3.1. Newton-Leibniz Formula

On the contents of the lecture. In this lecture appears the celebrated Newton-Leibniz formula — the main tool in the evaluation of integrals. It is accompanied with such fundamental concepts as the derivative, the limit of a function and continuity.

Motivation. Consider the following problem: for a given function F find a function f such that dF(x) = f(x) dx, over [a, b], that is, $\int_c^d f(t) dt = F(d) - F(c)$ for any subinterval [c, d] of [a, b].

Suppose that such an f exists. Since the value of f at a single point does not affects the integral, we cannot say anything about the value of f at any given point. But if f is continuous at a point x_0 , its value is uniquely defined by F.

To be precise, the difference quotient $\frac{F(x) - F(x_0)}{x - x_0}$ tends to $f(x_0)$ as x tends to x_0 . Indeed, $F(x) = F(x_0) + \int_{x_0}^x f(t) dt$. Furthermore, $\int_{x_0}^x f(t) dt = f(x_0)(x - x_0) + \int_{x_0}^x (f(t) - f(x_0)) dt$. Also, $|\int_{x_0}^x (f(t) - f(x_0)) dt| \le \operatorname{var}_f[x_0, x] |x - x_0|$. Consequently

(3.1.1)
$$\left|\frac{F(x) - F(x_0)}{x - x_0} - f(x_0)\right| \le \operatorname{var}_f[x, x_0].$$

However, $\operatorname{var}_f[x, x_0]$ can be made arbitrarily small by choosing x sufficiently close to x_0 , since $\operatorname{var}_f x_0 = 0$.

Infinitesimally small functions. A set is called a *neighborhood* of a point x if it contains all points *sufficiently close* to x, that is, all points y such that |y - x| is less then a positive number ε .

We will say that a function f is *locally bounded* (above) by a constant C at a point x, if $f(x) \leq C$ for all y sufficiently close to x.

A function o(x) is called *infinitesimally small* at x_0 , if |o(x)| is locally bounded at x_0 by any $\varepsilon > 0$.

LEMMA 3.1.1. If the functions o and ω are infinitesimally small at x_0 then $o \pm \omega$ are infinitesimally small at x_0 .

PROOF. Let $\varepsilon > 0$. Let O_1 be a neighborhood of x_0 where $|o(x)| < \varepsilon/2$, and let O_2 be a neighborhood of x_0 where $|\omega(x)| < \varepsilon/2$. Then $O_1 \cap O_2$ is a neighborhood where both inequalities hold. Hence for all $x \in O_1 \cap O_2$ one has $|o(x) \pm \omega(x)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

LEMMA 3.1.2. If o(x) is infinitesimally small at x_0 and f(x) is locally bounded at x_0 , then f(x)o(x) is infinitesimally small at x_0 .

PROOF. The neighborhood where |f(x)o(x)| is bounded by a given $\varepsilon > 0$ can be constructed as the intersection of a neighborhood U, where |f(x)| is bounded by a constant C, and a neighborhood V, where |o(x)| is bounded by ε/C . \Box

DEFINITION. One says that a function f(x) tends to A as x tends to x_0 and writes $\lim_{x\to x_0} f(x) = A$, if f(x) = A + o(x) on the complement of x_0 , where o(x) is infinitesimally small at x_0 .

COROLLARY 3.1.3. If both the limits $\lim_{x\to x_0} f(x)$ and $\lim_{x\to x_0} g(x)$ exist, then the limit $\lim_{x\to x_0} (f(x) + g(x))$ also exists and $\lim_{x\to x_0} (f(x) + g(x)) = \lim_{x\to x_0} f(x) + \lim_{x\to x_0} g(x)$. PROOF. This follows immediately from Lemma 3.1.1.

LEMMA 3.1.4. If the limits $\lim_{x\to x_0} f(x)$ and $\lim_{x\to x_0} g(x)$ exist, then also $\lim_{x\to x_0} f(x)g(x)$ exists and $\lim_{x\to x_0} f(x)g(x) = \lim_{x\to x_0} f(x)\lim_{x\to x_0} g(x)$.

PROOF. If f(x) = A + o(x) and $g(x) = B + \omega(x)$, then $f(x)g(x) = AB + A\omega(x) + Bo(x) + \omega(x)o(x)$, where $A\omega(x)$, Bo(x) and $\omega(x)o(x)$ all are infinitesimally small at x_0 by Lemma 3.1.2, and their sum is infinitesimally small by Lemma 3.1.1. \Box

DEFINITION. A function f is called continuous at x_0 , if $\lim_{x\to x_0} f(x) = f(x_0)$.

