3.1. Newton-Leibniz Formula

On the contents of the lecture. In this lecture appears the celebrated
Newton-Leibniz formula — the main tool in the evaluation of integrals. It is accom-
panied with such fundamental concepts as the derivative, the limit of a function
and continuity.

Motivation. Consider the following problem: for a given function F' find a
function f such that dF(z) = f(x) dz, over [a, b], that is, fcd ft)ydt = F(d) — F(c)
for any subinterval [c, d] of [a, b].

Suppose that such an f exists. Since the value of f at a single point does not
affects the integral, we cannot say anything about the value of f at any given point.
But if f is continuous at a point g, its value is uniquely defined by F'.

To be precise, the difference quotient %ﬁfzo) tends to f(xo) as x tends to
x9. Indeed, F(z) = F(x0) +f;0 f(t) dt. Furthermore, f;o f)dt = f(xo)(x — o) +
f;o(f(t) — f(xo)) dt. Also, |f;§0 (f(t) = f(wo) dt| < varg[zg, z]|z — xo|. Consequently
F(z) — F(xo)

1.1
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— f(zo)| < vargz, zo).
However, vary[z, o] can be made arbitrarily small by choosing « sufficiently close
to xg, since vary g = 0.

Infinitesimally small functions. A set is called a neighborhood of a point x
if it contains all points sufficiently close to z, that is, all points y such that |y — |
is less then a positive number ¢.

We will say that a function f is locally bounded (above) by a constant C at a
point z, if f(z) < C for all y sufficiently close to z.

A function o(z) is called infinitesimally small at xg, if |o(z)| is locally bounded
at xo by any € > 0.

LEMMA 3.1.1. If the functions o and w are infinitesimally small at xg then otw
are infinitesimally small at xg.

PROOF. Let ¢ > 0. Let O; be a neighborhood of zy where |o(z)| < £/2,
and let O, be a neighborhood of zy where |w(z)| < €/2. Then O; N O3 is a
neighborhood where both inequalities hold. Hence for all z € O; N O2 one has
lo(z) fw(z)| <e/2+¢e/2=¢. O

LeEmMA 3.1.2. If o(z) is infinitesimally small at xo and f(x) is locally bounded
at xo, then f(x)o(z) is infinitesimally small at z.

ProoOF. The neighborhood where |f(z)o(z)| is bounded by a given € > 0 can
be constructed as the intersection of a neighborhood U, where |f(z)| is bounded
by a constant C, and a neighborhood V', where |o(z)| is bounded by ¢/C. O

DEFINITION. One says that a function f(z) tends to A as x tends to o and
writes limy ., f(z) = A, if f(x) = A+ o(x) on the complement of xo, where o(x)
is infinitesimally small at xg.

COROLLARY 3.1.3. If both the limits lim,_,,, f(z) and lim,_,,, g(x) ezist, then
the limit lim, ., (f(x) + g(z)) also exists and lim,_, ., (f(z) + g(z)) = lim, ., f(z)+
lim, ., g(z).
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Proor. This follows immediately from Lemma 3.1.1. d

LeMMA 3.1.4. If the limits lim,_,,, f(x) and limg_,,, g(z) exist, then also
lim, ., f(z)g(z) ezxists and lim,_, ., f(z)g(z) = lim, ., f(z)lim,_., g(z).

Proor. If f(z) = A+o(z) and g(z) = B4+w(z), then f(z)g(z) = AB+Aw(z)+
Bo(x) + w(z)o(x), where Aw(z), Bo(x) and w(z)o(z) all are infinitesimally small
at zo by Lemma 3.1.2; and their sum is infinitesimally small by Lemma 3.1.1. O

DEFINITION. A function f is called continuous at xg, if lim,_,,, f(z) = f(xo).

A function is said to be continuous (without mentioning a point), if it is con-
tinuous at all points under consideration.
The following lemma gives a lot of examples of continuous functions.

LeEmMA 3.1.5. If f is a monotone function on [a,b] such that fla,b] = [f(a),
f(b)] then f is continuous.

PROOF. Suppose f is nondecreasing. Suppose a positive € is given. For a
given point & denote by z° = f~!(f(x) +¢) and z. = f(f(x) —¢). Then [z.,z°]
contains a neighborhood of z, and for any y € [z., 2] one has f(z) +& = f(z:) <
f(y) < f(2f) = f(x) + e. Hence the inequality |f(y) — f(z)| < € holds locally at =
for any e. a

The following theorem immediately follows from Corollary 3.1.3 and Lemma
3.1.4.

THEOREM 3.1.6. If the functions f and g are continuous at xq, then f+ g and
fg are continuous at xg.

The following property of continuous functions is very important.

THEOREM 3.1.7. If f is continuous at Ty and g is continuous at f(xo), then
g(f(z)) is continuous at x.

