
2.4. Asymptotis of SumsOn the ontents of the leture. We beome at last aquainted with thefundamental onept of a limit. We extend the notion of the sum of a series anddisover that a hange of order of summands an a�et the ultimate sum. Finallywe derive the famous Stirling formula for n!.Asymptoti formulas. The Merator series shows how useful series an befor evaluating integrals. In this leture we will use integrals to evaluate both partialand ultimate sums of series. Rarely one has an expliit formula for partial sumsof a series. There are lots of important ases where suh a formula does not exist.For example, it is known that partial sums of the Euler series annot be expressedas a �nite ombination of elementary funtions. When an expliit formula is notavailable, one tries to �nd a so-alled asymptoti formula. An asymptoti formulafor a partial sum Sn of a series is a formula of the type Sn = f(n)+R(n) where f isa known funtion alled the prinipal part and R(n) is a remainder, whih is small,in some sense, with respet to the prinipal part. Today we will get an asymptotiformula for partial sums of the harmoni series.In�nitesimally small sequenes. The simplest asymptoti formula has aonstant as its prinipal part and an in�nitesimally small remainder. One says thata sequene fzkg is in�nitesimally small and writes lim zk = 0, if zk tends to 0 as ntends to in�nity. That is for any positive " eventually (i.e., beginning with some n)jzkj < ". With Iverson notation, this de�nition an be expressed in the followinglear form:[fzkg1k=1 is in�nitesimally small℄ = 1Ym=1 2 ����� 1Xn=1(�1)n 1Yk=1 [m[k > n℄jzkj < 1℄����� :Three basi properties of in�nitesimally small sequenes immediately followfrom the de�nition:� if lim ak = lim bk = 0 then lim(ak + bk) = 0;� if lim ak = 0 then lim akbk = 0 for any bounded sequene fbkg;� if ak � bk � k for all k and lim ak = lim k = 0, then lim bk = 0.The third property is alled the squeeze rule.Today we need just one property of in�nitesimally small sequenes:Theorem 2.4.1 (Addition theorem). If the sequenes fakg and fbkg are in-�nitesimally small, than their sum and their di�erene are in�nitesimally smalltoo.Proof. Let " be a positive number. Then "=2 also is positive number. Andby de�nition of in�nitesimally small, the inequalities jakj < "=2 and jbkj < "=2 holdeventually beginning with some n. Then for k > n one has jak � bkj � jakj+ jbkj �"=2 + "=2 = ". �Limit of sequene.Definition. A sequene fzkg of (omplex) numbers onverges to a number zif lim z�zk = 0. The number z is alled the limit of the sequene fzkg and denotedby lim zk. 47