A function is said to be continuous (without mentioning a point), if it is continuous at all points under consideration.

The following lemma gives a lot of examples of continuous functions.

LEMMA 3.1.5. If f is a monotone function on [a, b] such that f[a, b] = [f(a), f(b)] then f is continuous.

PROOF. Suppose f is nondecreasing. Suppose a positive ε is given. For a given point x denote by $x^{\varepsilon} = f^{-1}(f(x) + \varepsilon)$ and $x_{\varepsilon} = f^{-1}(f(x) - \varepsilon)$. Then $[x_{\varepsilon}, x^{\varepsilon}]$ contains a neighborhood of x, and for any $y \in [x_{\varepsilon}, x^{\varepsilon}]$ one has $f(x) + \varepsilon = f(x_{\varepsilon}) \leq f(y) \leq f(x^{\varepsilon}) = f(x) + \varepsilon$. Hence the inequality $|f(y) - f(x)| < \varepsilon$ holds locally at x for any ε .

The following theorem immediately follows from Corollary 3.1.3 and Lemma 3.1.4.

THEOREM 3.1.6. If the functions f and g are continuous at x_0 , then f + g and fg are continuous at x_0 .

The following property of continuous functions is very important.

THEOREM 3.1.7. If f is continuous at x_0 and g is continuous at $f(x_0)$, then g(f(x)) is continuous at x_0 .

PROOF. Given $\varepsilon > 0$, we have to find a neighborhood U of x_0 , such that $|g(f(x)) - g(f(x_0))| < \varepsilon$ for $x \in U$. As $\lim_{y \to f(x_0)} g(y) = g(f(x_0))$, there exists a neighborhood V of $f(x_0)$ such that $|g(y) - g(y_0)| < \varepsilon$ for $y \in V$. Thus it is sufficient to find a U such that $f(U) \subset V$. And we can do this. Indeed, by the definition of neighborhood there is $\delta > 0$ such that V contains $V_{\delta} = \{y \mid |y - f(x_0)| < \delta\}$. Since $\lim_{x \to x_0} f(x) = f(x_0)$, there is a neighborhood U of x_0 such that $|f(x) - f(x_0)| < \delta$ for all $x \in U$. Then $f(U) \subset V_{\delta} \subset V$.

DEFINITION. A function f is called differentiable at a point x_0 if the difference quotient $\frac{f(x)-(f_0)}{x-x_0}$ has a limit as x tends to x_0 . This limit is called the derivative of the function F at the point x_0 , and denoted $f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$.

Immediately from the definition one evaluates the derivative of linear function

$$(3.1.2) (ax+b)' = a$$

The following lemma is a direct consequence of Lemma 3.1.3.

LEMMA 3.1.8. If f and g are differentiable at x_0 , then f + g is differentiable at x_0 and $(f + g)'(x_0) = f'(x_0) + g'(x_0)$.

Linearization. Let f be differentiable at x_0 . Denote by o(x) the difference $\frac{f(x)-f(x_0)}{x-x_0} - f'(x_0)$. Then

(3.1.3)
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x)(x - x_0)$$

where o(x) is infinitesimally small at x_0 . We will call such a representation a *linearization* of f(x).

LEMMA 3.1.9. If f is differentiable at x_0 , then it is continuous at x_0 .

PROOF. All summands but $f(x_0)$ on the right-hand side of (3.1.3) are infinitesimally small at x_0 ; hence $\lim_{x\to x_0} f(x) = f(x_0)$.

LEMMA 3.1.10 (on uniqueness of linearization). If $f(x) = a + b(x - x_0) + o(x)(x - x_0)$, where $\lim_{x \to x_0} o(x) = 0$, then f is differentiable at x_0 and $a = f(x_0)$, $b = f'(x_0)$.

PROOF. The difference $f(x) - f(x_0)$ is infinitesimally small at x_0 because f is continuous at x_0 and the difference $f(x) - a = b(x - x_0) + o(x)(x - x_0)$ is infinitesimally small by the definition of linearization. Hence $f(x_0) - a$ is infinitesimally small. But it is constant, hence $f(x_0) - a = 0$. Thus we established $a = f(x_0)$.

