
3.4. Abel's TheoremOn the 
ontents of the le
ture. The expansion of the logarithm into powerseries will be extended to the 
omplex 
ase. We learn the very important Abel'stransformation of sum. This transformation is a dis
rete analogue of integrations byparts. Abel's theorem on the limit of power series will be applied to the evaluationof trigonometri
 series related to the logarithm. The 
on
ept of Abel's sum of adivergent series will be introdu
ed.Prin
ipal bran
h of the Logarithm. Sin
e exp(x+ iy) = ex(
os y+ i sin y),one gets the following formula for the logarithm: Log z = ln jzj + iArg z, whereArg z = arg z + 2�k. We see that the logarithm is a multi-valued fun
tion, that iswhy one usually 
hooses a bran
h of the logarithm to work. For our purposes it issuÆ
ient to 
onsider the prin
ipal bran
h of the logarithm:ln z = ln jzj+ i arg z; �� < arg z � �:The prin
ipal bran
h of the logarithm is a di�erentiable fun
tion of a 
omplex vari-able with derivative 1z , inverse to exp z. This bran
h is not 
ontinuous at negativenumbers. However its restri
tion on the upper half-plane is 
ontinuous and evendi�erentiable at negative numbers.Lemma 3.4.1. For any nonnegative z one has R z1 1� d� = ln z.Proof. If Im z 6= 0, the segment [0; z℄ is 
ontained in the 
ir
le j� � z0j <jz0j for z0 = jzj2Im z . In this 
ir
le 1� expands into a power series, whi
h one 
anintegrate termwise. Sin
e for zk the result of integration depends only on the endsof path of integration, the same is true for power series. Hen
e, we 
an 
hangethe path of integration without 
hanging the result. Consider the following path:p(t) = 
os t + i sin t, t 2 [0; arg z℄. We know the integral Rp 1� d� = i arg z. Thispath terminates at zjzj . Continue this path by the linear path to z. The integralsatis�es R zz=jzj 1� d� = R jzj1 1z=jzjt dtz=jzj = R jzj1 1t dt = ln jzj. Therefore R z1 1� d� =Rp 1� d� + R zz=jzj 1� d� = i arg z + ln jzj. �Logarithmi
 series. In parti
ular for j1� zj < 1 termwise integration of theseries 1� =P1k=0 (1� �)k gives the 
omplex Mer
ator series:(3.4.1) ln(1 + z) = 1Xk=1(�1)k+1 zkk :Substitute in this series �z for z and subtra
t the obtained series from (3.4.1) toget the 
omplex Gregory series:12 ln 1 + z1� z = 1Xk=0(�1)k z2k+12k + 1 :In parti
ular for z = ix, one has ��� 1+ix1�ix ��� = 1 and arg 1+ix1�ix = 2ar
tgx. Thereforeone gets ar
tgx = 1Xk=0(�1)k x2k+12k + 1 :79



80 3.4 abel's theoremSin
e arg(1 + ei�) = ar
tg sin�1+
os � = ar
tg tan(�=2) = �2 , the substitution ofexp(i�) for z in the Mer
ator series ln(1 + ei�) = P1k=1(�1)k+1 eik�k gives for theimaginary parts:(3.4.2) 1Xk=0(�1)k+1 sin k�k = �2 :However the last substitution is not 
orre
t, be
ause jei�j = 1 and (3.4.1) is provedonly for jzj < 1. To justify it we will prove a general theorem, due to Abel.Summation by parts. Consider two sequen
es fakgnk=1, fbkgnk=1. The dif-feren
e of their produ
t Æakbk = ak+1bk+1 � akbk 
an be presented asÆ(akbk) = ak+1Æbk + bkÆak:Summation of these equalities givesanbn � a1b1 = n�1Xk=1 ak+1Æbk + n�1Xk=1 bkÆak:A permutation of the latter equality gives the so-
alled Abel's transformation ofsums n�1Xk=1 bk�ak = anbn � a1b1 � n�1Xk=1 ak+1�bk:Abel's theorem. One writes x ! a � 0 instead of x ! a and x < a, andx! a+ 0 means x > a and x! a.Theorem 3.4.2 (Abel).If 1Xk=0 ak 
onverges, then limx!1�0 1Xk=0 akxk = 1Xk=0 ak:Proof. P1k=0 akxk 
onverges absolutely for jxj < 1, be
ause of the bounded-ness of fakg.Suppose " > 0. Set A(n;m) =Pmk=n ak, A(n;m)(x) =Pmk=n akxk. Choose Nso large that(3.4.3) jA(0; n)�A(0;1)j < "9 ; 8n > N:Applying the Abel transformation for any m > n one getsA(n;m)�A(n;m)(x) = mXk=n ak(1� xk)= (1� x) mXk=n ÆA(n� 1; k � 1) k�1Xj=0 xj= (1� x)hA(n� 1;m) mXj=0 xj �A(n� 1; n) nXj=0 xj � mXk=nA(n� 1; k)xki:By (3.4.3) for n > N , one gets jA(n � 1;m)j = j(A(0;m) � A) + (A � A(0; n))j �"=9+ "=9 = 2"=9. Hen
e, we 
an estimate from above by 2"=31�x the absolute value of



