
3.4. Abel's TheoremOn the ontents of the leture. The expansion of the logarithm into powerseries will be extended to the omplex ase. We learn the very important Abel'stransformation of sum. This transformation is a disrete analogue of integrations byparts. Abel's theorem on the limit of power series will be applied to the evaluationof trigonometri series related to the logarithm. The onept of Abel's sum of adivergent series will be introdued.Prinipal branh of the Logarithm. Sine exp(x+ iy) = ex(os y+ i sin y),one gets the following formula for the logarithm: Log z = ln jzj + iArg z, whereArg z = arg z + 2�k. We see that the logarithm is a multi-valued funtion, that iswhy one usually hooses a branh of the logarithm to work. For our purposes it issuÆient to onsider the prinipal branh of the logarithm:ln z = ln jzj+ i arg z; �� < arg z � �:The prinipal branh of the logarithm is a di�erentiable funtion of a omplex vari-able with derivative 1z , inverse to exp z. This branh is not ontinuous at negativenumbers. However its restrition on the upper half-plane is ontinuous and evendi�erentiable at negative numbers.Lemma 3.4.1. For any nonnegative z one has R z1 1� d� = ln z.Proof. If Im z 6= 0, the segment [0; z℄ is ontained in the irle j� � z0j <jz0j for z0 = jzj2Im z . In this irle 1� expands into a power series, whih one anintegrate termwise. Sine for zk the result of integration depends only on the endsof path of integration, the same is true for power series. Hene, we an hangethe path of integration without hanging the result. Consider the following path:p(t) = os t + i sin t, t 2 [0; arg z℄. We know the integral Rp 1� d� = i arg z. Thispath terminates at zjzj . Continue this path by the linear path to z. The integralsatis�es R zz=jzj 1� d� = R jzj1 1z=jzjt dtz=jzj = R jzj1 1t dt = ln jzj. Therefore R z1 1� d� =Rp 1� d� + R zz=jzj 1� d� = i arg z + ln jzj. �Logarithmi series. In partiular for j1� zj < 1 termwise integration of theseries 1� =P1k=0 (1� �)k gives the omplex Merator series:(3.4.1) ln(1 + z) = 1Xk=1(�1)k+1 zkk :Substitute in this series �z for z and subtrat the obtained series from (3.4.1) toget the omplex Gregory series:12 ln 1 + z1� z = 1Xk=0(�1)k z2k+12k + 1 :In partiular for z = ix, one has ��� 1+ix1�ix ��� = 1 and arg 1+ix1�ix = 2artgx. Thereforeone gets artgx = 1Xk=0(�1)k x2k+12k + 1 :79



80 3.4 abel's theoremSine arg(1 + ei�) = artg sin�1+os � = artg tan(�=2) = �2 , the substitution ofexp(i�) for z in the Merator series ln(1 + ei�) = P1k=1(�1)k+1 eik�k gives for theimaginary parts:(3.4.2) 1Xk=0(�1)k+1 sin k�k = �2 :However the last substitution is not orret, beause jei�j = 1 and (3.4.1) is provedonly for jzj < 1. To justify it we will prove a general theorem, due to Abel.Summation by parts. Consider two sequenes fakgnk=1, fbkgnk=1. The dif-ferene of their produt Æakbk = ak+1bk+1 � akbk an be presented asÆ(akbk) = ak+1Æbk + bkÆak:Summation of these equalities givesanbn � a1b1 = n�1Xk=1 ak+1Æbk + n�1Xk=1 bkÆak:A permutation of the latter equality gives the so-alled Abel's transformation ofsums n�1Xk=1 bk�ak = anbn � a1b1 � n�1Xk=1 ak+1�bk:Abel's theorem. One writes x ! a � 0 instead of x ! a and x < a, andx! a+ 0 means x > a and x! a.Theorem 3.4.2 (Abel).If 1Xk=0 ak onverges, then limx!1�0 1Xk=0 akxk = 1Xk=0 ak:Proof. P1k=0 akxk onverges absolutely for jxj < 1, beause of the bounded-ness of fakg.Suppose " > 0. Set A(n;m) =Pmk=n ak, A(n;m)(x) =Pmk=n akxk. Choose Nso large that(3.4.3) jA(0; n)�A(0;1)j < "9 ; 8n > N:Applying the Abel transformation for any m > n one getsA(n;m)�A(n;m)(x) = mXk=n ak(1� xk)= (1� x) mXk=n ÆA(n� 1; k � 1) k�1Xj=0 xj= (1� x)hA(n� 1;m) mXj=0 xj �A(n� 1; n) nXj=0 xj � mXk=nA(n� 1; k)xki:By (3.4.3) for n > N , one gets jA(n � 1;m)j = j(A(0;m) � A) + (A � A(0; n))j �"=9+ "=9 = 2"=9. Hene, we an estimate from above by 2"=31�x the absolute value of



