
3.6. Analyti
 Fun
tionsOn the 
ontents of the le
ture. This le
ture introdu
es the reader intothe phantasti
ally beautiful world of analyti
 fun
tions. Integral Cau
hy formula,Taylor series, Fundamental Theorem of Algebra. The reader will see all of thesetreasures in a single le
ture.Theorem 3.6.1 (Integral Cau
hy Formula). If fun
tion f is 
omplex di�eren-tiable in the domain D, then for any interior point z 2 D one has:f(z) = 12�i I�D f(�) dz� � zProof. The fun
tion f(z)z�z0 has its only singular point inside the 
ir
le. Thisis z0, whi
h is a simple pole. The residue of f(z)z�z0 by Lemma 3.5.7 is equal tolimz!z0(z � z0) f(z)z�z0 = limz!z0 f(z) = f(z0). And by the formula (3.5.5) theintegral is equal to 2�if(z0). �Lemma 3.6.2. LetP1k=1 fk be a series of virtually monotone 
omplex fun
tions,whi
h is termwise majorized by a 
onvergent positive series P1k=1 
k on a monotone
urve � (that is jfk(z)j � 
k for natural k and z 2 �) and su
h that F (z) =P1k=1 fk(z) is virtually monotone. Then(3.6.1) 1Xk=1 Z� fk(z) dz = Z� 1Xk=1 fk(z) dz:Proof. By the Estimation Lemma 3.5.4 one has the following inequalities:(3.6.2) ����Z� fk(z) dz���� � 4
k diam�; �����Z� 1Xk=n fk(z) dz����� � 4 diam� 1Xk=n 
k:Set Fn(z) = Pn�1k=1 fk(z). By the left inequality of (3.6.2), the module of dif-feren
e between R� Fn(z) dz = Pn�1k=1 R� fk(z) dz and the left-hand side of (3.6.1)does not ex
eed 4 diam�P1k=n 
k. Hen
e this module is in�nitesimally small asn tends to in�nity. On the other hand, by the right inequality of (3.6.2) one gets��R� Fn(z) dz � R� F (z) dz�� � 4 diam�P1k=n 
k. This implies that the di�eren
e be-tween the left-hand and right-hand sides of (3.6.1) is in�nitesimally small as n tendsto in�nity. But this di�eren
e does not depend on n. Hen
e it is zero. �Lemma 3.6.3. If a real fun
tion f de�ned over an interval [a; b℄ is lo
allybounded, then it is bounded.Proof. The proof is by 
ontradi
tion. Suppose that f is unbounded. Dividethe interval [a; b℄ in half. Then the fun
tion has to be unbounded at least on oneof the halves. Consider this half and divide it in half. Choose the half wherethe fun
tion is unbounded. So we 
onstru
t a nested in�nite sequen
e of intervals
onverging to a point, whi
h 
oin
ides with the interse
tion of all the intervals. Andf is obviously not lo
ally bounded at this point. �Corollary 3.6.4. A 
omplex fun
tion f(z) 
ontinuous on the boundary of adomain D is bounded on �D. 89



90 3.6 analyti
 fun
tionsProof. Consider a path p : [a; b℄! �D. Then jf(p(t))j is 
ontinuous on [a; b℄,hen
e it is lo
ally bounded, hen
e it is bounded. Sin
e �D 
an be 
overed by imagesof �nitely many paths this implies boundedness of f over �D. �Theorem 3.6.5. If a fun
tion f(z) is 
omplex di�erentiable in the disk jz�z0j �R, then for jz � z0j < Rf(z) = 1Xk=0(z � z0)k I Rz0 f(�)(� � z0)k+1 d�;where the series on the right-hand side absolutely 
onverges for jz � z0j < R.Proof. Fix a point z su
h that jz� z0j < R and 
onsider � as a variable. Forj� � z0j > jz � z0j one has(3.6.3) 1� � z = 1(� � z0)� (z � z0) = 1� � z0 11� z�z0��z0 = 1Xk=0 (z � z0)k(� � z0)k+1 :On the 
ir
le j� � z0j = R the series on the right-hand side is majorized by the
