
3.1. Newton-Leibniz FormulaOn the 
ontents of the le
ture. In this le
ture appears the 
elebratedNewton-Leibniz formula | the main tool in the evaluation of integrals. It is a

om-panied with su
h fundamental 
on
epts as the derivative, the limit of a fun
tionand 
ontinuity.Motivation. Consider the following problem: for a given fun
tion F �nd afun
tion f su
h that dF (x) = f(x) dx, over [a; b℄, that is, R d
 f(t) dt = F (d)� F (
)for any subinterval [
; d℄ of [a; b℄.Suppose that su
h an f exists. Sin
e the value of f at a single point does nota�e
ts the integral, we 
annot say anything about the value of f at any given point.But if f is 
ontinuous at a point x0, its value is uniquely de�ned by F .To be pre
ise, the di�eren
e quotient F (x)�F (x0)x�x0 tends to f(x0) as x tends tox0. Indeed, F (x) = F (x0) + R xx0 f(t) dt. Furthermore, R xx0 f(t) dt = f(x0)(x�x0) +R xx0(f(t)� f(x0)) dt. Also, j R xx0(f(t)� f(x0) dtj � varf [x0; x℄jx�x0j. Consequently(3.1.1) ����F (x) � F (x0)x� x0 � f(x0)���� � varf [x; x0℄:However, varf [x; x0℄ 
an be made arbitrarily small by 
hoosing x suÆ
iently 
loseto x0, sin
e varf x0 = 0.In�nitesimally small fun
tions. A set is 
alled a neighborhood of a point xif it 
ontains all points suÆ
iently 
lose to x, that is, all points y su
h that jy � xjis less then a positive number ".We will say that a fun
tion f is lo
ally bounded (above) by a 
onstant C at apoint x, if f(x) � C for all y suÆ
iently 
lose to x.A fun
tion o(x) is 
alled in�nitesimally small at x0, if jo(x)j is lo
ally boundedat x0 by any " > 0.Lemma 3.1.1. If the fun
tions o and ! are in�nitesimally small at x0 then o�!are in�nitesimally small at x0.Proof. Let " > 0. Let O1 be a neighborhood of x0 where jo(x)j < "=2,and let O2 be a neighborhood of x0 where j!(x)j < "=2. Then O1 \ O2 is aneighborhood where both inequalities hold. Hen
e for all x 2 O1 \ O2 one hasjo(x) � !(x)j < "=2 + "=2 = ". �Lemma 3.1.2. If o(x) is in�nitesimally small at x0 and f(x) is lo
ally boundedat x0, then f(x)o(x) is in�nitesimally small at x0.Proof. The neighborhood where jf(x)o(x)j is bounded by a given " > 0 
anbe 
onstru
ted as the interse
tion of a neighborhood U , where jf(x)j is boundedby a 
onstant C, and a neighborhood V , where jo(x)j is bounded by "=C. �Definition. One says that a fun
tion f(x) tends to A as x tends to x0 andwrites limx!x0 f(x) = A, if f(x) = A+ o(x) on the 
omplement of x0, where o(x)is in�nitesimally small at x0.Corollary 3.1.3. If both the limits limx!x0 f(x) and limx!x0 g(x) exist, thenthe limit limx!x0 (f(x) + g(x)) also exists and limx!x0 (f(x) + g(x)) = limx!x0 f(x)+limx!x0 g(x). 64



