a simple pole. The residue of % by Lemma 3.5.7 is equal to

lim,,,,(z — ZO)M = lim,,,, f(2) = f(20). And by the formula (3.5.5) the

Z—Z0

integral is equal to 27if(zo). O

LEMMA 3.6.2. Let Y, fi be a series of virtually monotone complex functions,
which is termwise magjorized by a convergent positive series Y p- | ¢k on a monotone
curve ' (that is |fr(2)] < ¢ for natural k and z € T') and such that F(z) =
>y fi(2) is virtually monotone. Then

(3.6.1) kz::l/rfk(z) dz:/rkz::lfk(z) dz.

ProOOF. By the Estimation Lemma 3.5.4 one has the following inequalities:

/F filz) dz /F gmz) dz

Set F,(z) = Zz;ll fr(z). By the left inequality of (3.6.2), the module of dif-
ference between [, F,,(2)dz = Zz;ll r fe(2) dz and the left-hand side of (3.6.1)
does not exceed 4diamI' Y ;2 ¢. Hence this module is infinitesimally small as
n tends to infinity. On the other hand, by the right inequality of (3.6.2) one gets
| Fu(2)dz — [ F(z)dz| < 4diamT Y72 ¢;. This implies that the difference be-
tween the left-hand and right-hand sides of (3.6.1) is infinitesimally small as n tends
to infinity. But this difference does not depend on n. Hence it is zero. d

(3.6.2) <4cpdiamT,

(oo}
<4diamT Z Cr.
k=n

LEMMA 3.6.3. If a real function f defined over an interval [a,b] is locally
bounded, then it is bounded.

PROOF. The proof is by contradiction. Suppose that f is unbounded. Divide
the interval [a,b] in half. Then the function has to be unbounded at least on one
of the halves. Consider this half and divide it in half. Choose the half where
the function is unbounded. So we construct a nested infinite sequence of intervals
converging to a point, which coincides with the intersection of all the intervals. And
f is obviously not locally bounded at this point. O

COROLLARY 3.6.4. A complex function f(z) continuous on the boundary of a
domain D is bounded on 0D.
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ProOF. Consider a path p: [a,b] = 0D. Then |f(p(t))| is continuous on [a, b],
hence it is locally bounded, hence it is bounded. Since 0D can be covered by images
of finitely many paths this implies boundedness of f over 0D. O

THEOREM 3.6.5. If a function f(2) is complex differentiable in the disk |z—zp| <
R, then for |z — z0| < R

o0 R
K f(©)
z) = z—2 ——=—d(,

where the series on the right-hand side absolutely converges for |z — zp| < R.

Proor. Fix a point z such that |z — 29| < R and consider ¢ as a variable. For
|¢ — 20| > |z — 20| one has

1 1 1 1 2 (z—2)F

3.6.3 = = = .
(36.3) (—z ((—2)—(2-20) (—21-F2 Z(

On the circle |¢ — z9| = R the series on the right-hand side is majorized by the

k
convergent series Y p- o ‘Zlg,ﬁl‘ for r > |z — zo|. The function f(¢) is bounded on

|¢ = z0| = R by Corollary 3.6.4. Therefore after multiplication of (3.6.3) by f(¢)
all the conditions of Lemma 3.6.2 are satisfied. Termwise integration gives:

I S-S R (oY
f@=p =22 7{ €~ )b

O

Analytic functions. A function f(z) of complex variable is called an analytic
function in a point zo if there is a positive € such that f(z) = Y, ar(z — 20)*
for all z from a disk |z — 29| < € and the series absolutely converges. Since one can
differentiate power series termwise (Theorem 3.3.9), any function which is analytic
at z is also complex differentiable at z. Theorem 3.6.5 gives a converse. Thus, we
get the following:

COROLLARY 3.6.6. A function f(z) is analytic at z if and only if it is complex
differentiable in some neighborhood of z.

THEOREM 3.6.7. If f is analytic at z then f' is analytic at z. If f and g are
analytic at z then f+ g, f —g, fg are analytic at z. If f is analytic at z and g is
analytic at f(z) then g(f(z)) is analytic at z.

ProOOF. Termwise differentiation of the power series representing f in a neigh-
borhood of z gives the power series for its derivative. Hence f' is analytic. The
differentiability of f £ g, fg and g(f(z)) follow from corresponding differentiation
rules. O

LeEmMA 3.6.8 (Isolated Zeroes). If f(z) is analytic and is not identically equal
to 0 in some neighborhood of zy, then f(z) # 0 for all z # 2o sufficiently close to
Z0.