onvergent series P1k=0 jz�z0jkRk+1 for r > jz � z0j. The fun
tion f(�) is bounded onj� � z0j = R by Corollary 3.6.4. Therefore after multipli
ation of (3.6.3) by f(�)all the 
onditions of Lemma 3.6.2 are satis�ed. Termwise integration gives:f(z) = I Rz0 f(�)� � z d� = 1Xk=0(z � z0)k I Rz0 f(�) d�(� � z0)k+1 : �Analyti
 fun
tions. A fun
tion f(z) of 
omplex variable is 
alled an analyti
fun
tion in a point z0 if there is a positive " su
h that f(z) = P1k=0 ak(z � z0)kfor all z from a disk jz� z0j � " and the series absolutely 
onverges. Sin
e one 
andi�erentiate power series termwise (Theorem 3.3.9), any fun
tion whi
h is analyti
at z is also 
omplex di�erentiable at z. Theorem 3.6.5 gives a 
onverse. Thus, weget the following:Corollary 3.6.6. A fun
tion f(z) is analyti
 at z if and only if it is 
omplexdi�erentiable in some neighborhood of z.Theorem 3.6.7. If f is analyti
 at z then f 0 is analyti
 at z. If f and g areanalyti
 at z then f + g, f � g, fg are analyti
 at z. If f is analyti
 at z and g isanalyti
 at f(z) then g(f(z)) is analyti
 at z.Proof. Termwise di�erentiation of the power series representing f in a neigh-borhood of z gives the power series for its derivative. Hen
e f 0 is analyti
. Thedi�erentiability of f � g, fg and g(f(z)) follow from 
orresponding di�erentiationrules. �Lemma 3.6.8 (Isolated Zeroes). If f(z) is analyti
 and is not identi
ally equalto 0 in some neighborhood of z0, then f(z) 6= 0 for all z 6= z0 suÆ
iently 
lose toz0. Proof. Let f(z) = P1k=0 
k(z � z0)k in a neighborhood U of z0. Let 
mbe the �rst nonzero 
oeÆ
ient. Then P1k=m 
k(z � z0)k�m 
onverges in U to adi�erentiable fun
tion g(z) by Theorem 3.3.9. Sin
e g(z0) = 
m 6= 0 and g(z) is
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ontinuous at z0, the inequality g(z) 6= 0 holds for all z suÆ
iently 
lose to z0. Asf(z) = g(z)(z � z0)m, the same is true for f(z). �Theorem 3.6.9 (Uniqueness Theorem). If two power series P1k=0 ak(z � z0)kand P1k=0 bk(z� z0)k 
onverge in a neighborhood of z0 and their sums 
oin
ide forsome in�nite sequen
e fzkg1k=1 su
h that zk 6= z0 for all k and limk!1 zk = z0,then ak = bk for all k.Proof. Set 
k = ak � bk. Then f(z) = P1k=0 
k(z � z0)k has a non-isolatedzero at z0. Hen
e f(z) = 0 in a neighborhood of z0. We get a 
ontradi
tionby 
onsidering the fun
tion g(z) = P1k=m 
k(z � z0)k�m, whi
h is nonzero for allz suÆ
iently 
lose to z0 (
f. the proof of the Isolated Zeroes Lemma 3.6.8), andsatis�es the equation f(z) = g(z)(z � z0)m. �Taylor series. Set f (0) = f and by indu
tion de�ne the (k + 1)-th derivativef (k+1) of f as the derivative of its k-th derivative f (k). For the �rst and the se
ondderivatives one prefers the notation f 0 and f 00. For example, the k-th derivative ofzn is nkzn�k. (Re
all that nk = n(n� 1) : : : (n� k + 1).)The following series is 
alled the Taylor series of a fun
tion f at point z0:1Xk=0 f (k)(z0)k! (z � z0)k:The Taylor series is de�ned for any analyti
 fun
tion, be
ause an analyti
 fun
-tion has derivative of any order due to Theorem 3.6.7.Theorem 3.6.10. If a fun
tion f is analyti