3.1 newton-leibniz formula 65Proof. This follows immediately from Lemma 3.1.1. �Lemma 3.1.4. If the limits limx!x0 f(x) and limx!x0 g(x) exist, then alsolimx!x0 f(x)g(x) exists and limx!x0 f(x)g(x) = limx!x0 f(x) limx!x0 g(x).Proof. If f(x) = A+o(x) and g(x) = B+!(x), then f(x)g(x) = AB+A!(x)+Bo(x) + !(x)o(x), where A!(x), Bo(x) and !(x)o(x) all are in�nitesimally smallat x0 by Lemma 3.1.2, and their sum is in�nitesimally small by Lemma 3.1.1. �Definition. A fun
tion f is 
alled 
ontinuous at x0, if limx!x0 f(x) = f(x0).A fun
tion is said to be 
ontinuous (without mentioning a point), if it is 
on-tinuous at all points under 
onsideration.The following lemma gives a lot of examples of 
ontinuous fun
tions.Lemma 3.1.5. If f is a monotone fun
tion on [a; b℄ su
h that f [a; b℄ = [f(a);f(b)℄ then f is 
ontinuous.Proof. Suppose f is nonde
reasing. Suppose a positive " is given. For agiven point x denote by x" = f�1(f(x) + ") and x" = f�1(f(x)� "). Then [x"; x"℄
ontains a neighborhood of x, and for any y 2 [x"; x"℄ one has f(x) + " = f(x") �f(y) � f(x") = f(x) + ". Hen
e the inequality jf(y)� f(x)j < " holds lo
ally at xfor any ". �The following theorem immediately follows from Corollary 3.1.3 and Lemma3.1.4.Theorem 3.1.6. If the fun
tions f and g are 
ontinuous at x0, then f + g andfg are 
ontinuous at x0.The following property of 
ontinuous fun
tions is very important.Theorem 3.1.7. If f is 
ontinuous at x0 and g is 
ontinuous at f(x0), theng(f(x)) is 
ontinuous at x0.Proof. Given " > 0, we have to �nd a neighborhood U of x0, su
h thatjg(f(x)) � g(f(x0))j < " for x 2 U . As limy!f(x0) g(y) = g(f(x0)), there exists aneighborhood V of f(x0) su
h that jg(y)�g(y0)j < " for y 2 V . Thus it is suÆ
ientto �nd a U su
h that f(U) � V . And we 
an do this. Indeed, by the de�nition ofneighborhood there is Æ > 0 su
h that V 
ontains VÆ = fy j jy� f(x0)j < Æg. Sin
elimx!x0 f(x) = f(x0), there is a neighborhood U of x0 su
h that jf(x)�f(x0)j < Æfor all x 2 U . Then f(U) � VÆ � V . �Definition. A fun
tion f is 
alled di�erentiable at a point x0 if the di�eren
equotient f(x)�(f0)x�x0 has a limit as x tends to x0. This limit is 
alled the derivativeof the fun
tion F at the point x0, and denoted f 0(x0) = limx!x0 f(x)�f(x0)x�x0 .Immediately from the de�nition one evaluates the derivative of linear fun
tion(3.1.2) (ax+ b)0 = aThe following lemma is a dire
t 
onsequen
e of Lemma 3.1.3.Lemma 3.1.8. If f and g are di�erentiable at x0, then f + g is di�erentiableat x0 and (f + g)0(x0) = f 0(x0) + g0(x0).



66 3.1 newton-leibniz formulaLinearization. Let f be di�erentiable at x0. Denote by o(x) the di�eren
ef(x)�f(x0)x�x0 � f 0(x0). Then(3.1.3) f(x) = f(x0) + f 0(x0)(x� x0) + o(x)(x � x0);where o(x) is in�nitesimally small at x0. We will 
