3.4. Abel’s Theorem

On the contents of the lecture. The expansion of the logarithm into power
series will be extended to the complex case. We learn the very important Abel’s
transformation of sum. This transformation is a discrete analogue of integrations by
parts. Abel’s theorem on the limit of power series will be applied to the evaluation
of trigonometric series related to the logarithm. The concept of Abel’s sum of a
divergent series will be introduced.

Principal branch of the Logarithm. Since exp(z +iy) = e*(cosy +isiny),
one gets the following formula for the logarithm: Logz = In|z| + i Argz, where
Argz = argz + 2wk. We see that the logarithm is a multi-valued function, that is
why one usually chooses a branch of the logarithm to work. For our purposes it is
sufficient to consider the principal branch of the logarithm:

Inz=In|z|+iargz, —-w<argz<m.

The principal branch of the logarithm is a differentiable function of a complex vari-
able with derivative %, inverse to exp z. This branch is not continuous at negative
numbers. However its restriction on the upper half-plane is continuous and even
differentiable at negative numbers.

LEMMA 3.4.1. For any nonnegative z one has flz % d¢ =1Inz.

PrOOF. If Imz # 0, the segment [0, z] is contained in the circle |¢ — zo| <

2
|z0| for zp = % In this circle % expands into a power series, which one can

integrate termwise. Since for z* the result of integration depends only on the ends
of path of integration, the same is true for power series. Hence, we can change
the path of integration without changing the result. Consider the following path:
p(t) = cost + isint, t € [0,argz]. We know the integral fp % d¢ = iargz. This
path terminates at ﬁ Continue this path by the linear path to z. The integral

satisfies fzz/‘z‘ cd¢ = 1|Z| ﬁdtz/|z| = fllzl 1dt = In|z|. Therefore flz%d( =

s % ¢ + fzz/‘z‘ %d{ =jargz +In|z|. O

Logarithmic series. In particular for |1 — z| < 1 termwise integration of the
series % =Y 1o (1 =)k gives the complex Mercator series:

o0

Zk
(3.4.1) In(142) = ];(—1)’9“?

Substitute in this series —z for z and subtract the obtained series from (3.4.1) to
get the complex Gregory series:

1 1 o 2k+1
2 1—-=z 2k+1
k=0
In particular for z = iz, one has ‘ﬁ% =1 and arg ﬁ;; = 2arctgz. Therefore
one gets
o0 p2k+1
tgr =) (—1)* :
arcte ;( T
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the substitution of

Since arg(l + €%) = arctg 1ii?£¢ = arctgtan(¢/2) =

exp(i¢) for z in the Mercator series In(1 + e'?) = 312 (-
imaginary parts:

o n k¢ ¢
(3.4.2) k1S
2

¢
1)

k+1 e ® gives for the

27

However the last substitution is not correct, because |e’?| = 1 and (3.4.1) is proved
only for |z| < 1. To justify it we will prove a general theorem, due to Abel.

Summation by parts. Consider two sequences {ax}?_;, {br}r_;. The dif-
ference of their product dayby = ar+1br+1 — arbr can be presented as
5(akbk) = ak+16bk + brday.

Summation of these equalities gives

apb, —a1by = Z ap+10bg + Z brday.

A permutation of the latter equahty gives the so-called Abel’s transformation of

sums
n—1

Z bkAak = an n — a1b1 Z ak_HAbk

k=1

Abel’s theorem. One writes £ — a — 0 instead of x — a and x < a, and
z — a+ 0 means z >a and z — a.

THEOREM 3.4.2 (Abel).

o0
IfZak converges, then hm Zakx = Zak.
k=0

k=0

PROOF. Y 72 arz® converges absolutely for |z| < 1, because of the bounded-
ness of {ag}.

Suppose € > 0. Set A(n,m) = > - ag, A(n,m)(z) =3 ;- araz*. Choose N
so large that
(3.4.3) |A(0, ) — A(0,00)| < g
Applying the Abel transformation for any m > n one gets

Vn > N.