 in the disk jz � z0j < r thenf(z) =P1k=0 f (k)(z0)k! (z � z0)k for any z from the disk.Proof. By Theorem 3.6.5, f(z) is presented in the disk by a 
onvergent powerseries P1k=0 ak(z � z0)k . To prove our theorem we prove that(3.6.4) ak = I Rz0 f(�)(� � z0)k+1 d� = f (k)(z0)k! :Indeed, a0 = f(z0) and termwise di�erentiatiion of P1k=0 ak(z � z0)k applied ntimes gives f (n)(z) = P1k=n knak(z � z0)k. Putting z = z0, one gets f (n)(z0) =nnan = ann!. �Theorem 3.6.11 (Liouville). If a fun
tion f is analyti
 and bounded on thewhole 
omplex plane, then f is 
onstant.Proof. If f is analyti
 on the whole plane then f(z) =P1k=0 akzk, where akis de�ned by (3.6.4). If jf(z)j � B by the Estimation Lemma 3.5.4 one gets(3.6.5) jakj = �����I R0 f(�)zk+1 d������ � 4 � 4 BRk+1 Rp2 = CRk :Consequently ak for k > 0 is in�nitesimally small as R tends to in�nity. But akdoes not depend on R, hen
e it is 0. Therefore f(z) = a0. �Theorem 3.6.12 (Fundamental Theorem of Algebra). Any non
onstant poly-nomial P (z) has a 
omplex root.
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 fun
tionsProof. If P (z) has no roots the fun
tion f(z) = 1P (z) is analyti
 on the wholeplane. Sin
e limz!1 f(z) = 0 the inequality jf(z)j < 1 holds for jzj = R if R issuÆ
iently large. Therefore the estimation (3.6.5) for the k-th 
oeÆ
ient of f holdswith B = 1 for suÆ
iently large R. Hen
e the same arguments as in proof of theLiouville Theorem 3.6.11 show that f(z) is 
onstant. This is a 
ontradi
tion. �
.
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ontinuation.Lemma 3.6.13. If an analyti
 fun
tion f(z) has �nitely many singular pointsin a domain D and a non isolated zero at a point z0 2 D then f(z) = 0 for allregular z 2 D.Proof. For any nonsingular point z 2 D, we 
onstru
t a sequen
e of suÆ-
iently small disks D0; D1; D2; : : : ; Dn without singular points with the followingproperties: 1) z0 2 D0 � U ; 2) z 2 Dn; 3) zk, the 
enter of Dk, belongs to Dk�1for all k > 0. Then by indu
tion we prove that f(Dk) = 0. First step: if z0 is anon-isolated zero of f , then the Taylor series of f vanishes at z0 by the UniquenessTheorem 3.6.9. But this series represents f(z) on D0 due to Theorem 3.6.10, sin
eD0 does not 
ontain singular points. Hen
e, f(D0) = 0. Suppose we have provedalready that f(Dk) = 0. Then zk+1 is a non-isolated zero of f by the third propertyof the sequen
e fDkgnk=0. Consequently, the same arguments as above for k = 0prove that f(Dk+1) = 0. And �nally we get f(z) = 0. �Consider any formula whi
h you know from s
hool about trigonometri
 fun
-tions. For example, tan(x + y) = tanx+tany1�tanx tan y . The above lemma implies thatthis formula remains true for 
omplex x and y. Indeed, 
onsider the fun
tionT (x; y) = tan(x + y) � tanx+tan y1�tanx tan y . For a �xed x the fun
tion T (x; y) is analyti
and has �nitely many singular points in any disk. This fun
tion has non-isolatedzeroes in all real points, hen
e this fun
tion is zero in any disk interse
ting the realline. This implies that T (x; y) is zero for all y. The same arguments applied toT (x; y) with �xed y and variable x prove that T (x; y) is zero for all 
omplex x; y.The same arguments prove the following theorem.
