3.2. Exponential Functions

On the contents of the lecture. We solve the principal differential equation
y' = y. Its solution, the exponential function, is expanded into a power series. We
become acquainted with hyperbolic functions. And, finally, we prove the irrational-
ity of e.

Debeaune’s problem. In 1638 F. Debeaune posed Descartes the following
geometrical problem: find a curve y(z) such that for each point P the distances
between V' and T, the points where the vertical and the tangent lines cut the z-
axis, are always equal to a given constant a. Despite the efforts of Descartes and
Fermat, this problem remained unsolved for nearly 50 years. In 1684 Leibniz solved
the problem via infinitesimal analysis of this curve: let z, y be a given point P (see
the picture). Then increase x by a small increment of b, so that y increases almost
by yb/a. Indeed, in small the curve is considered as the line. Hence the point P’ of
the curve with vertical projection V', one considers as lying on the line T'P. Hence
the triangle TP’V is similar to TPV. As TV = a, TV' = b+ a this similarity gives
the equality -2t2 = 2 which gives dy = yb/a.

y+éy ~ y
Repeating we obtain a sequence of values

y, y(1+2), y(1+2)2, y(1+ L)%,

We see that “in small” y(z) transforms an arithmetic progression into a geometric
one. This is the inverse to what the logarithm does. And the solution is a function
which is the inverse to a logarithmic function. Such functions are called ezponential.

a b

Fi1GURE 3.2.1. Debeaune’s problem

Tangent line and derivative. A tangent line to a smooth convex curve at a
point z is defined as a straight line such that the line intersects the curve just at x
and the whole curve lies on one side of the line.

We state that the equation of the tangent line to the graph of function f at a
point zg is just the principal part of linearization of f(z) at zp. In other words,
the equation is y = f(zo) + (x — x0) f' (o).

First, consider the case of a horizontal tangent line. In this case f(x¢) is either
maximal or minimal value of f(z).
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70 3.2 EXPONENTIAL FUNCTIONS

LeEMMA 3.2.1. If a function f(x) is differentiable at an extremal point xq, then
f'(xo) = 0.

Proor. Consider the linearization f(x) = f(zo)+f'(z0)(z—20)+o0(z))(z—1x0).
Denote z—1z¢ by dz, and f(z)— f(zo) by 6 f(z). If we suppose that f'(z¢) # 0, then,
for sufficiently small dx, we get |o(z£d0x)| < |f'(x)], hence sgn(f'(xo)+o(zo+0z)) =
sgn(f'(xo)+o(xo—dx)), and sgn § f(x) = sgn dx. Therefore the sign of § f (z) changes
whenever the sign of dx changes. The sign of §f(x) cannot be positive if f(xg) is
the maximal value of f(z), and it cannot be negative if f(z¢) is the minimal value.
This is the contradiction. O

THEOREM 3.2.2. If a function f(x) is differentiable at xo and its graph is
convet, then the tangent line to the graph of f(z) at xo isy = f(zo)+ f'(z0)(x—x0).

ProOF. Let y = ax+b be the equation of a tangent line to the graph y = f(x)
at the point zg. Since ax + b passes through zo, one has azo +b = f(zo), therefore
b = f(xo) — axp, and it remains to prove that a = f'(x¢). If the tangent line ax + b
is not horizontal, consider the function g(z) = f(z) — ax. At wo it takes either a
maximal or a minimal value and ¢'(z¢) = 0 by Lemma 3.2.1. On the other hand,

g'(z0) = f'(w0) — a. O

Differential equation. The Debeaune problem leads to a so-called differen-
tial equation on y(x). To be precise, the equation of the tangent line to y(x) at
xo is y = y(zo) + ¥'(xo)(z — xo). So the z-coordinate of the point T' can be found

from the equation 0 = y(zo) + y'(x0)(x — x¢). The solution is x = zg — %
The z-coordinate of V is just zg. Hence TV is equal to 5((2‘;)). And Debeaune’s
requirement is ulzo) — g Or ay' = y. Equations that include derivatives of

"(x
functions are caﬁédO)diﬁerential equations. The equation above is the simplest dif-
ferential equation. Its solution takes one line. Indeed passing to differentials one
gets ay’ dx = ydx, further ady = ydz, then a% = dr and adlny = dx. Hence
alny = z+cand finally y(z) = exp(c+ %), where exp 2 denotes the function inverse
to the natural logarithm and c is an arbitrary constant.