48 2.4 asymptotis of sumsAn in�nite sum represents a partiular ase of a limit as demonstrated by thefollowing.Theorem 2.4.2. The partial sums of an absolutely onvergent series P1k=1 zkonverge to its sum.Proof. jPn�1k=1 zk �P1k=1 zkj = jP1k=n zkj � P1k=n jzkj. Sine P1k=1 jzkj >P1k=1 jzkj � ", there is a partial sum suh that Pn�1k=1 jzkj > P1k=1 jzkj � ". Thenfor all m � n one has P1k=m jzkj �P1k=n jzkj < ". �Conditional onvergene. The onept of the limit of sequene leads to anotion of onvergene generalizing absolute onvergene.A seriesP1k=1 ak is alled (onditionally) onvergent if limPnk=1 ak = A+�n,where lim�n = 0. The number A is alled its ultimate sum.The following theorem gives a lot of examples of onditionally onvergent serieswhih are not absolutely onvergent. By [[n℄℄ we denote the even part of the numbern, i.e., [[n℄℄ = 2[n=2℄.Theorem 2.4.3 (Leibniz). For any of positive dereasing in�nitesimally smallsequene fang, the series P1k=1(�1)k+1ak onverges.Proof. Denote the di�erene ak � ak+1 by Æak. The series P1k=1 Æa2k�1 andP1k=1 Æa2k are positive and onvergent, beause their termwise sum isP1k=1 Æak =a1. Hene S =P1k=1 Æa2k�1 � a1. Denote by Sn the partial sumPn�1k=1 (�1)k+1ak.Then S2n = Pn�1k=1 Æa2n�1 = S + �n, where lim�n = 0. Then Sn = S[[n℄℄ +an[n is odd℄+�[[n℄℄. As an[n is odd℄+�[[n℄℄ is in�nitesimally small, this implies thetheorem. �Lemma 2.4.4. Let f be a non-inreasing nonnegative funtion. Then the seriesP1k=1 (f(k)� R k+1k f(x) dx) is positive and onvergent and has sum f � f(1).Proof. Integration of the inequalities f(k) � f(x) � f(k + 1) over [k; k + 1℄gives f(k) � R k+1k f(x) dx � f(n+ 1). This proves the positivity of the series andallows us to majorize it by the telesopi seriesP1k=1(f(k)� f(k+1)) = f(1). �Theorem 2.4.5 (Integral Test on Convergene). If a nonnegative funtionf(x) dereases monotonially on [1;+1), then P1k=1 f(k) onverges if and onlyif R11 f(x) dx <1.Proof. Sine R11 f(x) dx = P1k=1 R k+1k f(x) dx, one has P1k=1 f(k) = f +R11 f(x) dx. �Euler onstant. The sumP1k=1 � 1k � ln(1 + 1k )�, whih is f for f(x) = 1x , isalled Euler's onstant and denoted by . Its �rst ten digits are 0:5772156649 : : : .Harmoni numbers. The sum Pnk=1 1k is denoted Hn and is alled the n-thharmoni number.Theorem 2.4.6. Hn = lnn+  + on where lim on = 0.Proof. Sine ln n = Pn�1k=1 (ln(k + 1) � ln k) = Pn�1k=1 ln(1 + 1k ), one haslnn+Pn�1k=1 � 1k � ln(1 + 1k )� = Hn�1. But Pn�1k=1 � 1k � ln(1 + 1k )� =  + �n, wherelim�n = 0. Therefore Hn = lnn+  + ( 1n + �n). �



2.4 asymptotis of sums 49Alternating harmoni series. The alternating harmoni series P1k=1(�1)k+1kis a onditionally onvergent series due to the Leibniz Theorem 2.4.3, and it is notabsolutely onvergent. To �nd its sum we apply our Theorem 2.4.6 on asymptotisof harmoni numbers.Denote by Sn = Pnk=1 (�1)k+1k the partial sum. Then Sn = H 0n � H 00n , whereH 0n = Pnk=1 1k [k is odd℄ and H 00n = Pnk=1 1k [k is even℄. Sine H 002n = 12Hn andH 02n = H2n �H 002n = H2n � 12Hn one getsS2n = H2n � 12Hn � 12Hn= H2n �Hn= ln 2n+  + o2n � lnn�  � on= ln 2 + (o2n � on):Consequently Sn = ln 2+(o[[n℄℄�o[n=2℄+ (�1)n+1n [n is odd℄). As the sum in braketsis in�nitesimally small, one gets1Xk=1 (�1)k+1k = ln 2:The same arguments for a permutated alternating harmoni series give(2.4.1) 1 + 13 � 12 + 15 + 17 � 14 + 19 + 111 � 16 + � � � = 32 ln 