3.4 abel's theorem 81the expression in the brakets of the previous equation for A(n;m) � A(n;m)(x).As a result we get(3.4.4) jA(n;m)�A(n;m)(x)j � 2"3 ; 8m � n > N;8x:Sine limx!1�0A(0; N)(x) = A(0; N) one hooses Æ so small that for x > 1�Æ thefollowing inequality holds: jA(0; N)�A(0; N)(x)j < "3 :Summing up this inequality with (3.4.4) for n = N + 1 one gets:jA(0;m)�A(0;m)(x)j < "; 8m > N; j1� xj < Æ:Passing to limits as m tends to in�nity the latter inequality givesjA(0;1)�A(0;1)(x)j � "; for j1� xj < Æ: �Leibniz series. As the �rst appliation of the Abel Theorem we evaluate theLeibniz seriesP1k=0 (�1)k2k+1 . This series onverges by the Leibniz Theorem 2.4.3. Bythe Abel Theorem its sum islimx!1�0 1Xk=0 (�1)kxk2k + 1 = limx!1�0 artgx = artg 1 = �4 :We get the following remarkable equality:�4 = 1� 13 + 15 � 17 + 19 � : : : :Abel sum of a series. One de�nes the Abel sum of a series P1k=0 ak asthe limit limx!1�0P1k=0 akxk . The series whih have an Abel sum are alled Abelsummable. The Abel Theorem shows that all onvergent series have Abel sumsoiniding with their usual sums. However there are a lot of series, whih have anAbel sum, but do not onverge.Abel's inequality. Consider a seriesP1k=1 akbk, where the partial sums An =Pn�1k=1 ak are bounded by some onstantA and the sequene fbkg is monotone. ThenPn�1k=1 akbk = Pn�1k=1 bkÆAk = Anbn � A1b1 +Pn�1k=1 Ak+1Æbk. Sine Pn�1k=1 jÆbkj =jbn � b1j, one gets the following inequality:�����n�1Xk=1 akbk����� � 3Amaxfjbkjg:Convergene test.Theorem 3.4.3. Let the sequene of partial sums Pn�1k=1 ak be bounded, and letfbkg be non-inreasing and in�nitesimally small. Then P1k=1 akbk onverges to itsAbel sum, if the latter exists.Proof. The di�erene between a partial sum Pn�1k=1 akbk and the Abel sum isequal to limx!1�0 n�1Xk=1 akbk(1� xk) + limx!1�0 1Xk=n akbkxk :



82 3.4 abel's theoremThe �rst limit is zero, the seond limit an be estimated by Abel's inequality fromabove by 3Abn. It tends to 0 as n tends to in�nity. �Appliation. Now we are ready to prove the equality (3.4.2). The seriesP1k=1(�1)k+1 sin kxk has an Abel sum. Indeed,limq!1�0 1Xk=1(�1)k+1 qk sin kxk = Im limq!1�0 1Xk=1(�1)k+1 (qeix)kk= Im limq!1�0 ln(1 + qeix)= Im ln(1 + eix):The sums Pn�1k=1 sin kx = ImPn�1k=1 eikx = Im 1�einx1�eix are bounded. And 1k is de-reasing and in�nitesimally small. Hene we an apply Theorem 3.4.3.Problems.1. Evaluate 1 + 12 � 13 � 14 + 15 + 16 � 17 � 18 + : : : .2. Evaluate P1k=1 sin 2kk .3. P1k=1 os k�k = � ln j2 sin �2 j, (0 < j�j � �).4. P1k=1 sin k�k = ���2 , (0 < � < 2�).5. P1k=0 os(2k+1)�2k+1 = 12 ln j2 ot �2 j, (0 < j�j < �)6. P1k=0 sin(2k+1)�2k+1 = �4 , (0 < � < �)7. P1k=1(�1)k+1 os k�k = ln�2 os �2�, (�� < � < �)8. Find the Abel sum of 1� 1 + 1� 1 + : : : .9. Find the Abel sum of 1� 1 + 0 + 1� 1 + 0 + : : : .10. Prove: A periodi series, suh that the sum of the period is zero, has an Abelsum.11. Telesope P1k=1 k22k .12. Evaluate Pn�1k=0 k os kx.13. Estimate from above P1k=n sin kxk2 .�14. Prove: If P1k=0 ak, P1k=0 bk and their onvolution P1k=0 k onverge, thenP1k=0 k =P1k=0 akP1k=0 bk.