The difference $\frac{f(x)-a}{x-x_0} - b = o(x)$ is infinitesimally small as well as $\frac{f(x)-f(x_0)}{x-x_0} - f'(x_0)$. But $\frac{f(x)-f(x_0)}{x-x_0} = \frac{f(x)-a}{x-x_0}$. Therefore $b - f'(x_0)$ is infinitesimally small. That is $b = f'(x_0)$.

LEMMA 3.1.11. If f and g are differentiable at x_0 , then fg is differentiable at x_0 and $(fg)'(x_0) = f'(x_0)g(x_0) + g'(x_0)f(x_0)$.

PROOF. Consider lineariations $f(x_0) + f'(x_0)(x - x_0) + o(x)(x - x_0)$ and $g(x_0) + g'(x_0)(x - x_0) + \omega(x)(x - x_0)$. Their product is $f(x_0)g(x_0) + (f'(x_0)g(x_0) + f(x_0)g'(x_0))(x - x_0) + (f(x)\omega(x) + f(x_0)o(x))(x - x_0)$. This is the linearization of f(x)g(x) at x_0 , because $f\omega$ and go are infinitesimally small at x_0 .

THEOREM 3.1.12. If f is differentiable at x_0 , and g is differentiable at $f(x_0)$ then g(f(x)) is differentiable at x_0 and $(g(f(x_0)))' = g'(f(x_0))f'(x_0)$.

PROOF. Denote $f(x_0)$ by y_0 and substitute into the linearization $g(y) = g(y_0) + g'(y_0)(y - y_0) + o(y)(y - y_0)$ another linearization $y = f(x_0) + f'(x_0)(x - x_0) + \omega(x)(x - x_0)$. Since $y - y_0 = f'(x_0)(x - x_0) + \omega(x)(x - x_0)$, we get $g(y) = g(y_0) + g'(y_0)f'(x_0)(x - x_0) + g'(y_0)(x - x_0)\omega(x) + o(f(x))(x - x_0)$. Due to Lemma 3.1.10, it is sufficient to prove that $g'(y_0)\omega(x) + o(f(x))$ is infinitesimally small at x_0 . The first summand is obviously infinitesimally small. To prove that the second one also is infinitesimally small, we remark that $o(f(x_0) = 0$ and o(y) is continuous at $f(x_0)$ and that f(x) is continuous at x_0 due to Lemma 3.1.9. Hence by Theorem 3.1.6 the composition is continuous at x_0 and infinitesimally small.

THEOREM 3.1.13. Let f be a virtually monotone function on [a, b]. Then $F(x) = \int_a^x f(t) dt$ is virtually monotone and continuous on [a, b]. It is differentiable at any point x_0 where f is continuous, and $F'(x_0) = f(x_0)$.

PROOF. If f has a constant sign, then F is monotone. So, if $f = f_1 + f_2$ is a monotonization of f, then $\int_a^x f_1(x) dx + \int_a^x f_1(x) dx$ is a monotonization of F(x). This proves that F(x) is virtually monotone.

To prove continuity of F(x) at x_0 , fix a constant C which bounds f in some neighborhood U of x_0 . Then for $x \in U$ one proves that $|F(x) - F(x_0)|$ is infinites-imally small via the inequalities $|F(x) - F(x_0)| = |\int_{x_0}^x f(x) dx| \le |\int_{x_0}^x C dx| =$ $C|x-x_0|.$

Now suppose f is continuous at x_0 . Then $o(x) = f(x_0) - f(x)$ is infinitesimally small at x_0 . Therefore $\lim_{x \to x_0} \frac{1}{x - x_0} \int_{x_0}^x o(x) \, dx = 0$. Indeed for any $\varepsilon > 0$ the inequality $|o(x)| \leq \varepsilon$ holds over $[x_{\varepsilon}, x_0]$ for some x_{ε} . Hence $|\int_{x_0}^x o(x) dx| \leq \varepsilon$ $\begin{aligned} |\int_{x_0}^x \varepsilon \, dx| &= \varepsilon |x - x_0| \text{ for any } x \in [x_0, x_\varepsilon]. \\ \text{Then } F(x) &= F(x_0) + f(x_0)(x - x_0) + (\frac{1}{x - x_0} \int_{x_0}^x o(t) \, dt)(x - x_0) \text{ is a linearization} \end{aligned}$

of F(x) at x_0 .