ProoOF. Let f(z) = Y peyck(z — 20)* in a neighborhood U of zg. Let cp,
be the first nonzero coefficient. Then > p-  cx(z — 20)¥~™ converges in U to a
differentiable function g(z) by Theorem 3.3.9. Since g(20) = ¢ # 0 and g(z) is
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continuous at zp, the inequality g(z) # 0 holds for all z sufficiently close to zg. As
f(z) = g(2)(z — 20)™, the same is true for f(z). O

THEOREM 3.6.9 (Uniqueness Theorem). If two power series > p- , ar(z — 20)*
and EZ’;O bi(z — 20)* converge in a neighborhood of 2y and their sums coincide for
some infinite sequence {z}7>, such that z; # zo for all k and limy_, 2r = 20,
then ay, = by, for all k.

PROOF. Set ¢, = ay — by. Then f(z) = Y 7 ce(z — 20)* has a non-isolated
zero at zp. Hence f(z) = 0 in a neighborhood of z;. We get a contradiction
by considering the function g(z) = Y p-, cr(z — 20)¥~™, which is nonzero for all
z sufficiently close to zg (cf. the proof of the Isolated Zeroes Lemma 3.6.8), and
satisfies the equation f(z) = g(z)(z — z0)™. O

Taylor series. Set f(©) = f and by induction define the (k + 1)-th derivative
f5+D of f as the derivative of its k-th derivative f(*). For the first and the second
derivatives one prefers the notation f' and f”. For example, the k-th derivative of
2" is nf2" k. (Recall that n® =n(n—1)...(n —k+1).)

The following series is called the Taylor series of a function f at point zy:

£ (2,
Zf k(' )(z—zo)k.

k=0

The Taylor series is defined for any analytic function, because an analytic func-
tion has derivative of any order due to Theorem 3.6.7.

THEOREM 3.6.10. If a function f is analytic in the disk |z — zo| < r then
k
f(z) =372 W(z — 20)* for any z from the disk.

Proor. By Theorem 3.6.5, f(z) is presented in the disk by a convergent power
. [o'e) k
series .~ o ar(z — 29)". To prove our theorem we prove that

R (k) (4,
(3.6.4) ak:?{ #dg:f”“).

— Zo)kJrl k!

Indeed, ag = f(20) and termwise differentiatiion of Y p—, ax(z — zo)* applied n
times gives f("(z) = 3232 k"ax(z — 20)*. Putting z = 2o, one gets f(W(z) =
n"a, = a,n!. O

THEOREM 3.6.11 (Liouville). If a function f is analytic and bounded on the
whole complex plane, then f is constant.

PRroOF. If f is analytic on the whole plane then f(z) = Y .-, arz®, where ay
is defined by (3.6.4). If | f(2)| < B by the Estimation Lemma 3.5.4 one gets

(9

B R _C
ST e <4-4

(3.6.5) |ax| = SAdprn s =g

Consequently ay for £ > 0 is infinitesimally small as R tends to infinity. But ay
does not depend on R, hence it is 0. Therefore f(z) = ap. O

THEOREM 3.6.12 (Fundamental Theorem of Algebra). Any nonconstant poly-
nomial P(z) has a complex root.
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PROOF. If P(z) has no roots the function f(z) = #Z) is analytic on the whole
plane. Since lim,_, f(z) = 0 the inequality |f(z)| < 1 holds for |z| = R if R is
sufficiently large. Therefore the estimation (3.6.5) for the k-th coefficient of f holds
with B = 1 for sufficiently large R. Hence the same arguments as in proof of the
Liouville Theorem 3.6.11 show that f(z) is constant. This is a contradiction. O

FI1GURE 3.6.1. Analytic continuation

Analytic continuation.

LeEMMA 3.6.13. If an analytic function f(z) has finitely many singular points
in a domain D and a non isolated zero at a point z9 € D then f(z) = 0 for all
reqular z € D.

ProOOF. For any nonsingular point z € D, we construct a sequence of suffi-
ciently small disks Dg, Dy, Da, ..., D, without singular points with the following
properties: 1) zo € Do C U; 2) z € Dy; 3) 2, the center of Dy, belongs to Dy_1
for all £ > 0. Then by induction we prove that f(Dy) = 0. First step: if zg is a
non-isolated zero of f, then the Taylor series of f vanishes at zg by the Uniqueness
Theorem 3.6.9. But this series represents f(z) on Dy due to Theorem 3.6.10, since
Dy does not contain singular points. Hence, f(Dy) = 0. Suppose we have proved
already that f(Dy) = 0. Then 2y, is a non-isolated zero of f by the third property
of the sequence {Dy}?_,. Consequently, the same arguments as above for £k = 0
prove that f(Dg+1) = 0. And finally we get f(z) = 0. O

Consider any formula which you know from school about trigonometric func-
tions. For example, tan(z + y) = %ﬂy The above lemma implies that
this formula remains true for complex z and y. Indeed, consider the function
T(z,y) = tan(z +y) — % For a fixed z the function T'(z,y) is analytic
and has finitely many singular points in any disk. This function has non-isolated
zeroes in all real points, hence this function is zero in any disk intersecting the real
line. This implies that T'(x,y) is zero for all y. The same arguments applied to
T (z,y) with fixed y and variable x prove that T'(x,y) is zero for all complex x,y.