A(n,m) — A(n,m)(x) = Z ap(1 —z*)
k=n
m k—1
= (1—x)Z5A(n—1,k—1)ij
k=n Jj=0
= (l—x)[A(n—l,m)ij —A(n — 1,n)ij - ZA(n— 1,k)xk].
j=0 j=0 k=n

By (3.4.3) for n > N, one gets |A(n — 1,m)| = |(A(0, ) —A)+ (A-A(0,n))| <
€/9+¢/9 = 2¢/9. Hence, we can estimate from above by / the absolute value of
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the expression in the brackets of the previous equation for A(n,m) — A(n,m)(z).
As a result we get

2
(3.4.4) |A(n,m) — A(n,m)(z)| < ?6’ Ym >n > N,Vz.

Since lirln o A(0,N)(z) = A(0, N) one chooses § so small that for z > 1 —¢ the
z—1—

following inequality holds:

|A(0, N) — A(0, N)(z)| < g

Summing up this inequality with (3.4.4) for n = N + 1 one gets:
|A(0,m) — A(0,m)(z)| <e, Vm>N,|1-z|<d.
Passing to limits as m tends to infinity the latter inequality gives
|A(0,00) — A(0,0)(x)| <e, for|l—z| <.
(|

Leibniz series. As the first application of the Abel Theorem we evaluate the

Leibniz series Y-, (27cl+)f . This series converges by the Leibniz Theorem 2.4.3. By

the Abel Theorem its sum is

. o= (—1)Fgh . B o
ZErln_oz: 1 —Zgrln_oarctg:n—arctgl—él.

We get the following remarkable equality:
T _ 1,1 _ 1,1
Z_l_§+5_7+§_""

Abel sum of a series. One defines the Abel sum of a series > -, ar as

the limit lirln 02’310 arz®. The series which have an Abel sum are called Abel
z—1—

summable. The Abel Theorem shows that all convergent series have Abel sums

coinciding with their usual sums. However there are a lot of series, which have an
Abel sum, but do not converge.

Abel’s inequality. Consider a series Y, | axby, where the partial sums A,, =
S %~ ay, are bounded by some constant A and the sequence {by} is monotone. Then
Sl arby = SR bkb AR = Apby — Arby + Y721 Apy10bg. Since SR [0by| =
|bn, — b1], one gets the following inequality:

n—1

Z akbk

k=1

< 3A max{|bg|}.

Convergence test.

THEOREM 3.4.3. Let the sequence of partial sums Zz;ll ar, be bounded, and let
{br.} be non-increasing and infinitesimally small. Then Z;’;l arbr, converges to its
Abel sum, if the latter exists.

ProoF. The difference between a partial sum Zz;ll arbr, and the Abel sum is

equal to

z—1—

n—1 00
li 1—a" li k.
lmogakbk( T )+w_1)IIII_OkZakbk$
= =n
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The first limit is zero, the second limit can be estimated by Abel’s inequality from
above by 34b,. It tends to 0 as n tends to infinity. O

Application. Now we are ready to prove the equality (3.4.2). The series
Sope i (—1)FFLEEEE has an Abel sum. Indeed,

‘ 00 . qk sin kx ) 00 - (qeix)k
i, S g, S 0
k=1 k=1
=Im lim ln(l + qe'®)
g—1—

=ImIn(1 + €™).

-1 1 . .
The sums > ;~, sinkz = Im ) ;" €'** = Im L=<~ are bounded. And f is de-

creasing and infinitesimally small. Hence we can apply Theorem 3.4.3.

Problems.
Evaluate1+——%—%+%+%—%—%+....
Evaluate ), S22k

S, ke = 1n|25in 21, (0 < |¢] < ).
e 1S‘“k¢ 2 (0 < ¢<2m).

(2k+1
Zk . C052k+1 )¢ — %]n|2c0t g|, (0 < |¢] <)

in(2k+1 s
Sy BekEDS — 1 (0 < ¢ < 7)
Yoo (= )’“+1C°sk =In (2c0s ) (—mr< <)
Find the Abel sumof 1 —1+1—-1+....
Find the Abel sumof 1 —14+0+1—-14+0+....
Prove: A periodic series, such that the sum of the period is zero, has an Abel
sum.

PRX® N A wbH=

[y

2
. Telescope Y-, ];—k

. Evaluate Y770 k cos k.

. Estimate from above )2 Sk

*14. Prove: If 372 o ar, > poobr and their convolution ) ;- ¢, converge, then

ZI?;O Ck = ZI?;O ak ZZO:O b,

e
—

—
W N