COROLLARY 3.1.14. The functions \ln , sin, cos are differentiable and $\ln'(x) = \frac{1}{x}$, $\sin' = \cos, \, \cos' = -\sin.$

PROOF. Since $d \sin x = \cos x \, dx$, $d \cos x = -\sin x \, dx$, due to Theorem 3.1.13 both $\sin x$ and $\cos x$ are continuous, and, as they are continuous, the result follows from Theorem 3.1.13. And $\ln' x = \frac{1}{x}$, by Theorem 3.1.13, follows from the continuity of $\frac{1}{\pi}$. The continuity follows from Lemma 3.1.5.

Since $\sin'(0) = \cos 0 = 1$ and $\sin 0 = 0$, the linearization of $\sin x$ at 0 is x + xo(x). This implies the following very important equality

(3.1.4)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

LEMMA 3.1.15. If f'(x) > 0 for all $x \in [a, b]$, then f(b) > f(a)

PROOF. Suppose $f(a) \geq f(b)$. We construct a sequence of intervals $[a, b] \supset$ $[a_1, b_1] \supset [a_2, b_2] \supset \ldots$ such that their lengths tend to 0 and $f(a_k) \geq f(b_k)$. All steps of construction are the same. The general step is: let m be the middle point of $[a_k, b_k]$. If $f(m) \leq f(a_k)$ we set $[a_{k+1}, b_{k+1}] = [a_k, m]$, otherwise $f(m) > f(a_k) \geq f(a_k)$ $f(b_k)$ and we set $[a_{k+1}, b_{k+1}] = [m, b_k]$.

Now consider a point x belonging to all $[a_k, b_k]$. Let f(y) = f(x) + (f'(x) + f'(x))o(x)(y-x) be the linearization of f at x. Let U be neighborhood where |o(x)| < 0f'(x). Then $\operatorname{sgn}(f(y) - f(x)) = \operatorname{sgn}(y - x)$ for all $y \in U$. However for some n we get $[a_n, b_n] \subset U$. If $a_n \leq x < b_n$ we get $f(a_n) \leq f(x) < f(b_n)$ else $a_n < x$ and $f(a_n) < f(x) \leq f(b_n)$. In the both cases we get $f(a_n) < f(b_n)$. This is a contradiction with our construction of the sequence of intervals.

THEOREM 3.1.16. If f'(x) = 0 for all $x \in [a, b]$, then f(x) is constant.

PROOF. Set $k = \frac{f(b)-f(a)}{b-a}$. If k < 0 then g(x) = f(x) - kx/2 has derivative g'(x) = f'(x) - k/2 > 0 for all x. Hence by Lemma 3.1.15 g(b) > g(a) and further f(b) - f(a) > k(b-a)/2. This contradicts the definition of k. If k > 0 then one gets the same contradiction considering g(x) = -f(x) + kx/2.

THEOREM 3.1.17 (Newton-Leibniz). If f'(x) is a continuous virtually monotone function on an interval [a, b], then $\int_a^b f'(x) dx = f(b) - f(a)$.

PROOF. Due to Theorem 3.1.13, the derivative of the difference $\int_a^x f'(t) dt - \int_a^x f'(t) dt$ f(x) is zero. Hence the difference is constant by Theorem 3.1.16. Substituting x = a we find the constant which is f(a). Consequently, $\int_a^x f'(t) dt - f(x) = f(a)$ for all x. In particular, for x = b we get the Newton-Leibniz formula.

Problems.

- 1. Evaluate (1/x)', \sqrt{x}' , $(\sqrt{\sin x^2})'$.
- **2.** Evaluate $\exp' x$.
- **3.** Evaluate $\operatorname{arctg}' x$, $\tan' x$.
- 4. Evaluate |x|', Re z'.
- 5. Prove: $f'(x) \equiv 1$ if and only if f(x) = x + const.
- **6.** Evaluate $\left(\int_x^{x^2} \frac{\sin t}{t} dt\right)'$ as a function of x.

- 7. Evaluate $\sqrt{1-x^2}'$. 8. Evaluate $(\int_0^1 \frac{\sin kt}{t} dt)'$ as a function of k. 9. Prove: If f is continuous at a and $\lim_{n\to\infty} x_n = a$ then $\lim_{n\to\infty} f(x_n) = f(a)$.
- **10.** Evaluate $\left(\int_0^y [x] dx\right)'_y$.
- 11. Evaluate $\arcsin' x$.
- **12.** Evaluate $\int \frac{dx}{2+3x^2}$.
- 13. Prove. If f'(x) < 0 for all x < m and f'(x) > 0 for all x > m then f'(m) = 0.
- 14. Prove: If f'(x) is bounded on [a, b] then f is virtually monotone on [a, b].

68