The same arguments prove the following theorem.
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THEOREM 3.6.14. If some analytic relation between analytic functions holds on
a curve I', it holds for any z € C, which can be connected with I" by a paths avoiding
singular points of the functions.

LEMMA 3.6.15. sint > 2 for t € [0,7/2].

PROOF. Let f(t) =sint — 2L, Then f'(x) = cost — 2. Set y = arccos 2. Then
f'(z) > 0 for z € [0,y]. Therefore f is nondecreasing on [0,y], and nonnegative,
because f(0) = 0. On the interval [y,n/2] the derivative of f is negative. Hence
f(x) is non-increasing and nonnegative, because its value on the end of the interval
is 0. O

LeEmMMA 3.6.16 (Jordan). Let f(z) be an analytic function in the upper half-
plane such that li)m f(z) = 0. Denote by T'r the upper half of the circle |z| = R.
z (oo}

Then for any natural m

(3.6.6) lim /F f(z)exp(miz)dz = 0.

R—o0

PRrOOF. Consider the parametrization z(t) = Rcost+ Risint, ¢t € [0, 7] of T'g.
Then the integral (3.6.6) turns into

(3.6.7) / f(z)exp(iRmcost — Rmsint) d(R cost + Risint)
0

= / Rf(z)exp(iRmcost) exp(—Rmsint)(—sint + icost) dt.
0

If |f(z)| < B on I'g, then |f(z)exp(iRmcost)(—sint + icost)] < B on I'r. And
the module of the integral (3.6.7) can be estimated from above by

BR / exp(—Rmsint) dt.
0

Since sin(m — t) = sint, the latter integral is equal to 2BR foﬂ/z exp(—Rmsint) dt.
Since sint > %, the latter integral does not exceed

w/2 1
QBR/ exp(—2Rmt/w) dt = 2BR
0

—exp(—Rm) < B

2Rm - m
Since B can be chosen arbitrarily small for sufficiently large R, this proves the
lemma. d

Evaluation of fj;o Si%vda: = limy oo fiVN Sigx dz. Since sinz = Im e our
integral is equal to Im fj;o 5172 dz. Set I'(r) = {# | |#| = r,Imz > 0}. This is a
semicircle. Let us orient it counter-clockwise, so that its initial point is r.

Consider the domain D(R) bounded by the semicircles —I'(r), I'(R) and the

intervals [~ R, —r], [r, R], where r = & and R > 1. The function % has no singular

R) =z

—-R iz R _iz iz iz
(3.6.8) / e—dz+/ SR :/ e_dz_/ e 5
- Z ro 2 r(r) # r(R) ?

The second integral on the right-hand side tends to 0 as R tends to infinity due to
Jordan’s Lemma 3.6.16. The function has a simple pole at 0, hence the first

points inside D(R). Hence faD( dz = 0. Hence for any R

eiz

z
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FIGURE 3.6.2. The domain D(R)

integral on the right-hand side of (3.6.8) tends to mires % = 7i due to Remark
3.5.8. As a result, the right-hand side of (3.6.8) tends to 7i as R tends to infinity.
Consequently the left-hand side of (3.6.8) also tends to mi as R — co. The imagi-

nary part of left-hand side of (3.6.8) is equal to ffR Sng gy — [T SNE gy The last
integral tends to 0 as » — 0, because |s‘%| < 1. Hence ffiR S‘% dz tends to 7 as
R — co. Finally fj;o SR gy = .

Problems.

1. Prove that an even analytic function f, i.e., a function such that f(z) = f(—=z),
has a Taylor series at 0 consisting only of even powers.

2. Prove that analytic function which has a Taylor series only with even powers
is an even function.

3. Prove: If an analytic function f(z) takes real values on [0, 1], then f(z) is real

for any real z.

Evaluate [©°° —L du.

—oo l+az?

+m do
Evaluate [ 5¥3cosd”

Evaluate [;° ﬁ dz (a > 0).
Evaluate [*°7 2sie o g

Evaluate [;° e dz (a,b > 0).
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