
3.3. Euler FormulaOn the 
ontents of the le
ture. The reader be
omes a
quainted with themost famous Euler formula. Its spe
ial 
ase ei� = �1 symbolizes the unity ofmathemati
s: here e represents Analysis, i represents Algebra, and � representsGeometry. As a dire
t 
onsequen
e of the Euler formula we get power series for sinand 
os, whi
h we need to sum up the Euler series.Complex Newton-Leibniz. For a fun
tion of a 
omplex variable f(z) thederivative is de�ned by the same formula f 0(z0) = limz!z0 f(z)�f(z0)z�z0 . We willdenote it also by df(z)dz , to distinguish from derivatives of paths: 
omplex valuedfun
tions of real variable. For a path p(t) its derivative will be denoted either p0(t)or dp(t)dt . The Newton-Leibniz formula for real fun
tions 
an be expressed by theequality df(t)dt dt = df(t). Now we extend this formula to 
omplex fun
tions.The linearization of a 
omplex fun
tion f(z) at z0 has the same form f(z0) +f 0(z0)(z � z0) + o(z)(z � z0), where o(z) is an in�nitesimally small fun
tion of
omplex variable. The same arguments as for real numbers prove the basi
 rules ofdi�erentiation: the derivative of sums, produ
ts and 
ompositions.Theorem 3.3.1. dzndz = nzn�1.Proof. dzdz = 1 one gets immediately from the de�nition of the derivative.Suppose the equality dzndz = nzn�1 is proved for n. Then dzn+1dz = dzzndz = z dzndz +zn dzdz = znzn�1 + zn = (n+ 1)zndz. And the theorem is proved by indu
tion. �A smooth path is a di�erentiable mapping p : [a; b℄ ! C with a 
ontinuousbounded derivative. A fun
tion f(z) of a 
omplex variable is 
alled virtually mono-tone if for any smooth path p(t) the fun
tions Re f(p(t)) and Im f(p(t)) are virtuallymonotone.Lemma 3.3.2. If f 0(z) is bounded, then f(z) is virtually monotone.Proof. Consider a smooth path p. Then df(p(t))dt = f 0(p(t))p0(t) is bounded bysome K. Due to Lemma 3.1.15 one has jf(p(t))� f(p(t0))j � Kjt� t0j. Hen
e anypartial variation of f(p(t)) does not ex
eed K(b � a). Therefore varf(p(t))[a; b℄ �K. �Theorem 3.3.3. If a 
omplex fun
tion f(z) has a bounded virtually monotone
ontinuous 
omplex derivative over the image of a smooth path p : [a; b℄! C , thenRp f 0(z) dz = f(p(b))� f(p(a)).Proof. df(p(t))dt = f 0(p(t))p0(t) = dRe f(p(t))dt + id Im f(p(t))dt . All fun
tions hereare 
ontinuous and virtually monotone by hypothesis. Passing to di�erential formsone gets df(p(t))dt dt = dRe f(p(t))dt dt+ i d Im f(p(t))dt dt= d(Re f(p(t))) + i d(Im f(p(t)))= d(Re f(p(t)) + i Im f(p(t)))= d(f(p(t)):Hen
e Rp f 0(z) dz = Rp df(z). �74



3.3 euler formula 75Corollary 3.3.4. If f 0(z) = 0 then f(z) is 
onstant.Proof. Consider p(t) = z0+(z�z0)t, then f(z)�f(z0) = Rp f 0(�) d� = 0. �Di�erentiation of series. Let us say that a 
omplex seriesP1k=1 ak majorizes(eventually) another su
h series P1k=1 bk if jbkj � jakj for all k (resp. for k beyondsome n).The seriesP1k=1 k
k(z�z0)k�1 is 
alled a formal derivative ofP1k=0 
k(z�z0)k.Lemma 3.3.5. Any power series P1k=0 
k(z� z0)k eventually majorizes its for-mal derivative P1k=0 k
k(z1 � z0)k�1 if jz1 � z0j < jz � z0j.Proof. The ratio of the n-th term of the derivative to the n-th term of theseries tends to 0 as n tends to in�nity. Indeed, this ratio is k(z1�z0)k(z�z0)k = kqk, wherejqj < 1 sin
e jz1 � z0j < jz � z0j. The fa
t that limn!1 nqn = 0 follows fromthe 
onvergen
e of P1k=1 kqk whi
h we already have proved before. This series iseventually majorized by any geometri
 series P1k=0AQk with Q > q. �A path p(t) is 
alled monotone if both Re p(t) and Im p(t) are monotone.Lemma 3.3.6. Let p : [a; b℄ ! C be a smooth monotone path, and let f(z) bevirtually monotone. If jf(p(t))j � 
 for t 2 [a; b℄ then ���Rp f(z) dz��� � 4
jp(b)� p(a)j.Proof. Integration of the inequalities �
 � Re f(p(t)) � 
 against dRe zalong the path gives j RpRe f(z) dRezj � 
jRe p(b)�Re p(a)j � 
jp(b)� p(a)j. Thesame arguments prove j Rp Im f(z) d Imzj � 
j Im p(b) � Im p(a)j � 
jp(b) � p(a)j.The sum of these inequalities gives jRe Rp f(z) dzj � 2
jRe p(b) � Re p(a)j. Thesame arguments yields j Im Rp f(z) dzj � 2
jRe p(b)�Re p(a)j. And the addition ofthe two last inequalities allows us to a

