3.3. Euler Formula

On the contents of the lecture. The reader becomes acquainted with the
most famous Euler formula. Its special case e™ = —1 symbolizes the unity of
mathematics: here e represents Analysis, i represents Algebra, and 7w represents
Geometry. As a direct consequence of the Euler formula we get power series for sin
and cos, which we need to sum up the Euler series.

Complex Newton-Leibniz. For a function of a complex variable f(z) the

derivative is defined by the same formula f'(zp) = lim,_,,, [EFz0) - We will

Z—Zz
denote it also by af ( ) , to distinguish from derivatives of paths: complex valued

functions of real varlable. For a path p(t) its derivative will be denoted either p’(t)

or d’;(tt). The Newton-Leibniz formula for real functions can be expressed by the
equality LY dt = df(t). Now we extend this formula to complex functions.

The hnearlzauon of a complex function f(z) at zo has the same form f(zo) +
f'(z0)(z — 20) + o(2)(z — 2p), where o(z) is an infinitesimally small function of
complex variable. The same arguments as for real numbers prove the basic rules of
differentiation: the derivative of sums, products and compositions.

THEOREM 3.3.1. 4 — pn—1

dz
PROOF. % = 1 one gets immediately from the definition of the derivative.
Suppose the equality % = nz""! is proved for n. Then dz;;l = dfi'z = zdjz +

ndz

2% = znz""! 4 2" = (n+ 1)2"dz. And the theorem is proved by induction. O

A smooth path is a differentiable mapping p: [a,b] — C with a continuous
bounded derivative. A function f(z) of a complex variable is called virtually mono-
tone if for any smooth path p(t) the functions Re f(p(t)) and Im f(p(t)) are virtually
monotone.

LeEMMA 3.3.2. If f'(z) is bounded, then f(z) is virtually monotone.

ProoOF. Consider a smooth path p. Then W = f'(p(t))p'(t) is bounded by
some K. Due to Lemma 3.1.15 one has | f(p(t)) — f(p(to))| < K|t — to|. Hence any
partial variation of f(p(t)) does not exceed K (b — a). Therefore vars(,)la,b] <
K.

THEOREM 3.3.3. If a complex function f(z) has a bounded virtually monotone
continuwous complex derivative over the image of a smooth path p: [a,b] — C, then

[, I'(z)dz = f(p(b)) — f(p(a)).

PROOF. W = f'(p(t))p'(t) = e {igp(t)) 4 j4m {iip(t)). All functions here
are continuous and virtually monotone by hypothesis. Passing to differential forms
one gets

UO) gy _ AR S0) gy | LS00 gy
= d(Re f(P( ) + Zd(Imf( (1))
= d(Re f(p(t)) + iIm f(p(t)))
= d(f(p(t))-
Hence f fl(z)dz = f df (z O
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COROLLARY 3.3.4. If f'(z) = 0 then f(z) is constant.
Proor. Consider p(t) = zo+ (2 — 20)t, then f(z) — f(z0) = fp F1(0)d¢c=0. O

Differentiation of series. Let us say that a complex series Y- | aj majorizes
(eventually) another such series Y7~ | by, if |by| < |ak| for all k (resp. for k beyond
some n).

The series Y oo, kg, (2 —20)F~! is called a formal derivative of 3o ¢, (2 —20)*.

LEMMA 3.3.5. Any power series Y o, ci(z — 20)* eventually majorizes its for-
mal derivative Yoo o ke (21 — 20)¥ 71 if |21 — 20| < |z — 20]-

PROOF. The ratio of the n-th term of the derivative to the n-th term of the
series tends to 0 as n tends to infinity. Indeed, this ratio is % = kq*, where

lg] < 1 since |z1 — 20| < |z — 20| The fact that lim, ., ng" = 0 follows from
the convergence of 220:1 kq* which we already have proved before. This series is
eventually majorized by any geometric series >, o AQF with @ > ¢. O

A path p(t) is called monotone if both Re p(t) and Im p(t) are monotone.

LEMMA 3.3.6. Let p: [a,b] = C be a smooth monotone path, and let f(z) be
virtually monotone. If | f(p(t))| < ¢ for t € [a,b] then ‘fp f(z) dz‘ < 4e|p(b) — p(a)].