all su
h a representation alinearization of f(x).Lemma 3.1.9. If f is di�erentiable at x0, then it is 
ontinuous at x0.Proof. All summands but f(x0) on the right-hand side of (3.1.3) are in�nites-imally small at x0; hen
e limx!x0 f(x) = f(x0). �Lemma 3.1.10 (on uniqueness of linearization). If f(x) = a + b(x � x0) +o(x)(x� x0), where limx!x0 o(x) = 0, then f is di�erentiable at x0 and a = f(x0),b = f 0(x0).Proof. The di�eren
e f(x)� f(x0) is in�nitesimally small at x0 be
ause f is
ontinuous at x0 and the di�eren
e f(x)� a = b(x�x0) + o(x)(x�x0) is in�nites-imally small by the de�nition of linearization. Hen
e f(x0) � a is in�nitesimallysmall. But it is 
onstant, hen
e f(x0)� a = 0. Thus we established a = f(x0).The di�eren
e f(x)�ax�x0 � b = o(x) is in�nitesimally small as well as f(x)�f(x0)x�x0 �f 0(x0). But f(x)�f(x0)x�x0 = f(x)�ax�x0 . Therefore b�f 0(x0) is in�nitesimally small. Thatis b = f 0(x0). �Lemma 3.1.11. If f and g are di�erentiable at x0, then fg is di�erentiable atx0 and (fg)0(x0) = f 0(x0)g(x0) + g0(x0)f(x0).Proof. Consider lineariations f(x0)+f 0(x0)(x�x0)+o(x)(x�x0) and g(x0)+g0(x0)(x � x0) + !(x)(x � x0). Their produ
t is f(x0)g(x0) + (f 0(x0)g(x0) +f(x0)g0(x0))(x� x0) + (f(x)!(x) + f(x0)o(x))(x� x0). This is the linearization off(x)g(x) at x0, be
ause f! and go are in�nitesimally small at x0. �Theorem 3.1.12. If f is di�erentiable at x0, and g is di�erentiable at f(x0)then g(f(x)) is di�erentiable at x0 and (g(f(x0)))0 = g0(f(x0))f 0(x0).Proof. Denote f(x0) by y0 and substitute into the linearization g(y) = g(y0)+g0(y0)(y � y0) + o(y)(y � y0) another linearization y = f(x0) + f 0(x0)(x � x0) +!(x)(x� x0). Sin
e y � y0 = f 0(x0)(x� x0) + !(x)(x� x0), we get g(y) = g(y0) +g0(y0)f 0(x0)(x�x0) + g0(y0)(x�x0)!(x) + o(f(x))(x�x0). Due to Lemma 3.1.10,it is suÆ
ient to prove that g0(y0)!(x) + o(f(x)) is in�nitesimally small at x0. The�rst summand is obviously in�nitesimally small. To prove that the se
ond one alsois in�nitesimally small, we remark that o(f(x0) = 0 and o(y) is 
ontinuous at f(x0)and that f(x) is 
ontinuous at x0 due to Lemma 3.1.9. Hen
e by Theorem 3.1.6the 
omposition is 
ontinuous at x0 and in�nitesimally small. �Theorem 3.1.13. Let f be a virtually monotone fun
tion on [a; b℄. ThenF (x) = R xa f(t) dt is virtually monotone and 
ontinuous on [a; b℄. It is di�eren-tiable at any point x0 where f is 
ontinuous, and F 0(x0) = f(x0).Proof. If f has a 
onstant sign, then F is monotone. So, if f = f1 + f2 is amonotonization of f , then R xa f1(x) dx + R xa f1(x) dx is a monotonization of F (x).This proves that F (x) is virtually monotone.