PROOF. Given € > 0, we have to find a neighborhood U of xy, such that
lg(f(z)) — g(f(zo0))| < e forx € U. Aslim,_, ¢, 9(y) = 9(f(20)), there exists a
neighborhood V' of f(x) such that |g(y) — g(yo)| < € for y € V. Thus it is sufficient
to find a U such that f(U) C V. And we can do this. Indeed, by the definition of
neighborhood there is § > 0 such that V' contains Vs = {y | |y — f(x0)| < 6}. Since
limg s, f(z) = f(z0), there is a neighborhood U of zg such that |f(x) — f(zo)] < &

for all z € U. Then f(U) C Vs C V. O
DEFINITION. A function f is called differentiable at a point xo if the difference
quotient @)= pas ¢ limit as = tends to xo. This limit is called the derivative

r—Io

of the function F at the point xo, and denoted f'(zo) = lim,_,, -

Immediately from the definition one evaluates the derivative of linear function
(3.1.2) (az+b) =a
The following lemma is a direct consequence of Lemma 3.1.3.

LEMMA 3.1.8. If f and g are differentiable at xq, then f + g is differentiable
at zo and (f + g)'(zo) = f'(z0) + ¢'(20).
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Linearization. Let f be differentiable at xg. Denote by o(z) the difference
fl@)—f(xo) _ f'(x0). Then

(3.1.3) F(@) = (o) + '(x0) (@ - 29) + ole)(x — x0),

where o(x) is infinitesimally small at zo. We will call such a representation a
linearization of f(x).

LEMMA 3.1.9. If f is differentiable at xq, then it is continuous at .

Proor. All summands but f(zo) on the right-hand side of (3.1.3) are infinites-
imally small at xo; hence lim,_,,, f(z) = f(zo). O

LEMMA 3.1.10 (on uniqueness of linearization). If f(z) = a + b(z — zo) +
o(z)(z — x), where lim,_,,, o(x) =0, then f is differentiable at o and a = f(xo),

b = f’(:l?o).

PRrOOF. The difference f(x) — f(xo) is infinitesimally small at z¢ because f is
continuous at zo and the difference f(z) —a = b(z — zo) + o(z)(z — x¢) is infinites-
imally small by the definition of linearization. Hence f(z) — a is infinitesimally
small. But it is constant, hence f(z9) —a = 0. Thus we established a = f(zo).

The difference % — b = o(x) is infinitesimally small as well as %ﬁéwo) -
f'(zo). But f(?:gg“) = féw_);)a. Therefore b— f'(xp) is infinitesimally small. That
is b= f'(z0). O

LEMMA 3.1.11. If f and g are differentiable at xo, then fg is differentiable at
zo and (fg)'(zo0) = f'(z0)g(z0) + g'(20) f(20).

PRrOOF. Consider lineariations f(zo)+ f'(zo)(x —x0)+o0(z)(x—x¢) and g(zo)+
9'(xo)(x — 20) + w(z)(z — o). Their product is f(zo)g(zo) + (f'(z0)g(zo) +
f(@0)g' (z0))(x — o) + (f(z)w(z) + f(z0)o(z))(x — o). This is the linearization of
f(x)g(z) at zo, because fw and go are infinitesimally small at xq. O

THEOREM 3.1.12. If f is differentiable at xo, and g is differentiable at f(xo)
then g(f(x)) is differentiable at o and (g(f(z0))) = g'(f(z0))f'(x0).

PROOF. Denote f(zo) by o and substitute into the linearization g(y) = g(yo) +
9'(y0)(y — yo) + o(y)(y — yo) another linearization y = f(zo) + f'(z0)(z — o) +
w(@)(z — xo). Since y —yo = f'(20)(x — @0) + w(@)(z — o), we get g(y) = g(yo) +
9 (o) f'(zo)(x — z0) + g'(y0) (z — zo)w(z) + o f(x))(x — o). Due to Lemma 3.1.10,
it is sufficient to prove that g'(yo)w(z) + o(f(z)) is infinitesimally small at zo. The
first summand is obviously infinitesimally small. To prove that the second one also
is infinitesimally small, we remark that o(f(zo) = 0 and o(y) is continuous at f (o)
and that f(z) is continuous at xy due to Lemma 3.1.9. Hence by Theorem 3.1.6
the composition is continuous at zo and infinitesimally small. d

THEOREM 3.1.13. Let f be a wvirtually monotone function on [a,b]. Then
F(z) = [T f(t)dt is virtually monotone and continuous on [a,b]. It is differen-
tiable at any point xg where f is continuous, and F'(xo) = f(xo).

