
3.5. Residue TheoryOn the ontents of the leture. At last, the reader learns something, whihEuler did not know, and whih he would highly appreiate. Residue theory allowsone to evaluate a lot of integrals whih were not aessible by the Newton-Leibnizformula.Monotone urve. A monotone urve � is de�ned as a subset of the omplexplane whih is the image of a monotone path. Nonempty intersetions of vertialand horizontal lines with a monotone urve are either points or losed intervals.The points of the monotone urve whih have an extremal sum of real andimaginary parts are alled its endpoints, the other points of the urve are alled itsinterior points.A ontinuous injetive monotone path p whose image oinides with � is alleda parametrization of �.Lemma 3.5.1. Let p1 : [a; b℄! C and p2 : [; d℄! C be two parametrizations ofthe same monotone urve �. Then p�11 p2 : [; d℄ ! [a; b℄ is a ontinuous monotonebijetion.Proof. Set Pi(t) = Re pi(t) + Im pi(t). Then P1 and P2 are ontinuous andstritly monotone. And p1(t) = p2(�) if and only if P1(t) = P2(�). Hene p�11 p2 =P�11 P2. Sine P�11 and P2 are monotone ontinuous, the omposition P�11 P2 ismonotone ontinuous. �Orientation. One says that two parametrizations p1 and p2 of a monotoneurve � have the same orientation, if p�11 p2 is inreasing, and one says that theyhave opposite orientations, if p�11 p2 is dereasing.Orientation divides all parametrizations of a urve into two lasses. All elementsof one orientation lass have the same orientation and all elements of the other lasshave the opposite orientation.An oriented urve is a urve with �xed irulation diretion. A hoie of orien-tation means distinguishing one of the orientation lasses as positive, orrespondingto the oriented urve. For a monotone urve, to speify its orientation, it is suÆ-ient to indiate whih of its endpoints is its beginning and whih is the end. Thenall positively oriented parametrizations start with its beginning and �nish at itsend, and negatively oriented parametrizations do the opposite.If an oriented urve is denoted by �, then its body, the urve without orientation,is denoted j�j and the urve with the same body but with opposite orientation isdenoted ��.If �0 is a monotone urve whih is ontained in an oriented urve �, then onede�nes the indued orientation on �0 by � as the orientation of a parametrizationof �0 whih extends to a positive parametrization of �.Line integral. One de�nes the integral R� f(z) dg(z) along a oriented mono-tone urve � as the integral Rp f(z) dg(z), where p is a positively oriented parametr-ization of �. This de�nition does not depend on the hoie of p, beause di�erentparametrizations are obtained from eah other by an inreasing hange of variable(Lemma 3.5.1).One de�nes a partition of a urve � by a point x as a pair of monotone urves�1, �2, suh that � = �1[�2 and �1\�2 = x. And we write in this ase � = �1+�2.83



84 3.5 residue theoryThe Partition Rule for the line integral is(3.5.1) Z�1+�2 f(z) dg(z) = Z�1 f(z) dg(z) + Z�2 f(z) dg(z);where the orientations on �i are indued by an orientation of �. To prove thePartition Rule onsider a positive parametrization p : [a; b℄! �. Then the restri-tions of p over [a; p�1(x)℄ and [p�1(x); b℄ give positive parametrizations of �1 and�2. Hene the equality (3.5.1) follows from R p�1(x)a f(z) dg(z)+R bp�1(x) f(z) dg(z) =R ba f(z) dg(z).A sequene of oriented monotone urves f�kgnk=1 with disjoint interiors is alleda hain of monotone urves and denoted by Pnk=1 �k. The body of a hain C =Pnk=1 �k is de�ned as Snk=1 j�kj and denoted by jCj. The interior of the hain isde�ned as the union of interiors of its elements.The integral of a form f dg along the hain is de�ned as RPnk=1 �k f dg =Pnk=1 R�k f dg.One says that two hains Pnk=1 �k and Pmk=1 �0k have the same orientation, ifthe orientations indued by �k and �0j on �k \�0j oinide in the ase when �k \�0jhas a nonempty interior. Two hains with the same body and orientation are alledequivalent.Lemma 3.5.2. If two hains C = Pnk=1 �k and C 0 = Pmk=1 �0k are equivalentthen the integrals along these hains oinide for any form fdg.Proof. For any interior point x of the hain C, one de�nes the subdivisionof C by x as �+j + ��j +Pnk=1 �k[k 6= j℄, where �j is the urve ontaining x and�+j + ��j is the partition of � by x. The subdivision does not hange the integralalong the hain due to the Partition Rule.Hene we an subdivide C step by step by endpoints of C 0 to onstrut a hainQ whose endpoints inlude all endpoints of P 0. And the integral along Q is thesame as along P . Another possibility to onstrut Q is to subdivide C 0 by endpointsof C. This onstrution shows that the integral along Q oinides with the integralalong C 0. Hene the integrals along C and C 0 oinide. �Due to this lemma, one an introdue the integral of a di�erential form alongany oriented pieewise monotone urve �. To do this one onsiders a monotonepartition of � into a sequene f�kgnk=1 of monotone urves with disjoint interiorsand equip all �k with the indued orientation. One gets a hain and the integralalong this hain does not depend on the partition.Contour integral. A domain D is de�ned as a onneted bounded part ofthe plane with pieewise monotone boundary. The boundary of D denoted �D isthe union of �nitely many monotone urves. And we suppose that �D � D, thatis we onsider a losed domain.For a monotone urve �, whih is ontained in the boundary of a domainD, onede�nes the indued orientation of � by D as the orientation of a parametrizationwhih leaves D on the left during the movement along � around D.One introdues the integral H�D f(z)dg(z) as the integral along any hain whosebody oinides with �D and whose orientations of urves are indued by D.Due to Lemma 3.5.2 the hoie of hain does not a�et the integral.
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D

