
3.2. Exponential Fun
tionsOn the 
ontents of the le
ture. We solve the prin
ipal di�erential equationy0 = y. Its solution, the exponential fun
tion, is expanded into a power series. Webe
ome a
quainted with hyperboli
 fun
tions. And, �nally, we prove the irrational-ity of e.Debeaune's problem. In 1638 F. Debeaune posed Des
artes the followinggeometri
al problem: �nd a 
urve y(x) su
h that for ea
h point P the distan
esbetween V and T , the points where the verti
al and the tangent lines 
ut the x-axis, are always equal to a given 
onstant a. Despite the e�orts of Des
artes andFermat, this problem remained unsolved for nearly 50 years. In 1684 Leibniz solvedthe problem via in�nitesimal analysis of this 
urve: let x, y be a given point P (seethe pi
ture). Then in
rease x by a small in
rement of b, so that y in
reases almostby yb=a. Indeed, in small the 
urve is 
onsidered as the line. Hen
e the point P 0 ofthe 
urve with verti
al proje
tion V 0, one 
onsiders as lying on the line TP . Hen
ethe triangle TP 0V 0 is similar to TPV . As TV = a, TV 0 = b+a this similarity givesthe equality a+by+Æy = ay whi
h gives Æy = yb=a.Repeating we obtain a sequen
e of valuesy; y(1 + ba ); y(1 + ba )2; y(1 + ba )3; : : : :We see that \in small" y(x) transforms an arithmeti
 progression into a geometri
one. This is the inverse to what the logarithm does. And the solution is a fun
tionwhi
h is the inverse to a logarithmi
 fun
tion. Su
h fun
tions are 
alled exponential.
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T’Figure 3.2.1. Debeaune's problemTangent line and derivative. A tangent line to a smooth 
onvex 
urve at apoint x is de�ned as a straight line su
h that the line interse
ts the 
urve just at xand the whole 
urve lies on one side of the line.We state that the equation of the tangent line to the graph of fun
tion f at apoint x0 is just the prin
ipal part of linearization of f(x) at x0. In other words,the equation is y = f(x0) + (x� x0)f 0(x0).First, 
onsider the 
ase of a horizontal tangent line. In this 
ase f(x0) is eithermaximal or minimal value of f(x). 69



70 3.2 exponential fun
tionsLemma 3.2.1. If a fun
tion f(x) is di�erentiable at an extremal point x0, thenf 0(x0) = 0.Proof. Consider the linearization f(x) = f(x0)+f 0(x0)(x�x0)+o(x))(x�x0).Denote x�x0 by Æx, and f(x)�f(x0) by Æf(x). If we suppose that f 0(x0) 6= 0, then,for suÆ
iently small Æx, we get jo(x�Æx)j < jf 0(x)j, hen
e sgn(f 0(x0)+o(x0+Æx)) =sgn(f 0(x0)+o(x0�Æx)), and sgn Æf(x) = sgn Æx. Therefore the sign of Æf(x) 
hangeswhenever the sign of Æx 
hanges. The sign of Æf(x) 
annot be positive if f(x0) isthe maximal value of f(x), and it 
annot be negative if f(x0) is the minimal value.This is the 
ontradi
tion. �Theorem 3.2.2. If a fun
tion f(x) is di�erentiable at x0 and its graph is
onvex, then the tangent line to the graph of f(x) at x0 is y = f(x0)+f 0(x0)(x�x0).Proof. Let y = ax+ b be the equation of a tangent line to the graph y = f(x)at the point x0. Sin
e ax+ b passes through x0, one has ax0+ b = f(x0), thereforeb = f(x0)� ax0, and it remains to prove that a = f 0(x0). If the tangent line ax+ bis not horizontal, 
onsider the fun
tion g(x) = f(x) � ax. At x0 it takes either amaximal or a minimal value and g0(x0) = 0 by Lemma 3.2.1. On the other hand,g0(x0) = f 0(x0)� a. �Di�erential equation. The Debeaune problem leads to a so-
alled di�eren-tial equation on y(x). To be pre
ise, the equation of the tangent line to y(x) atx0 is y = y(x0) + y0(x0)(x � x0). So the x-
oordinate of the point T 
an be foundfrom the equation 0 = y(x0) + y0(x0)(x � x0). The solution is x = x0 � y(x0)y0(x0) .The x-
oordinate of V is just x0. Hen
e TV is equal to y(x0)y0(x0) . And Debeaune'srequirement is y(x0)y0(x0) = a. Or ay0 = y. Equations that in
lude derivatives offun
tions are 
alled di�erential equations. The equation above is the simplest dif-ferential equation. Its solution takes one line. Indeed passing to di�erentials onegets ay0 dx = y dx, further ady = y dx, then adyy = dx and a d ln y = dx. Hen
ea ln y = x+
 and �nally y(x) = exp(
+ xa ), where expx denotes the fun
tion inverseto the natural logarithm and 
 is an arbitrary 
onstant.Exponenta. The fun
tion inverse to the natural logarithm is 
alled the ex-ponential fun
tion. We shall 
all it the exponenta to distinguish it from otherexponential fun
tions.Theorem 3.2.3. The exponenta is the unique solution of the di�erential equa-tion y0 = y su
h that y0(0) = 1.Proof. Di�erentiation of the equality ln expx = x gives exp0 xexpx = 1. Hen
eexpx satis�es the di�erential equation y0 = y. For x = 0 this equation givesexp0(0) = exp 0. But exp 0 = 1 as ln 1 = 0.For the 
onverse, let y(x) be a solution of y0 = y. The derivative of ln y is y0y = 1.Hen
e the derivative of ln y(x) � x is zero. By Theorem 3.1.16 from the previousle
ture, this implies ln y(x)�x = 
 for some 
onstant 
. If y0(0) = 1, then y(0) = 1and 
 = ln 1� 0 = 0. Therefore ln y(x) = x and y(x) = exp ln y(x) = expx. �



3.2 exponential fun
tions 71Exponential series. Our next goal is to prove that(3.2.1) expx = 1 + x+ x22 + x32 � 3 + � � �+ xkk! + � � � = 1Xn=0 xnn! ;where 0! = 1. This series is absolutely 
onvergent for any x. Indeed, the ratio ofits subsequent terms is xn and tends to 0, hen
e it is eventually majorized by anygeometri
 series.Hyperboli
 fun
tions. To prove that the fun
tion presented by series (3.2.1)is virtually monotone, 
onsider its odd and even parts. These parts represent theso-
alled hyperboli
 fun
tions : hyperboli
 sine shx, and hyperboli
 
osine 
hx.sh(x) = 1Xk=0 x2k+1(2k + 1)! ; 
h(x) = 1Xk=0 x2k(2k)! :The hyperboli
 sine is an in
reasing fun
tion, as all odd powers are in
reasingover the whole line. The hyperboli
 
osine is in
reasing for positive x and de
reasingfor negative. Hen
e both are virtually monotone; and so is their sum.Consider the integral R x0 sh t dt. As all terms of the series representing sh arein
reasing, we 
an integrate the series termwise. This integration gives 
hx. Asshx is lo
ally bounded, 
hx is 
ontinuous by Theorem 3.1.13. Consider the integralR x0 
h t dt; here we also 
an integrate the series representing 
h termwise, be
ause forpositive x all the terms are in
reasing, and for negative x, de
reasing. Integrationgives shx, sin
e the 
ontinuity of 
hx was already proved. Further, by Theorem3.1.13 we get that shx is di�erentiable and sh0 x = 
hx. Now returning to theequality 
hx = R x0 sh t dt we get 
h0 x = shx, as shx is 
ontinuous.Therefore (shx+
hx)0 = 
hx+shx. And sh 0+ 
h 0 = 0+1 = 1. Now by theabove Theorem 3.2.3 one gets expx = 
hx+ shx.Other exponential fun
tions. The exponenta as a fun
tion inverse to thelogarithm transforms sums into produ
ts. That is, for all x and y one hasexp(x+ y) = expx exp y:A fun
tion whi
h has this property (i.e., transform sums into produ
ts) is 
alledexponential.Theorem 3.2.4. For any positive a there is a unique di�erentiable fun
tiondenoted by ax 
alled the exponential fun
tion to base a, su
h that a1 = a andax+y = axay for any x, y. This fun
tion is de�ned by the formula expa lnx.Proof. Consider l(x) = ln ax. This fun
tion has the property l(x+y) = l(x)+l(y). Therefore its derivative at any point is the same: it is equal to k = limx!0 l(x)x .Hen
e the fun
tion l(x)� kx is 
onstant, be
ause its derivative is 0. This 
onstantis equal to l(0), whi
h is 0. Indeed l(0) = l(0 + 0) = l(0) + l(0). Thus ln ax = kx.Substituting x = 1 one gets k = ln a. Hen
e ax = exp(x ln a). So if a di�erentiableexponential fun
tion with base a exists, it 
oin
ides with exp(x ln a). On the otherhand it is easy to see that exp(x ln a) satis�es all the requirements for an exponentialfun
tion to base a, that is exp(1 lna) = a, exp((x+y) ln a) = exp(x ln a) exp(y ln a);and it is di�erentiable as 
omposition of di�erentiable fun
tions. �



72 3.2 exponential fun
tionsPowers. Hen
e for any positive a and any real b, one de�nes the number ab asab = exp(b ln a)a is 
alled the base, and b is 
alled the exponent. For rational b this de�nitionagrees with the old de�nition. Indeed if b = pq then the properties of the exponentaand the logarithm imply a pq = qpap.Earlier, we have de�ned logarithms to base b as the number 
, and 
alled thelogarithm of b to base a, if a
 = b and denoted 
 = loga b.The basi
 properties of powers are 
olle
ted here.Theorem 3.2.5.(ab)
 = a(b
); ab+
 = aba
; (ab)
 = a
b
; loga b = log blog a:Power fun
tions. The power operation allows us to de�ne the power fun
tion x�for any real degree �. Now we 
an prove the equality (x�)0 = �x��1 in its full value.Indeed, (x�)0 = (exp(� lnx))0 = exp0(� ln x)(� lnx)0 = exp(� lnx)�x = �x��1.In�nite produ
ts via the Logarithm.Lemma 3.2.6. Let f(x) be a fun
tion 
ontinuous at x0. Then for any sequen
efxng su
h that limn!1 xn = x0 one has limn!1 f(xn) = f(x0).Proof. For any given " > 0 there is a neighborhood U of x0 su
h that jf(x)�f(x0)j � " for x 2 U . As limn!1 xn = x0, eventually xn 2 U . Hen
e eventuallyjf(xn)� f(x0)j < ". �As we already have remarked, in�nite sums and in�nite produ
ts are limits ofpartial produ
ts.Theorem 3.2.7. lnQ1k=1 pk =P1k=1 ln pk.Proof. exp(P1k=1 ln pk) = exp(limn!1Pnk=1 ln pk)= limn!1 exp(Pnk=1 ln pk)= limn!1Qnk=1 pk=Q1k=1 pk:Now take logarithms of both sides of the equation. �Symmetri
 arguments prove the following: expP1k=1 ak =Q1k=1 expak.Irrationality of e. The expansion of the exponenta into a power series givesan expansion into a series for e whi
h is exp 1.Lemma 3.2.8. For any natural n one has 1n+1 < en!� [en!℄ < 1n .Proof. en! = P1k=0 n!k! . The partial sum Pnk=0 n!k! is an integer. The tailP1k=n+1 n!k! is termwise majorized by the geometri
 series P1k=1 1(n+1)k = 1n . Onthe other hand the �rst summand of the tail is 1n+1 . Consequently the tail has itssum between 1n+1 and 1n . �Theorem 3.2.9. The number e is irrational.



3.2 exponential fun
tions 73Proof. Suppose e = pq where p and q are natural. Then eq! is a naturalnumber. But it is not an integer by Lemma 3.2.8. �Problems.1. Prove the inequalities 1 + x � expx � 11�x .2. Prove the inequalities x1+x � ln(1 + x) � x.3. Evaluate limn!1 �1� 1n�n.4. Evaluate limn!1 �1 + 2n�n.5. Evaluate limn!1 �1 + 1n2 �n.6. Find the derivative of xx.7. Prove: x > y implies expx > exp y.8. Express via e: exp 2, exp(1=2), exp(2=3), exp(�1).9. Prove that exp(m=n) = emn .10. Prove that expx > 0 for any x.11. Prove the addition formulas 
h(x+ y) = 
h(x) 
h(y) + sh(x) sh(y), sh(x+ y) =sh(x) 
h(y) + sh(y) 
h(x).12. Prove that � sh(x � 0:5) = sh 0:5 
h(x), � 
h(x� 0:5) = sh 0:5 sh(x).13. Prove sh 2x = 2 shx 
hx.14. Prove 
h2(x)� sh2(x) = 1.15. Solve the equation shx = 4=5.16. Express via e the sum P1k=1 k=k!.17. Express via e the sum P1k=1 k2=k!.18. Prove that f expkkn g is unbounded.19. Prove: The produ
t Q(1 + pn) 
onverges if and only if the sum P pn (pn � 0)
onverges.20. Determine the 
onvergen
e of Q e1=n1+ 1n .21. Does Qn(e1=n � 1) 
onverges?22. Prove the divergen
e of P1k=1 [k�prime℄k .23. Expand ax into a power series.24. Determine the geometri
al sense of shx and 
hx.25. Evaluate limn!1 sin�en!.26. Does the seriesP1k=1 sin�ek! 
onverge?�27. Prove the irrationality of e2.