PrOOF. Integration of the inequalities —¢ < Re f(p(t)) < ¢ against dRez

along the path gives | fp Re f(z) dRez| < | Rep(b) — Rep(a)| < ¢|p(b) — p(a)|. The
same arguments prove |fp Im f(z) dImz| < ¢|Imp(b) — Imp(a)| < ¢|p(b) — p(a)|.
The sum of these inequalities gives | Re fpf(z) dz| < 2c|Rep(b) — Rep(a)|. The
same arguments yields | Im fp f(2z)dz] <2c|Rep(b) —Rep(a)|. And the addition of
the two last inequalities allows us to accomplish the proof of the Lemma because

[, £(2)dz] < |Re [, f(z) del +| [, £(=) dl. 0
LEMMA 3.3.7. 2" — ("] < n|z — (| max{|]z"7!|,[¢"7!}.
PROOF. (2" — (") = (2 — () X3 25¢*# 1 and |25¢**1| < max{|z""}|,

¢} O
A linear path from zy to z; is defined as a linear mapping p: [a,b] — C, such

that p(a) = zp and p(b) = 21, that is p(t) = zo(t — a) + (21 — 20)(t — a)/(b — a).
We denote by fab f(2) dz the integral along the linear path from a to b.
LEMMA 3.3.8. For any complez z, ( and natural n > 0 one has

(3.3.1) 2" =28 —nzd (2 — 20)| < 2n(n — 1)|z — 20|* max{|z|"72, 20"}
ProOF. By the Newton-Leibniz formula, 2" — 2§ = f;o n¢" ! d¢. Further,

/z: n¢"td¢ = /z: nzytd¢ + /z n(¢"t — 20 d¢

20

z
= nz{)“l +/ n(¢"t - z{f*l) dc.
Zi

o]

Consequently, the left-hand side of (3.3.1) is equal to ‘f;o n(¢"t — 207 dC‘. Due
to Lemma 3.3.7 the absolute value of the integrand along the linear path does not
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exceed (n — 1)|z — zp| max{|2"~2|,|28"%|}. Now the estimation of the integral by
Lemma 3.3.6 gives just the inequality (3.3.1). O

THEOREM 3.3.9. If Y77 ck(z1 — 20)F converges absolutely, then Y o ci(z —
20)* and ey ke (z — 20)¥~1 absolutely converge provided by |z — zo| < |21 — 20/,
and the function Y i, key(z—20)" ! is the complez derivative of Y 4o ci(z—z0)F.

ProoF. The series Y - ce(z — 20)* and its formal derivative are eventually
majorized by Yo, ¢k (21 — 20)F if |2 — 20| < |21 — 20| by the Lemma 3.3.5. Hence
they absolutely converge in the circle |z — zo| < |21 — 2o|. Consider

R(z) =Y er(z — 20)F =D en(¢ = 20)F = (2= Q) D ker(¢ — 20)"
k=0 k=0 k=1

To prove that the formal derivative is the derivative of > p  ck(z — 20)¥ at ( it is
sufficient to prove that R(z) = o(z)(z — (), where o(z) is infinitesimally small at (.
One has R(z) = Y po; ¢k ((z — 20)* — (¢ — 20)* — k(¢ — 20)*~'). By Lemma 3.3.8
one gets the following estimate: |R(z)| < Y77, 2|exlk(k — 1)z — ([*|22 — 20|™ 2,
where |20 — 20| = max{|z — 20|, |¢ — z0|}. Hence all we need now is to prove that
> ey 2k(k — 1)|ck|22 — 20|"72|2 — (| is infinitesimally small at (. And this in its
turn follows from the convergence of Y po | 2k(k — 1)|ck||z2 — 20/*~2. The latter
may be deduced from Lemma 3.3.5. Indeed, consider z3, such that |zo — zo| <
|z3 — 20| < |21 — 20]. The convergence of Y -, klck||zs — 20/¥ ! follows from
the convergence of Y~ |ck||z1 — 20/¥ by Lemma 3.3.5. And the convergence of
> nes k(k—1)|ck |22 — 20| 2 follows from the convergence of > p- | klcg||zs — zolF 1
by the same lemma. O

COROLLARY 3.3.10. Let f(z) = > po ckz" converge absolutely for |z| < r, and

let a, b have absolute values less then r. Then f; fl2)dz = Y02 o 125 (BFH! —aFth),

ProoF. Consider F(z) = >~ , % This series is termwise majorized by
the series of f(z), hence it converges absolutely for |z| < r. By Theorem 3.3.9 f(z)
is its derivative for |z| < r. In our case f(z) is differentiable and its derivative is
bounded by Y2 klck|rk, where ro = max{|al,|b|}. Hence f(z) is continuous and

virtually monotone and our result now follows from Theorem 3.3.3. O

Exponenta in C. The exponenta for any complex number z is defined as
k k
expz = Y ;o % The definition works because the series )/ ) 4+ absolutely

converges for any z € C.