Figure 3.5.1. Contour integralLemma 3.5.3. Let D be a domain and l be either a vertial or a horizontal line,whih bisets D into two parts: D0 and D00 lying on the di�erent sides of l. ThenH�D f(z)dz = H�D0 f(z)dz + H�D00 f(z)dz.Proof. The line l intersets the boundary of D in a �nite sequene of pointsand intervals fJkgmk=1.Set �0D = �D \ �D0 and �00D = �D \ �D00. The intersetion �0D \ �00Donsists of �nitely many points. Indeed, the interior points of Jk do not belong tothis intersetion, beause their small neighborhoods have points of D only from oneside of l. Hene Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz:The boundary of D0 onsists of �0D and some number of intervals. And theboundary of D00 onsists of �00D and the same intervals, but with opposite orien-tation. Therefore L = Zl\�D0 f(z) dz = � Zl\�D00 f(z) dz:On the other handI�D0 f(z)dz = Z�0D f(z) dz + L andI�D00 f(z)dz = Z�00D f(z) dz � L;heneI�D0 f(z)dz + I�D00 f(z)dz = Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz: �Lemma 3.5.4 (Estimation). If jf(z)j � B for any z from a body of a hainC =Pnk=1 �k, then ��RC f(z) dz�� � 4Bn diam jCj.Proof. By Lemma 3.3.6 for any k one has ���R�k f(z) dz��� � 4BjAk � Bkj �4B diam jCj where Ak and Bk are endpoints of �k. The summation of these in-equalities proves the lemma. �Theorem 3.5.5 (Cauhy). If a funtion f is omplex di�erentiable in a domainD then H�D f(z)dz = 0.



86 3.5 residue theoryProof. Fix a retangle R with sides parallel to the oordinate axis whihontains D and denote by jRj its area and by P its perimeter.The proof is by ontradition. Suppose ��H�D f(z) dz�� 6= 0. Denote by  the ratioof ��H�D f(z) dz��=jRj. We will onstrut a nested sequene of retangles fRkg1k=0suh that� R0 = R, Rk+1 � Rk;� R2k is similar to R;� j H�(Rk\D) f(z) dzj � jRkj, where jRkj is the area of Rk.The indution step: Suppose Rk is already onstruted. Divide Rk in two equalretanges R0k and R00k by drawing either a vertial, if k is even, or a horizontal, if kis odd, interval joining the middles of the opposite sides of Rk. Set Dk = D \ Rk,D0 = D\R0k, D00 = D\R00k . We state that at least one of the following inequalitiesholds:(3.5.2) ����I�D0 f(z)dz���� � jR0kj; ����I�D00 f(z)dz���� � jR00k j:Indeed, in the opposite ase one gets����I�D0 f(z)dz + I�D00 f(z)dz���� < jR0kj+ jR0kj = jRkj:Sine H�D0 f(z)dz + H�D00 f(z)dz = H�Dk f(z)dz by Lemma 3.5.3 we get a ontra-dition with the hypothesis j Rpk f(z) dzj � jRkj. Hene, one of the inequalities(3.5.2) holds. If the �rst inequality holds we set Rk+1 = R0k else we set Rk+1 = R00k .After onstruting the sequene fRkg, onsider a point z0 belonging toT1k=1 Rk.This point belongs to D, beause all its neighborhoods ontain points of D. Con-sider the linearization f(z) = f(z0)+f 0(z0)(z�z0)+o(z)(z�z0). Sine H�Dk (f(z0)+f 0(z0)(z � z0))dz = 0 one gets(3.5.3) ����I�Dk o(z)(z � z0)dz���� = ����I�Dk f(z)dz���� � jRkj:The boundary of Dk is ontained in the union �Rk [ Rk \ �D. Consider amonotone partition �D =Pnk=1 �k. Sine the intersetion of Rk with a monotoneurve is a monotone urve, one onludes that �D \ Rk is a union of at most nmonotone urves. As �Rk onsists of 4 monotone urves we get that �Dk is as abody of a hain with at most 4 + n monotone urves.Denote by Pk the perimeter of Rk. And suppose that o(x) is bounded in Rkby a onstant ok. Then jo(x)(z � z0)j � Pkok for all z 2 Rk.Sine diam �Dk � Pk2 by the Estimation Lemma 3.5.4, we get the followinginequality:(3.5.4) ����I�Dk o(z)(z � z0)dz���� � 4(4 + n)Pkok Pk2 = 2(4 + n)okP 2k :The ratio P 2k =jRkj is onstant for even k. Therefore the inequalities (3.5.3) and(3.5.4) ontradit eah other for ok < jRkj2(4+n)P 2k = jRj2(4+n)P 2 . However the inequalityjo(x)j < jRj2(4+n)P 2 holds for some neighborhood V of z0 as o(x) is in�nitesimallysmall at z0. This is a ontradition, beause V ontains some R2k. �



3.5 residue theory 87Residues. By H rz0 f(z) dz we denote the integral along the boundary of thedisk fjz � z0j � rg.Lemma 3.5.6. Suppose a funtion f(z) is omplex di�erentiable in the domainD with the exeption of a �nite set of points fzkgnk=1. ThenI�D f(z)dz = nXk=1 I rzk f(z) dz;where r is so small that all disks jz � zkj < r are ontained in D and disjoint.Proof. Denote by D0 the omplement of the union of the disks in D. Then�D0 is the union of �D and the boundary irles of the disks. By the CauhyTheorem 3.5.5, H�D0 f(z)dz = 0. On the other hand this integral is equal to thesum H�D f(z)dz and the sum of integrals along boundaries of the irles. Theorientation indued by D0 onto the boundaries of these irles is opposite to theorientation indued from the irles. Hene0 = I�D0 f(z)dz = I�D f(z)dz � nXk=1 I rzk f(z) dz: �A singular point of a omplex funtion is de�ned as a point where either thefuntion or its derivative are not de�ned. A singular point is alled isolated, if ithas a neighborhood, where it is the only singular point. A point is alled a regularpoint if it not a singular point.One de�nes the residue of f at a point z0 and denotes it as resz0 f as thelimit limr!0 12�i H rz0 f(z)dz. The above lemma shows that this limit exists for anyisolated singular point and moreover, that all integrals along suÆiently small ir-umferenes in this ase are the same.Sine in all regular points the residues are 0 the onlusion of Lemma 3.5.6 fora funtion with �nitely many singular points an be presented in the form:(3.5.5) I�D f(z)dz = 2�iXz2D resz f:An isolated singular point z0 is alled a simple pole of a funtion f(z) if thereexists a nonzero limit limz!z0 f(z)(z � z0).Lemma 3.5.7. If z0 is a simple pole of f(z) then resz0 f = limz!z0(z�z0)f(z).Proof. Set L = limz!z0(z � z0)f(z). Then f(z) = L+ o(z)(z�z0) , where o(z) isin�nitesimally small at z0. Hene(3.5.6) I rz0 o(z) dzz � z0 = I rz0 f(z) dz � I rz0 Lz � z0 dz:Sine the seond integral from the right-hand side of (3.5.6) is equal to 2L�i andthe other one is equal to 2�i resz0 f for suÆiently small r, we onlude that theintegral from the left-hand side also is onstant for suÆiently small r. To prove thatL = resz0 f we have to prove that this onstant  = limr!0 H rz0 o(z)z�z0 dz is 0. Indeed,assume that jj > 0. Then there is a neighborhood U of z0 suh that jo(z)j � jj32



88 3.5 residue theoryfor all z 2 U . Then one gets a ontradition by estimation of ���H rz0 o(z) dzz�z0 ��� (whih isequal to jj for suÆiently small r) from above by jjp2 for r less than the radius ofU . Indeed, the integrand is bounded by jj32r and the path of integration (the irle)an be divided into four monotone urves of diameter rp2: quarters of the irle.Hene by the Estimation Lemma 3.5.4 one gets ���H rz0 o(z) dzz�z0 ��� � 16p2 jj32 = jjp2 . �Remark 3.5.8. Denote by �(r; �; z0) an ar of the irle jz � z0j = r, whoseangle measure is �. Under the hypothesis of Lemma 3.5.7 the same arguments provethe following limr!0 Z�(�;r;0z) f(z) dz = i� limz!z0 f(z)(z � z0):Problems.1. Evaluate H 11 dz1+z4 .2. Evaluate H 10 dzsin z .3. Evaluate H 10 dzez�1 .4. Evaluate H 10 dzz2 .5. Evaluate H 10 sin 1z dz.6. Evaluate H 10 ze 1z dz.7. Evaluate H 5=20 z2 ot�z dz.8. Evaluate H 122 z dz(z�1)(z�2)2 .9. Evaluate R +��� d�5+3 os� .10. Evaluate R +��� d�(1+os2 �)2 .11. Evaluate R 2�0 d�(1+os�)2 .12. Evaluate R +1�1 dx1+x4 .13. Evaluate R +10 dx(1+x2)(4+x2) .14. Evaluate R +1�1 1+x21+x4 .15. Evaluate R +1�1 x31+x6 dx.