2:Indeed, in this ase its 3n-th partial sum isS3n = H 04n �H 002n= H4n � 12H2n � 12Hn= ln 4n+  + o4n � 12 (ln 2n+  + o2n + lnn+  + on)= ln 4� 12 ln 2 + o0n= 32 ln 2 + o0n;where lim o0n = 0. Sine the di�erene between Sn and S3m where m = [n=3℄ isin�nitesimally small, this proves (2.4.1).Stirling's Formula. We will try to estimate lnn!. Integration of the inequal-ities ln[x℄ � lnx � ln[x+ 1℄ over [1; n℄ gives ln(n� 1)! � R n1 lnx dx � lnn!. Let usestimate the di�erene D between R n1 lnx dx and 12 (lnn! + ln(n� 1)!).D = Z n1 (lnx� 12 (ln[x℄ + ln[x+ 1℄)) dx= n�1Xk=1 Z 10 �ln(k + x)� lnpk(k + 1)� dx:(2.4.2)To prove that all summands on the left-hand side are nonnegative, we apply thefollowing general lemma.Lemma 2.4.7. R 10 f(x) dx = R 10 f(1� x) dx for any funtion.Proof. The reetion of the plane aross the line y = 12 transforms the urvi-linear trapezium of f(x) over [0; 1℄ into urvilinear trapezium of f(1 � x) over[0; 1℄. �



50 2.4 asymptotis of sumsLemma 2.4.8. R 10 ln(k + x) dx � lnpk(k + 1).Proof. Due to Lemma 2.4.7 one hasZ 10 ln(k + x) dx = Z 10 ln(k + 1� x) dx= Z 10 12 (ln(k + x) + ln(k + 1� x)) dx= Z 10 lnp(k + x)(k + 1� x) dx= Z 10 lnpk(k + 1) + x� x2 dx� Z 10 lnpk(k + 1) dx= lnpk(k + 1): �Integration of the inequality ln(1 + x=k) � x=k over [0; 1℄ givesZ 10 ln(1 + x=k) dx � Z 10 xk dx = 12k :This estimate together with the inequality ln(1 + 1=k) � 1=(k + 1) allows us toestimate the summands from the right-hand side of (2.4.2) in the following way:Z 10 ln(k + x)� lnpk(k + 1) dx = Z 10 ln(k + x)� ln k � 12 (ln(k + 1)� ln k) dx= Z 10 ln �1 + xk �� 12 ln �1 + 1k � dx� 12k � 12(k+1) :We see that Dn � P1k=1 12k � 12(k+1) = 12 for all n. Denote by D1 the sum(2.4.2) for in�nite n. Then Rn = D1 �Dn = �2n for some nonnegative � < 1, andwe get D1 � �2n = Z n1 lnx dx� 12 (lnn! + ln(n� 1)!)= Z n1 lnx dx� lnn! + 12 lnn:(2.4.3)Substituting in (2.4.3) the value of the integral R n1 ln x dx = R n1 d(x ln x � x) =(n lnn� n)� (1 ln 1� 1) = n lnn� n+ 1, one getslnn! = n lnn� n+ 12 lnn+ (1�D1) + �2n :Now we know that 1 � (1 �D1) � 12 , but it is possible to evaluate the value ofD1 with more auray. Later we will prove that 1�D1 = p2�.



2.4 asymptotis of sums 51Problems.1. Does P1k=1 sin k onverge?2. Does P1k=1 sin k2 onverge?3. Evaluate 1 + 12 � 23 + 14 + 15 � 26 + � � � � 23n + 13n+1 + 13n+2 � : : : .4. Prove: If lim an+1an < 1, then P1k=1 ak onverge.5. Prove: If P1k=1 jak � ak�1j <1, then fakg onverges.6. Prove the onvergene of P1k=1 (�1)[pk℄k .7. Prove the onvergene of P1k=2 1ln3 k .8. Prove the onvergene of P1k=2 1k ln kpln lnk .9. Prove the onvergene of P1k=2 1k ln k(ln ln k)2 .10. Prove the onvergene of P1k=2 1k ln k and �nd its asymptoti formula.11. Prove the onvergene of P1k=2 1k ln2 k .12. Whih partial sum of the above series is 0:01 lose to its ultimate sum?13. Evaluate P1k=2 1k ln2 k with preision 0:01.14. Evaluate R 31 lnx d[x℄.15. Express the Stirling onstant via the Wallis produt �2 =Q1n=1 2n2n�1 2n2n+1 .