THEOREM 3.3.11. The exponenta is a differentiable function of a complex vari-
able with derivative exp’ z = expz, such that for all complex z, { the following
addition formula holds: exp(z + () = exp zexp (.

PROOF. The derivative of the exponenta can be evaluated termwise by Theo-
rem 3.3.9. And this evaluation gives exp’ z = exp z. To prove the addition formula
consider the following function r(z) = %. Differentiation of the equality
r(z) expz = exp(z + () gives ' (z) exp z + r(z) exp z = exp(z + (). Division by exp z
gives r'(z) + r(z) = r(z). Hence r(z) is constant. This constant is determined by
substitution z = 0 as r(z) = exp (. This proves the addition formula. d
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LEMMA 3.3.12. Let p: [a,b] = C be a smooth path contained in the complement

of a neighborhood of 0. Then exp fp % a¢ = ,’383

PROOF. First consider the case when p is contained in a circle |z — zo| < 20|
with center zg # 0. In this circle, % expands in a power series:
1 1 11 i (20 — O)*
o — (=) 20-C T kL
¢ 20—(20—¢ 21— == = %
Integration of this series is possible to do termwise due to Corollary 3.3.10. Hence
the result of the integration does not depend on the path. And Theorem 3.3.9
provides differentiability of the termwise integral and the possibility of its termwise
differentiation. Such differentiation simply gives the original series, which represents
% in this circle.
Consider the function I(2) = [~ 1d¢. Then I'(z) = L. The derivative of
20 € z

the composition expl(z) is e’(pz—l(z). Hence the composition satisfies the differential

equation y'z = y. We search for a solution of this equation in the form y = zw.
Then y' = w + w'z and our equation turns into wz + w'2? = wz. Therefore w' = 0
and w is constant. To find this constant substitute z = z9 and get 1 = exp0 =
expl(zp) = wzp. Hence w = - and expl(z) = =.

To prove the general case consider a partition {z}7_, of [a,b]. Denote by
pr the restriction of p over [z, zr4+1]. Choose the partition so small that |p(z) —
p(zr)| < |p(zx)| for all z € [xg,zk+1]. Then any pj satisfies the requirement of

the above considered case. Hence exp fpk %d{ = p;}%:)l). Further exp fp % ¢ =

exp YTy [, ¢ =TIHC, et = p(b)/p(a). O

THEOREM 3.3.13 (Euler Formula). For any real ¢ one has

‘expigzﬁ :cos¢+isingz5‘

PROOF. In Lecture 2.5 we have evaluated fp L dz =i¢ for p(t) = cost +isint,

t € [0, ¢]. Hence Lemma 3.3.12 applied to p(t) immediately gives the Euler formula.
(]

Trigonometric functions in C. The Euler formula gives power series expan-
sions for sin x and cos z:

S i £U2k+1 0 i $2k)
sing = 1) cosx = -1 .
ne kz:%( U TR v g( UeTY

These expansions are used to define trigonometric functions for complex vari-
able. On the other hand the Euler formula allows us to express trigonometric
functions via the exponenta:

exp(iz) — exp(—iz) o8 5 — exp(iz) + exp(—iz)

sinz = -
2i ’ 2

The other trigonometric functions tan, cot, sec, cosec are defined for complex vari-
ables by the usual formulas via sin and cos.
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. Expand into a power series e” cosz.
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Problems.

Evaluate Y, Snk,

Prove the formula of Joh. Bernoulli fol et dr =Y,

Find In(-1).
Solve the equation exp z = ¢.
Evaluate ¢*.

Prove sinz = &=%—, cosz = ¢

27 2
Prove the identity sin® z + cos? z = 1.
Solve the equation sinz = 5/3.

Solve the equation cosz = 2.

Evaluate Y 77 C‘;:!’“.
dz
Evaluate f‘z‘ﬂ —-
=1 4

e Sinkzx
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iz_ =iz iz 4 iz
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