
3.2. Exponential FuntionsOn the ontents of the leture. We solve the prinipal di�erential equationy0 = y. Its solution, the exponential funtion, is expanded into a power series. Webeome aquainted with hyperboli funtions. And, �nally, we prove the irrational-ity of e.Debeaune's problem. In 1638 F. Debeaune posed Desartes the followinggeometrial problem: �nd a urve y(x) suh that for eah point P the distanesbetween V and T , the points where the vertial and the tangent lines ut the x-axis, are always equal to a given onstant a. Despite the e�orts of Desartes andFermat, this problem remained unsolved for nearly 50 years. In 1684 Leibniz solvedthe problem via in�nitesimal analysis of this urve: let x, y be a given point P (seethe piture). Then inrease x by a small inrement of b, so that y inreases almostby yb=a. Indeed, in small the urve is onsidered as the line. Hene the point P 0 ofthe urve with vertial projetion V 0, one onsiders as lying on the line TP . Henethe triangle TP 0V 0 is similar to TPV . As TV = a, TV 0 = b+a this similarity givesthe equality a+by+Æy = ay whih gives Æy = yb=a.Repeating we obtain a sequene of valuesy; y(1 + ba ); y(1 + ba )2; y(1 + ba )3; : : : :We see that \in small" y(x) transforms an arithmeti progression into a geometrione. This is the inverse to what the logarithm does. And the solution is a funtionwhih is the inverse to a logarithmi funtion. Suh funtions are alled exponential.
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T’Figure 3.2.1. Debeaune's problemTangent line and derivative. A tangent line to a smooth onvex urve at apoint x is de�ned as a straight line suh that the line intersets the urve just at xand the whole urve lies on one side of the line.We state that the equation of the tangent line to the graph of funtion f at apoint x0 is just the prinipal part of linearization of f(x) at x0. In other words,the equation is y = f(x0) + (x� x0)f 0(x0).First, onsider the ase of a horizontal tangent line. In this ase f(x0) is eithermaximal or minimal value of f(x). 69



70 3.2 exponential funtionsLemma 3.2.1. If a funtion f(x) is di�erentiable at an extremal point x0, thenf 0(x0) = 0.Proof. Consider the linearization f(x) = f(x0)+f 0(x0)(x�x0)+o(x))(x�x0).Denote x�x0 by Æx, and f(x)�f(x0) by Æf(x). If we suppose that f 0(x0) 6= 0, then,for suÆiently small Æx, we get jo(x�Æx)j < jf 0(x)j, hene sgn(f 0(x0)+o(x0+Æx)) =sgn(f 0(x0)+o(x0�Æx)), and sgn Æf(x) = sgn Æx. Therefore the sign of Æf(x) hangeswhenever the sign of Æx hanges. The sign of Æf(x) annot be positive if f(x0) isthe maximal value of f(x), and it annot be negative if f(x0) is the minimal value.This is the ontradition. �Theorem 3.2.2. If a funtion f(x) is di�erentiable at x0 and its graph isonvex, then the tangent line to the graph of f(x) at x0 is y = f(x0)+f 0(x0)(x�x0).Proof. Let y = ax+ b be the equation of a tangent line to the graph y = f(x)at the point x0. Sine ax+ b passes through x0, one has ax0+ b = f(x0), thereforeb = f(x0)� ax0, and it remains to prove that a = f 0(x0). If the tangent line ax+ bis not horizontal, onsider the funtion g(x) = f(x) � ax. At x0 it takes either amaximal or a minimal value and g0(x0) = 0 by Lemma 3.2.1. On the other hand,g0(x0) = f 0(x0)� a. �Di�erential equation. The Debeaune problem leads to a so-alled di�eren-tial equation on y(x). To be preise, the equation of the tangent line to y(x) atx0 is y = y(x0) + y0(x0)(x � x0). So the x-oordinate of the point T an be foundfrom the equation 0 = y(x0) + y0(x0)(x � x0). The solution is x = x0 � y(x0)y0(x0) .The x-oordinate of V is just x0. Hene TV is equal to y(x0)y0(x0) . And Debeaune'srequirement