Exponenta. The function inverse to the natural logarithm is called the ex-
ponential function. We shall call it the exponenta to distinguish it from other
exponential functions.

THEOREM 3.2.3. The exponenta is the unique solution of the differential equa-
tion y' =y such that y'(0) = 1.

exp’ x

Proor. Differentiation of the equality lnexpz = z gives o = 1. Hence
expx satisfies the differential equation y' = y. For z = 0 this equation gives

exp’(0) = exp0. But exp0=1aslnl=0.

For the converse, let y(x) be a solution of y" = y. The derivative of Iny is % =1
Hence the derivative of Iny(z) — = is zero. By Theorem 3.1.16 from the previous
lecture, this implies In y(2) — z = ¢ for some constant c. If y'(0) = 1, then y(0) =1
and ¢ =1In1l— 0= 0. Therefore Iny(z) = = and y(z) = explny(z) = expz. O
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Exponential series. Our next goal is to prove that

2 $3 k
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where 0! = 1. This series is absolutely convergent for any z. Indeed, the ratio of
its subsequent terms is &> and tends to 0, hence it is eventually majorized by any

geometric series.

Hyperbolic functions. To prove that the function presented by series (3.2.1)
is virtually monotone, consider its odd and even parts. These parts represent the
so-called hyperbolic functions: hyperbolic sine shz, and hyperbolic cosine chz.

00 oo
$2k+1 2k

sh(z) = ,; 2R ch(z) = ; o

The hyperbolic sine is an increasing function, as all odd powers are increasing
over the whole line. The hyperbolic cosine is increasing for positive z and decreasing
for negative. Hence both are virtually monotone; and so is their sum.

Consider the integral fow shtdt. As all terms of the series representing sh are
increasing, we can integrate the series termwise. This integration gives chz. As
sh z is locally bounded, ch z is continuous by Theorem 3.1.13. Consider the integral
foz chtdt; here we also can integrate the series representing ch termwise, because for
positive = all the terms are increasing, and for negative x, decreasing. Integration
gives sh z, since the continuity of chx was already proved. Further, by Theorem
3.1.13 we get that shx is differentiable and sh'z = chz. Now returning to the
equality chx = fox shtdt we get ch' z = shz, as shz is continuous.

Therefore (shz +chx) =cha +shz. And sh0+ch0=0+1=1. Now by the
above Theorem 3.2.3 one gets expx = chz +shz.

Other exponential functions. The exponenta as a function inverse to the
logarithm transforms sums into products. That is, for all  and y one has

exp(x + y) = exprexpy.

A function which has this property (i.e., transform sums into products) is called
exponential.

THEOREM 3.2.4. For any positive a there is a unique differentiable function
denoted by a® called the exponential function to base a, such that a' = a and
a**tY = a®a¥ for any x, y. This function is defined by the formula expalnz.

Proor. Consider I(z) = Ina®. This function has the property I(z+y) = I(z)+
I(y). Therefore its derivative at any point is the same: it is equal to k = lim,_,¢ @
Hence the function [(z) — kx is constant, because its derivative is 0. This constant
is equal to {(0), which is 0. Indeed [(0) = 1(0 + 0) = 1(0) +{(0). Thus Ina® = k.
Substituting = 1 one gets k = Ina. Hence a® = exp(zlna). So if a differentiable
exponential function with base a exists, it coincides with exp(zlna). On the other
hand it is easy to see that exp(xz In a) satisfies all the requirements for an exponential
function to base a, that is exp(11lna) = a, exp((z +y) Ina) = exp(z In a) exp(ylna);
and it is differentiable as composition of differentiable functions. O



72 3.2 EXPONENTIAL FUNCTIONS

Powers. Hence for any positive a and any real b, one defines the number a’ as

a® = exp(blna)

a is called the base, and b is called the exponent. For rational b this definition
agrees with the old definition. Indeed if b = % then the properties of the exponenta
and the logarithm imply ai = 1/aP.