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tions 93Theorem 3.6.14. If some analyti
 relation between analyti
 fun
tions holds ona 
urve �, it holds for any z 2 C , whi
h 
an be 
onne
ted with � by a paths avoidingsingular points of the fun
tions.Lemma 3.6.15. sin t � 2t� for t 2 [0; �=2℄.Proof. Let f(t) = sin t� 2t� . Then f 0(x) = 
os t� 2� . Set y = ar

os 2� . Thenf 0(x) � 0 for x 2 [0; y℄. Therefore f is nonde
reasing on [0; y℄, and nonnegative,be
ause f(0) = 0. On the interval [y; �=2℄ the derivative of f is negative. Hen
ef(x) is non-in
reasing and nonnegative, be
ause its value on the end of the intervalis 0. �Lemma 3.6.16 (Jordan). Let f(z) be an analyti
 fun
tion in the upper half-plane su
h that limz!1 f(z) = 0. Denote by �R the upper half of the 
ir
le jzj = R.Then for any natural m(3.6.6) limR!1 Z�R f(z) exp(miz) dz = 0:Proof. Consider the parametrization z(t) = R 
os t+Ri sin t, t 2 [0; �℄ of �R.Then the integral (3.6.6) turns into(3.6.7) Z �0 f(z) exp(iRm 
os t�Rm sin t) d(R 
os t+ Ri sin t)= Z �0 Rf(z) exp(iRm 
os t) exp(�Rm sin t)(� sin t+ i 
os t) dt:If jf(z)j � B on �R, then jf(z) exp(iRm 
os t)(� sin t + i 
os t)j � B on �R. Andthe module of the integral (3.6.7) 
an be estimated from above byBR Z �0 exp(�Rm sin t) dt:Sin
e sin(� � t) = sin t, the latter integral is equal to 2BR R �=20 exp(�Rm sin t) dt.Sin
e sin t � 2t� , the latter integral does not ex
eed2BR Z �=20 exp(�2Rmt=�) dt = 2BR1� exp(�Rm)2Rm � Bm:Sin
e B 
an be 
hosen arbitrarily small for suÆ
iently large R, this proves thelemma. �Evaluation of R +1�1 sinxx dx = limN!1 R N�N sinxx dx. Sin
e sinx = Im eix ourintegral is equal to Im R +1�1 eizz dz. Set �(r) = fz j jzj = r; Im z � 0g. This is asemi
ir
le. Let us orient it 
ounter-
lo
kwise, so that its initial point is r.Consider the domain D(R) bounded by the semi
ir
les ��(r), �(R) and theintervals [�R;�r℄, [r; R℄, where r = 1R and R > 1. The fun
tion eizz has no singularpoints inside D(R). Hen
e H�D(R) eizz dz = 0. Hen
e for any R(3.6.8) Z �R�r eizz dz + Z Rr eizz dz = Z�(r) eizz dz � Z�(R) eizz dz:The se
ond integral on the right-hand side tends to 0 as R tends to in�nity due toJordan's Lemma 3.6.16. The fun
tion eizz has a simple pole at 0, hen
e the �rst
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R
−r

−R Figure 3.6.2. The domain D(R)integral on the right-hand side of (3.6.8) tends to �i res eizz = �i due to Remark3.5.8. As a result, the right-hand side of (3.6.8) tends to �i as R tends to in�nity.Consequently the left-hand side of (3.6.8) also tends to �i as R !1. The imagi-nary part of left-hand side of (3.6.8) is equal to R R�R sinxx dx� R r�r sinxx dx. The lastintegral tends to 0 as r ! 0, be
ause j sinxx j � 1. Hen
e R R�R sinxx dx tends to � asR!1. Finally R +1�1 sinxx dx = �.Problems.1. Prove that an even analyti
 fun
tion f , i.e., a fun
tion su
h that f(z) = f(�z),has a Taylor series at 0 
onsisting only of even powers.2. Prove that analyti
 fun
tion whi
h has a Taylor series only with even powersis an even fun
tion.3. Prove: If an analyti
 fun
tion f(z) takes real values on [0; 1℄, then f(x) is realfor any real x.4. Evaluate R +1�1 11+x4 dx.5. Evaluate R +��� d�5+3 
os� .6. Evaluate R10 x2(x2+a2)2 dx (a > 0).7. Evaluate R +1�1 x sinxx2+4x+20 dx.8. Evaluate R10 
os axx2+b2 dx (a; b > 0).