is y(x0)y0(x0) = a. Or ay0 = y. Equations that inlude derivatives offuntions are alled di�erential equations. The equation above is the simplest dif-ferential equation. Its solution takes one line. Indeed passing to di�erentials onegets ay0 dx = y dx, further ady = y dx, then adyy = dx and a d ln y = dx. Henea ln y = x+ and �nally y(x) = exp(+ xa ), where expx denotes the funtion inverseto the natural logarithm and  is an arbitrary onstant.Exponenta. The funtion inverse to the natural logarithm is alled the ex-ponential funtion. We shall all it the exponenta to distinguish it from otherexponential funtions.Theorem 3.2.3. The exponenta is the unique solution of the di�erential equa-tion y0 = y suh that y0(0) = 1.Proof. Di�erentiation of the equality ln expx = x gives exp0 xexpx = 1. Heneexpx satis�es the di�erential equation y0 = y. For x = 0 this equation givesexp0(0) = exp 0. But exp 0 = 1 as ln 1 = 0.For the onverse, let y(x) be a solution of y0 = y. The derivative of ln y is y0y = 1.Hene the derivative of ln y(x) � x is zero. By Theorem 3.1.16 from the previousleture, this implies ln y(x)�x =  for some onstant . If y0(0) = 1, then y(0) = 1and  = ln 1� 0 = 0. Therefore ln y(x) = x and y(x) = exp ln y(x) = expx. �



3.2 exponential funtions 71Exponential series. Our next goal is to prove that(3.2.1) expx = 1 + x+ x22 + x32 � 3 + � � �+ xkk! + � � � = 1Xn=0 xnn! ;where 0! = 1. This series is absolutely onvergent for any x. Indeed, the ratio ofits subsequent terms is xn and tends to 0, hene it is eventually majorized by anygeometri series.Hyperboli funtions. To prove that the funtion presented by series (3.2.1)is virtually monotone, onsider its odd and even parts. These parts represent theso-alled hyperboli funtions : hyperboli sine shx, and hyperboli osine hx.sh(x) = 1Xk=0 x2k+1(2k + 1)! ; h(x) = 1Xk=0 x2k(2k)! :The hyperboli sine is an inreasing funtion, as all odd powers are inreasingover the whole line. The hyperboli osine is inreasing for positive x and dereasingfor negative. Hene both are virtually monotone; and so is their sum.Consider the integral R x0 sh t dt. As all terms of the series representing sh areinreasing, we an integrate the series termwise. This integration gives hx. Asshx is loally bounded, hx is ontinuous by Theorem 3.1.13. Consider the integralR x0 h t dt; here we also an integrate the series representing h termwise, beause forpositive x all the terms are inreasing, and for negative x, dereasing. Integrationgives shx, sine the ontinuity of hx was already proved. Further, by Theorem3.1.13 we get that shx is di�erentiable and sh0 x = hx. Now returning to theequality hx = R x0 sh t dt we get h0 x = shx, as shx is ontinuous.Therefore (shx+hx)0 = hx+shx. And sh 0+ h 0 = 0+1 = 1. Now by theabove Theorem 3.2.3 one gets expx = hx+ shx.Other exponential funtions. The exponenta as a funtion inverse to thelogarithm transforms sums into produts. That is, for all x and y one hasexp(x+ y) = expx exp y:A funtion whih has this property (i.e., transform sums into produts) is alledexponential.Theorem 3.2.4. For any positive a there is a unique di�erentiable funtiondenoted by ax alled the exponential funtion to base a, suh that a1 = a andax+y = axay for any x, y. This funtion is de�ned by the formula expa lnx.Proof. Consider l(x) = ln ax. This funtion has the property l(x+y) = l(x)+l(y). Therefore its derivative at any point is the same: it is equal to k = limx!0 l(x)x .Hene the funtion l(x)� kx is onstant, beause its derivative is 0. This onstantis equal to l(0), whih is 0. Indeed l(0) = l(0 + 0) = l(0) + l(0). Thus ln ax = kx.Substituting x = 1 one gets k = ln a. Hene ax = exp(x ln a). So if a di�erentiableexponential funtion with base a exists, it oinides with exp(x ln a). On the otherhand it is easy to see that exp(x ln a) satis�es all the requirements for an exponentialfuntion to base a, that is exp(1 lna) = a, exp((x+y) ln a) = exp(x ln a) exp(y ln a);and it is di�erentiable as omposition of di�erentiable funtions. �



72 3.2 exponential funtionsPowers. Hene for any positive a and any real b, one de�nes the number ab asab = exp(b ln a)a is alled the base, and b is alled the exponent. For rational b this de�nitionagrees with the old de�nition. Indeed if b = pq then the properties of the exponentaand the logarithm imply a pq = qpap.Earlier, we have de�ned logarithms to base b as the number , and alled thelogarithm of b to base a, if a = b and denoted  = loga b.The basi properties of powers are olleted here.Theorem 3.2.5.(ab) = a(b); ab+ = aba; (ab) = ab; loga b = log blog a:Power funtions. The power operation allows us to de�ne the power funtion x�for any real degree �. Now we an prove the equality (x�)0 = �x��1 in its full value.Indeed, (x�)0 = (exp(� lnx))0 = exp0(� ln x)(� lnx)0 = exp(� lnx)�x = �x��1.In�nite produts via the Logarithm.Lemma 3.2.6. Let f(x) be a funtion ontinuous at x0. Then for any sequenefxng suh that limn!1 xn = x0 one has limn!1 f(xn) = f(x0).Proof. For any given " > 0 there is a neighborhood U of x0 suh that jf(x)�f(x0)j � " for x 2 U . As limn!1 xn = x0, eventually xn 2 U . Hene eventuallyjf(xn)� f(x0)j < ". �As we already have remarked, in�nite sums and in�nite produts are limits ofpartial produts.Theorem 3.2.7. lnQ1k=1 pk =P1k=1 ln pk.Proof. exp(P1k=1 ln pk) = exp(limn!1Pnk=1 ln pk)= limn!1 exp(Pnk=1 ln pk)= limn!1Qnk=1 pk=Q1k=1 pk:Now take logarithms of both sides of the equation. �Symmetri arguments prove the following: expP1k=1 ak =Q1k=1 expak.Irrationality of e. The expansion of the exponenta into a power series givesan expansion into a series for e whih is exp 1.Lemma 3.2.8. For any natural n one has 1n+1 < en!� [en!℄ < 1n .Proof. en! = P1k=0 n!k! . The partial sum Pnk=0 n!k! is an integer. The tailP1k=n+1 n!k! is termwise majorized by the geometri series P1k=1 1(n+1)k = 1n . Onthe other hand the �rst summand of the tail is 1n+1 . Consequently the tail has itssum between 1n+1 and 1n . �Theorem 3.2.9. The number e is irrational.



3.2 exponential funtions 73Proof. Suppose e = pq where p and q are natural. Then eq! is a naturalnumber. But it is not an integer by Lemma 3.2.8. �Problems.1. Prove the inequalities 1 + x � expx � 11�x .2. Prove the inequalities x1+x � ln(1 + x) � x.3. Evaluate limn!1 �1� 1n�n.4. Evaluate limn!1 �1 + 2n�n.5. Evaluate limn!1 �1 + 1n2 �n.6. Find the derivative of xx.7. Prove: x > y implies expx > exp y.8. Express via e: exp 2, exp(1=2), exp(2=3), exp(�1).9. Prove that exp(m=n) = emn .10. Prove that expx > 0 for any x.11. Prove the addition formulas h(x+ y) = h(x) h(y) + sh(x) sh(y), sh(x+ y) =sh(x) h(y) + sh(y) h(x).12. Prove that � sh(x � 0:5) = sh 0:5 h(x), � h(x� 0:5) = sh 0:5 sh(x).13. Prove sh 2x = 2 shx hx.14. Prove h2(x)� sh2(x) = 1.15. Solve the equation shx = 4=5.16. Express via e the sum P1k=1 k=k!.17. Express via e the sum P1k=1 k2=k!.18. Prove that f expkkn g is unbounded.19. Prove: The produt Q(1 + pn) onverges if and only if the sum P pn (pn � 0)onverges.20. Determine the onvergene of Q e1=n1+ 1n .21. Does Qn(e1=n � 1) onverges?22. Prove the divergene of P1k=1 [k�prime℄k .23. Expand ax into a power series.24. Determine the geometrial sense of shx and hx.25. Evaluate limn!1 sin�en!.26. Does the seriesP1k=1 sin�ek! onverge?�27. Prove the irrationality of e2.