Earlier, we have defined logarithms to base b as the number ¢, and called the
logarithm of b to base a, if a® = b and denoted ¢ = log,, b.

The basic properties of powers are collected here.

THEOREM 3.2.5.

(ab)c = a(bc), a’t¢ = abac, (ab)® = ab®, log,b=

Power functions. The power operation allows us to define the power function z®
for any real degree a. Now we can prove the equality (z%)" = az® ! in its full value.
Indeed, () = (exp(alnz)) = exp’(alnz)(alnz)’ = exp(alnz)® = az® !,

Infinite products via the Logarithm.

LEMMA 3.2.6. Let f(x) be a function continuous at xo. Then for any sequence
{z,} such that lim,,_, o z, = T one has lim,,_, f(z,) = f(xo).

ProoF. For any given € > 0 there is a neighborhood U of zg such that |f(z) —
f(zo)| <eforx € U. As lim,_, &n = To, eventually x,, € U. Hence eventually

|f(zn) — fzo)| <e. O

As we already have remarked, infinite sums and infinite products are limits of
partial products.

THEOREM 3.2.7. In[[;2, pk = Y pey Inpi.

PRrOOF.
exp(3o 5 Inpr) = exp(limp oo 35, Inpy)
= lim, 00 exp(>_j_; Inpy,)
= lim, HZ:1 Pk
= [ pr-
Now take logarithms of both sides of the equation. d

Symmetric arguments prove the following: exp Y~ ax = []r, exp a.

Irrationality of e. The expansion of the exponenta into a power series gives
an expansion into a series for e which is exp 1.

LEMMA 3.2.8. For any natural n one has n+r1 <en!—[en!] < i

PROOF. en! = 377 2. The partial sum ) ,_, 2 is an integer. The tail
> hent1 & is termwise majorized by the geometric series Y ;7 m =1 On
the other hand the first summand of the tail is n+_1 Consequently the tail has its
sum between n%_l and % O

THEOREM 3.2.9. The number e is irrational.
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PROOF. Suppose e = % where p and ¢ are natural. Then eq! is a natural

number. But it is not an integer by Lemma 3.2.8. d
Problems.
1. Prove the inequalities 1 + z < expa < .
2. Prove the inequalities 7 <In(1 +z) <.
3. Evaluate lim,,— o (1 — %)n
4. Evaluate lim,, (1 + %)n
5. Evaluate lim,, (1 + #)n
6. Find the derivative of z7.
7. Prove: ¢ > y implies expx > expy.
8. Express via e: exp 2, exp(1/2), exp(2/3), exp(—1).
9. Prove that exp(m/n) =e™ .
10. Prove that expx > 0 for any x.
11. Prove the addition formulas ch(z + y) = ch(z) ch(y) + sh(z) sh(y), sh(z +y) =

sh(z) ch(y) + sh(y) ch(z).

12. Prove that Ash(z —0.5) = sh0.5ch(z), Ach(z —0.5) = sh0.5sh(z).

13. Prove sh2x = 2shzchz.

14. Prove ch?(x) — sh?(z) = 1.

15. Solve the equation shz = 4/5.

16. Express via e the sum ) ;- | k/k!.

17. Express via e the sum Y ;- k?/k!.

18. Prove that {e’]‘cﬁk} is unbounded.

19. Prove: The product [[(1 + p,) converges if and only if the sum " p,, (pn > 0)
converges.

20. Determine the convergence of [ %

21. Does []n(e'/™ — 1) converges?

22. Prove the divergence of Y | =prime],

23. Expand a” into a power series.

24. Determine the geometrical sense of shz and chz.
25. Evaluate lim,,_, o, sin men!.

26. Does the series ).~ sinwek! converge?

*27. Prove the irrationality of e2.