omplish the proof of the Lemma be
ausej Rp f(z) dzj � jRe Rp f(z) dzj+ j Rp f(z) dzj. �Lemma 3.3.7. jzn � �nj � njz � �jmaxfjzn�1j; j�n�1jg.Proof. (zn � �n) = (z � �)Pn�1k=0 zk�n�k�1 and jzk�n�k�1j � maxfjzn�1j;j�n�1jg. �A linear path from z0 to z1 is de�ned as a linear mapping p : [a; b℄ ! C , su
hthat p(a) = z0 and p(b) = z1, that is p(t) = z0(t� a) + (z1 � z0)(t� a)=(b� a).We denote by R ba f(z) dz the integral along the linear path from a to b.Lemma 3.3.8. For any 
omplex z, � and natural n > 0 one has(3.3.1) jzn � zn0 � nzn�10 (z � z0)j � 2n(n� 1)jz � z0j2maxfjzjn�2; jz0jn�2g:Proof. By the Newton-Leibniz formula, zn � zn0 = R zz0 n�n�1 d�. Further,Z zz0 n�n�1 d� = Z zz0 nzn�10 d� + Z zz0 n(�n�1 � zn�10 ) d�= nzn�10 + Z zz0 n(�n�1 � zn�10 ) d�:Consequently, the left-hand side of (3.3.1) is equal to ���R zz0 n(�n�1 � zn�10 ) d����. Dueto Lemma 3.3.7 the absolute value of the integrand along the linear path does not



76 3.3 euler formulaex
eed (n � 1)jz � z0jmaxfjzn�2j; jzn�20 jg. Now the estimation of the integral byLemma 3.3.6 gives just the inequality (3.3.1). �Theorem 3.3.9. If P1k=0 
k(z1 � z0)k 
onverges absolutely, then P1k=0 
k(z �z0)k and P1k=1 k
k(z � z0)k�1 absolutely 
onverge provided by jz � z0j < jz1 � z0j,and the fun
tionP1k=1 k
k(z�z0)k�1 is the 
omplex derivative of P1k=0 
k(z�z0)k.Proof. The series P1k=0 
k(z � z0)k and its formal derivative are eventuallymajorized by P1k=0 
k(z1 � z0)k if jz � z0j � jz1 � z0j by the Lemma 3.3.5. Hen
ethey absolutely 
onverge in the 
ir
le jz � z0j � jz1 � z0j. ConsiderR(z) = 1Xk=0 
k(z � z0)k � 1Xk=0 
k(� � z0)k � (z � �) 1Xk=1 k
k(� � z0)k�1:To prove that the formal derivative is the derivative of P1k=0 
k(z � z0)k at � it issuÆ
ient to prove that R(z) = o(z)(z � �), where o(z) is in�nitesimally small at �.One has R(z) = P1k=1 
k �(z � z0)k � (� � z0)k � k(� � z0)k�1�. By Lemma 3.3.8one gets the following estimate: jR(z)j � P1k=1 2j
kjk(k � 1)jz � �j2jz2 � z0jn�2,where jz2 � z0j = maxfjz � z0j; j� � z0jg. Hen
e all we need now is to prove thatP1k=1 2k(k � 1)j
kjjz2 � z0jk�2jz � �j is in�nitesimally small at �. And this in itsturn follows from the 
onvergen
e of P1k=1 2k(k � 1)j
kjjz2 � z0jk�2. The lattermay be dedu
ed from Lemma 3.3.5. Indeed, 
onsider z3, su
h that jz2 � z0j <jz3 � z0j < jz1 � z0j. The 
onvergen
e of P1k=1 kj
kjjz3 � z0jk�1 follows fromthe 
onvergen
e of P1k=0 j
kjjz1 � z0jk by Lemma 3.3.5. And the 
onvergen
e ofP1k=2 k(k�1)j
kjjz2�z0jk�2 follows from the 
onvergen
e ofP1k=1 kj
kjjz3�z0jk�1by the same lemma. �Corollary 3.3.10. Let f(z) =P1k=0 
kzk 
onverge absolutely for jzj < r, andlet a; b have absolute values less then r. Then R ba f(z) dz =P1k=0 
kk+1 (bk+1�ak+1).Proof. Consider F (z) = P1k=0 
kzk+1k+1 . This series is termwise majorized bythe series of f(z), hen
e it 
onverges absolutely for jzj < r. By Theorem 3.3.9 f(z)is its derivative for jzj < r. In our 
ase f(z) is di�erentiable and its derivative isbounded by P1k=0 kj
kjrk0 , where r0 = maxfjaj; jbjg. Hen
e f(z) is 
ontinuous andvirtually monotone and our result now follows from Theorem 3.3.3. �Exponenta in C . The exponenta for any 
omplex number z is de�ned asexp z = P1k=0 zkk! . The de�nition works be
ause the series P1k=0 zkk! absolutely
onverges for any z 2 C .Theorem 3.3.11. The exponenta is a di�erentiable fun
tion of a 
omplex vari-able with derivative exp0 z = exp z, su
h that for all 
omplex z, � the followingaddition formula holds: exp(z + �) = exp z exp �.Proof. The derivative of the exponenta 
an be evaluated termwise by Theo-rem 3.3.9. And this evaluation gives exp0 z = exp z. To prove the addition formula
onsider the following fun
tion r(z) = exp(z+�)exp z . Di�erentiation of the equalityr(z) exp z = exp(z+ �) gives r0(z) exp z+ r(z) exp z = exp(z+ �). Division by exp zgives r0(z) + r(z) = r(z). Hen
e r(z) is 
onstant. This 
onstant is determined bysubstitution z = 0 as r(z) = exp �. This proves the addition formula. �



3.3 euler formula 77Lemma 3.3.12. Let p : [a; b℄! C be a smooth path 
ontained in the 
omplementof a neighborhood of 0. Then exp Rp 1� d� = p(b)p(a) .Proof. First 
onsider the 
ase when p is 
ontained in a 
ir
le jz � z0j < jz0jwith 
enter z0 6= 0. In this 
ir
le, 1z expands in a power series:1� = 1z0 � (z0 � �) = 1z0 11� z0��z0 = 1Xk=0 (z0 � �)kzk+10 :Integration of this series is possible to do termwise due to Corollary 3.3.10. Hen
ethe result of the integration does not depend on the path. And Theorem 3.3.9provides di�erentiability of the termwise integral and the possibility of its termwisedi�erentiation. Su
h di�erentiation simply gives the original series, whi
h represents1z in this 
ir
le.Consider the fun
tion l(z) = R zz0 1� d�. Then l0(z) = 1z . The derivative ofthe 
omposition exp l(z) is exp l(z)z . Hen
e the 
omposition satis�es the di�erentialequation y0z = y. We sear
h for a solution of this equation in the form y = zw.Then y0 = w +w0z and our equation turns into wz +w0z2 = wz. Therefore w0 = 0and w is 
onstant. To �nd this 
onstant substitute z = z0 and get 1 = exp0 =exp l(z0) = wz0. Hen
e w = 1z0 and exp l(z) = zz0 .To prove the general 
ase 
onsider a partition fxkgnk=0 of [a; b℄. Denote bypk the restri
tion of p over [xk; xk+1℄. Choose the partition so small that jp(x) �p(xk)j < jp(xk)j for all x 2 [xk ; xk+1℄. Then any pk satis�es the requirement ofthe above 
onsidered 
ase. Hen
e exp Rpk 1� d� = p(xk+1)p(xk) . Further exp Rp 1� d� =expPn�1k=0 Rpk 1� d� =Qn�1k=0 p(xk+1)p(xk) = p(b)=p(a). �Theorem 3.3.13 (Euler Formula). For any real � one hasexp i� = 
os�+ i sin�Proof. In Le
ture 2.5 we have evaluated Rp 1z dz = i� for p(t) = 
os t+ i sin t,t 2 [0; �℄. Hen
e Lemma 3.3.12 applied to p(t) immediately gives the Euler formula.�Trigonometri
 fun
tions in C . The Euler formula gives power series expan-sions for sinx and 
osx:sinx = 1Xk=0(�1)k x2k+1(2k + 1)! ; 
osx = 1Xk=0(�1)k x2k(2k)! :These expansions are used to de�ne trigonometri
 fun
tions for 
omplex vari-able. On the other hand the Euler formula allows us to express trigonometri
fun
tions via the exponenta:sin z = exp(iz)� exp(�iz)2i ; 
os z = exp(iz) + exp(�iz)2 :The other trigonometri
 fun
tions tan, 
ot, se
, 
ose
 are de�ned for 
omplex vari-ables by the usual formulas via sin and 
os.



78 3.3 euler formulaProblems.1. Evaluate P1k=1 sin kk! .2. Prove the formula of Joh. Bernoulli R 10 xx dx =P1k=1 (�1)k+1kk .3. Find ln(�1).4. Solve the equation exp z = i.5. Evaluate ii.6. Prove sin z = eiz�e�iz2i , 
os z = eiz+e�iz2 .7. Prove the identity sin2 z + 
os2 z = 1.8. Solve the equation sin z = 5=3.9. Solve the equation 
os z = 2.10. Evaluate P1k=0 
os kk! .11. Evaluate Hjzj=1 dzz2 .12. Evaluate P1k=1 qk sin kxk .13. Expand into a power series ex 
osx.