3.1 newton-leibniz formula 67To prove 
ontinuity of F (x) at x0, �x a 
onstant C whi
h bounds f in someneighborhood U of x0. Then for x 2 U one proves that jF (x)� F (x0)j is in�nites-imally small via the inequalities jF (x) � F (x0)j = j R xx0 f(x) dxj � j R xx0 C dxj =Cjx� x0j.Now suppose f is 
ontinuous at x0. Then o(x) = f(x0) � f(x) is in�nitesi-mally small at x0. Therefore limx!x0 1x�x0 R xx0 o(x) dx = 0. Indeed for any " > 0the inequality jo(x)j � " holds over [x"; x0℄ for some x". Hen
e j R xx0 o(x) dxj �j R xx0 " dxj = "jx� x0j for any x 2 [x0; x"℄.Then F (x) = F (x0)+f(x0)(x�x0)+( 1x�x0 R xx0 o(t) dt)(x�x0) is a linearizationof F (x) at x0. �Corollary 3.1.14. The fun
tions ln, sin, 
os are di�erentiable and ln0(x) = 1x ,sin0 = 
os, 
os0 = � sin.Proof. Sin
e d sinx = 
osx dx, d 
osx = � sinx dx, due to Theorem 3.1.13both sinx and 
osx are 
ontinuous, and, as they are 
ontinuous, the result followsfrom Theorem 3.1.13. And ln0 x = 1x , by Theorem 3.1.13, follows from the 
ontinuityof 1x . The 
ontinuity follows from Lemma 3.1.5. �Sin
e sin0(0) = 
os 0 = 1 and sin 0 = 0, the linearization of sinx at 0 is x+xo(x).This implies the following very important equality(3.1.4) limx!0 sinxx = 1:Lemma 3.1.15. If f 0(x) > 0 for all x 2 [a; b℄, then f(b) > f(a)j.Proof. Suppose f(a) � f(b). We 
onstru
t a sequen
e of intervals [a; b℄ �[a1; b1℄ � [a2; b2℄ � : : : su
h that their lengths tend to 0 and f(ak) � f(bk). Allsteps of 
onstru
tion are the same. The general step is: let m be the middle pointof [ak; bk℄. If f(m) � f(ak) we set [ak+1; bk+1℄ = [ak;m℄, otherwise f(m) > f(ak) �f(bk) and we set [ak+1; bk+1℄ = [m; bk℄.Now 
onsider a point x belonging to all [ak; bk℄. Let f(y) = f(x) + (f 0(x) +o(x))(y � x) be the linearization of f at x. Let U be neighborhood where jo(x)j <f 0(x). Then sgn(f(y) � f(x)) = sgn(y � x) for all y 2 U . However for some nwe get [an; bn℄ � U . If an � x < bn we get f(an) � f(x) < f(bn) else an < xand f(an) < f(x) � f(bn). In the both 
ases we get f(an) < f(bn). This is a
ontradi
tion with our 
onstru
tion of the sequen
e of intervals. �Theorem 3.1.16. If f 0(x) = 0 for all x 2 [a; b℄, then f(x) is 
onstant.Proof. Set k = f(b)�f(a)b�a . If k < 0 then g(x) = f(x) � kx=2 has derivativeg0(x) = f 0(x) � k=2 > 0 for all x. Hen
e by Lemma 3.1.15 g(b) > g(a) and furtherf(b) � f(a) > k(b � a)=2. This 
ontradi
ts the de�nition of k. If k > 0 then onegets the same 
ontradi
tion 
onsidering g(x) = �f(x) + kx=2. �Theorem 3.1.17 (Newton-Leibniz). If f 0(x) is a 
ontinuous virtually monotonefun
tion on an interval [a; b℄, then R ba f 0(x) dx = f(b)� f(a).Proof. Due to Theorem 3.1.13, the derivative of the di�eren
e R xa f 0(t) dt �f(x) is zero. Hen
e the di�eren
e is 
onstant by Theorem 3.1.16. Substituting



68 3.1 newton-leibniz formulax = a we �nd the 
onstant whi
h is f(a). Consequently, R xa f 0(t) dt � f(x) = f(a)for all x. In parti
ular, for x = b we get the Newton-Leibniz formula. �Problems.1. Evaluate (1=x)0, px0, (psinx2)0.2. Evaluate exp0 x.3. Evaluate ar
tg0 x, tan0 x.4. Evaluate jxj0, Re z0.5. Prove: f 0(x) � 1 if and only if f(x) = x+ 
onst.6. Evaluate �R x2x sin tt dt�0 as a fun
tion of x.7. Evaluate p1� x20.8. Evaluate (R 10 sin ktt dt)0 as a fun
tion of k.9. Prove: If f is 
ontinuous at a and limn!1 xn = a then limn!1 f(xn) = f(a).10. Evaluate �R y0 [x℄ dx�0y.11. Evaluate ar
sin0 x.12. Evaluate R dx2+3x2 .13. Prove: If f 0(x) < 0 for all x < m and f 0(x) > 0 for all x > m then f 0(m) = 0.14. Prove: If f 0(x) is bounded on [a; b℄ then f is virtually monotone on [a; b℄.