PRrROOF. If f has a constant sign, then F' is monotone. So, if f = fi + f2 is a
monotonization of f, then [ fi(x)dx + [ fi(x)dx is a monotonization of F(x).
This proves that F'(z) is virtually monotone.
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To prove continuity of F(x) at xo, fix a constant C' which bounds f in some
neighborhood U of xy. Then for € U one proves that |F(z) — F(zp)| is infinites-
imally small via the inequalities |F(z) — F(xo)| = |f;0 flz)dz| < |f;0 Cdzx| =
Clz — zo-

Now suppose [ is continuous at xg. Then o(z) = f(xo) — f(x) is infinitesi-
mally small at xg. Therefore lim, 4, wi—lwo f;o o(x)dx = 0. Indeed for any € > 0
the inequality |o(z)| < e holds over [z.,zo] for some x.. Hence |f;0 o(z)dz| <
| [ edx| = elz — xo| for any z € [zo, z.].

Then F(z) = F(zo)+ f(z0)(x —0) + (=== [ o(t) dt)(z — ) is a linearization

Tr—T0 o

of F(z) at zo. O

COROLLARY 3.1.14. The functions In, sin, cos are differentiable and In'(z) = -
sin’ = cos, cos’ = — sin.

PRrROOF. Since dsinz = cosx dx, dcosz = —sinx dx, due to Theorem 3.1.13
both sinz and cos x are continuous, and, as they are continuous, the result follows
from Theorem 3.1.13. AndIn'z = %, by Theorem 3.1.13, follows from the continuity
of % The continuity follows from Lemma 3.1.5. O

Since sin’(0) = cos 0 = 1 and sin 0 = 0, the linearization of sin z at 0 is z+zo(z).
This implies the following very important equality

sin x
=1.

(3.1.4) lim

z—=0 X

LemMA 3.1.15. If f'(z) > 0 for all x € [a,b], then f(b) > f(a)|.

PROOF. Suppose f(a) > f(b). We construct a sequence of intervals [a,b] D
[a1,b1] D [a2,b2] D ... such that their lengths tend to 0 and f(ax) > f(by). All
steps of construction are the same. The general step is: let m be the middle point
of [ag, bg]. If f(m) < f(ax) we set [ag+1,bk+1] = [ak, m], otherwise f(m) > f(ar) >
f(by) and we set [agt1,br+1] = [m, b

Now consider a point z belonging to all [ag,bx]. Let f(y) = f(z) + (f'(z) +
o(z))(y — z) be the linearization of f at x. Let U be neighborhood where |o(z)| <
f'(z). Then sgn(f(y) — f(x)) = sgn(y — x) for all y € U. However for some n
we get [an,by] C U. If a, < z < b, we get fa,) < f(x) < f(by) else a, <
and f(a,) < f(z) < f(bn). In the both cases we get f(a,) < f(b,). This is a
contradiction with our construction of the sequence of intervals. d

THEOREM 3.1.16. If f'(x) =0 for all x € [a,b], then f(z) is constant.

Proor. Set k = LU=I@ 1f | < 0 then g(x) = f(z) — kx/2 has derivative
g'(z) = f'(x) — k/2 > 0 for all . Hence by Lemma 3.1.15 g(b) > g(a) and further
f(b) — f(a) > k(b — a)/2. This contradicts the definition of k. If k¥ > 0 then one
gets the same contradiction considering g(z) = — f(z) + kx /2. O

THEOREM 3.1.17 (Newton-Leibniz). If f'(x) is a continuous virtually monotone
function on an interval [a,b], then f; f'(x)dx = f(b) — f(a).

PROOF. Due to Theorem 3.1.13, the derivative of the difference [ f'(t) dt —
f(z) is zero. Hence the difference is constant by Theorem 3.1.16. Substituting
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& = a we find the constant which is f(a). Consequently, [ f'(t)dt — f(z) = f(a)

for all z. In particular, for x = b we get the Newton-Leibniz formula. a
Problems.
1. Evaluate (1/z)', /&', (Vsinz2)'.
2. Evaluate exp’ z.
3. Evaluate arctg’ z, tan’ .
4. Evaluate |z|', Rez’.
5. Prove: f'(xz) =1 if and only if f(z) = = + const.
2 . !
6. Evaluate ( Jr st dt) as a function of z.
7. Evaluate V1 — 22 .
8. Evaluate ( fol sinbt gt)' as a function of k.
9. Prove: If f is continuous at a and lim, oo T, = a then lim, o f(z,) = f(a).
Yy !
10. Evaluate ([ [«] d:z:)y.
11. Evaluate arcsin’ z.
12. Evaluate [ 4.
13. Prove: If f'(z) < 0 for all z < m and f'(z) > 0 for all x > m then f'(m) = 0.

[y
'S

. Prove: If f'(x) is bounded on [a,b] then f is virtually monotone on [a, b].