3.4 abel's theorem 81the expression in the bra
kets of the previous equation for A(n;m) � A(n;m)(x).As a result we get(3.4.4) jA(n;m)�A(n;m)(x)j � 2"3 ; 8m � n > N;8x:Sin
e limx!1�0A(0; N)(x) = A(0; N) one 
hooses Æ so small that for x > 1�Æ thefollowing inequality holds: jA(0; N)�A(0; N)(x)j < "3 :Summing up this inequality with (3.4.4) for n = N + 1 one gets:jA(0;m)�A(0;m)(x)j < "; 8m > N; j1� xj < Æ:Passing to limits as m tends to in�nity the latter inequality givesjA(0;1)�A(0;1)(x)j � "; for j1� xj < Æ: �Leibniz series. As the �rst appli
ation of the Abel Theorem we evaluate theLeibniz seriesP1k=0 (�1)k2k+1 . This series 
onverges by the Leibniz Theorem 2.4.3. Bythe Abel Theorem its sum islimx!1�0 1Xk=0 (�1)kxk2k + 1 = limx!1�0 ar
tgx = ar
tg 1 = �4 :We get the following remarkable equality:�4 = 1� 13 + 15 � 17 + 19 � : : : :Abel sum of a series. One de�nes the Abel sum of a series P1k=0 ak asthe limit limx!1�0P1k=0 akxk . The series whi
h have an Abel sum are 
alled Abelsummable. The Abel Theorem shows that all 
onvergent series have Abel sums
oin
iding with their usual sums. However there are a lot of series, whi
h have anAbel sum, but do not 
onverge.Abel's inequality. Consider a seriesP1k=1 akbk, where the partial sums An =Pn�1k=1 ak are bounded by some 
onstantA and the sequen
e fbkg is monotone. ThenPn�1k=1 akbk = Pn�1k=1 bkÆAk = Anbn � A1b1 +Pn�1k=1 Ak+1Æbk. Sin
e Pn�1k=1 jÆbkj =jbn � b1j, one gets the following inequality:�����n�1Xk=1 akbk����� � 3Amaxfjbkjg:Convergen
e test.Theorem 3.4.3. Let the sequen
e of partial sums Pn�1k=1 ak be bounded, and letfbkg be non-in
reasing and in�nitesimally small. Then P1k=1 akbk 
onverges to itsAbel sum, if the latter exists.Proof. The di�eren
e between a partial sum Pn�1k=1 akbk and the Abel sum isequal to limx!1�0 n�1Xk=1 akbk(1� xk) + limx!1�0 1Xk=n akbkxk :



82 3.4 abel's theoremThe �rst limit is zero, the se
ond limit 
an be estimated by Abel's inequality fromabove by 3Abn. It tends to 0 as n tends to in�nity. �Appli
ation. Now we are ready to prove the equality (3.4.2). The seriesP1k=1(�1)k+1 sin kxk has an Abel sum. Indeed,limq!1�0 1Xk=1(�1)k+1 qk sin kxk = Im limq!1�0 1Xk=1(�1)k+1 (qeix)kk= Im limq!1�0 ln(1 + qeix)= Im ln(1 + eix):The sums Pn�1k=1 sin kx = ImPn�1k=1 eikx = Im 1�einx1�eix are bounded. And 1k is de-
reasing and in�nitesimally small. Hen
e we 
an apply Theorem 3.4.3.Problems.1. Evaluate 1 + 12 � 13 � 14 + 15 + 16 � 17 � 18 + : : : .2. Evaluate P1k=1 sin 2kk .3. P1k=1 
os k�k = � ln j2 sin �2 j, (0 < j�j � �).4. P1k=1 sin k�k = ���2 , (0 < � < 2�).5. P1k=0 
os(2k+1)�2k+1 = 12 ln j2 
ot �2 j, (0 < j�j < �)6. P1k=0 sin(2k+1)�2k+1 = �4 , (0 < � < �)7. P1k=1(�1)k+1 
os k�k = ln�2 
os �2�, (�� < � < �)8. Find the Abel sum of 1� 1 + 1� 1 + : : : .9. Find the Abel sum of 1� 1 + 0 + 1� 1 + 0 + : : : .10. Prove: A periodi
 series, su
h that the sum of the period is zero, has an Abelsum.11. Teles
ope P1k=1 k22k .12. Evaluate Pn�1k=0 k 
os kx.13. Estimate from above P1k=n sin kxk2 .�14. Prove: If P1k=0 ak, P1k=0 bk and their 
onvolution P1k=0 
k 
onverge, thenP1k=0 
k =P1k=0 akP1k=0 bk.


