
2.4. Asymptoti
s of SumsOn the 
ontents of the le
ture. We be
ome at last a
quainted with thefundamental 
on
ept of a limit. We extend the notion of the sum of a series anddis
over that a 
hange of order of summands 
an a�e
t the ultimate sum. Finallywe derive the famous Stirling formula for n!.Asymptoti
 formulas. The Mer
ator series shows how useful series 
an befor evaluating integrals. In this le
ture we will use integrals to evaluate both partialand ultimate sums of series. Rarely one has an expli
it formula for partial sumsof a series. There are lots of important 
ases where su
h a formula does not exist.For example, it is known that partial sums of the Euler series 
annot be expressedas a �nite 
ombination of elementary fun
tions. When an expli
it formula is notavailable, one tries to �nd a so-
alled asymptoti
 formula. An asymptoti
 formulafor a partial sum Sn of a series is a formula of the type Sn = f(n)+R(n) where f isa known fun
tion 
alled the prin
ipal part and R(n) is a remainder, whi
h is small,in some sense, with respe
t to the prin
ipal part. Today we will get an asymptoti
formula for partial sums of the harmoni
 series.In�nitesimally small sequen
es. The simplest asymptoti
 formula has a
onstant as its prin
ipal part and an in�nitesimally small remainder. One says thata sequen
e fzkg is in�nitesimally small and writes lim zk = 0, if zk tends to 0 as ntends to in�nity. That is for any positive " eventually (i.e., beginning with some n)jzkj < ". With Iverson notation, this de�nition 
an be expressed in the following
lear form:[fzkg1k=1 is in�nitesimally small℄ = 1Ym=1 2 ����� 1Xn=1(�1)n 1Yk=1 [m[k > n℄jzkj < 1℄����� :Three basi
 properties of in�nitesimally small sequen
es immediately followfrom the de�nition:� if lim ak = lim bk = 0 then lim(ak + bk) = 0;� if lim ak = 0 then lim akbk = 0 for any bounded sequen
e fbkg;� if ak � bk � 
k for all k and lim ak = lim 
k = 0, then lim bk = 0.The third property is 
alled the squeeze rule.Today we need just one property of in�nitesimally small sequen
es:Theorem 2.4.1 (Addition theorem). If the sequen
es fakg and fbkg are in-�nitesimally small, than their sum and their di�eren
e are in�nitesimally smalltoo.Proof. Let " be a positive number. Then "=2 also is positive number. Andby de�nition of in�nitesimally small, the inequalities jakj < "=2 and jbkj < "=2 holdeventually beginning with some n. Then for k > n one has jak � bkj � jakj+ jbkj �"=2 + "=2 = ". �Limit of sequen
e.Definition. A sequen
e fzkg of (
omplex) numbers 
onverges to a number zif lim z�zk = 0. The number z is 
alled the limit of the sequen
e fzkg and denotedby lim zk. 47



48 2.4 asymptoti
s of sumsAn in�nite sum represents a parti
ular 
ase of a limit as demonstrated by thefollowing.Theorem 2.4.2. The partial sums of an absolutely 
onvergent series P1k=1 zk
onverge to its sum.Proof. jPn�1k=1 zk �P1k=1 zkj = jP1k=n zkj � P1k=n jzkj. Sin
e P1k=1 jzkj >P1k=1 jzkj � ", there is a partial sum su
h that Pn�1k=1 jzkj > P1k=1 jzkj � ". Thenfor all m � n one has P1k=m jzkj �P1k=n jzkj < ". �Conditional 
onvergen
e. The 
on
ept of the limit of sequen
e leads to anotion of 
onvergen
e generalizing absolute 
onvergen
e.A seriesP1k=1 ak is 
alled (
onditionally) 
onvergent if limPnk=1 ak = A+�n,where lim�n = 0. The number A is 
alled its ultimate sum.The following theorem gives a lot of examples of 
onditionally 
onvergent serieswhi
h are not absolutely 
onvergent. By [[n℄℄ we denote the even part of the numbern, i.e., [[n℄℄ = 2[n=2℄.Theorem 2.4.3 (Leibniz). For any of positive de
reasing in�nitesimally smallsequen
e fang, the series P1k=1(�1)k+1ak 
onverges.Proof. Denote the di�eren
e ak � ak+1 by Æak. The series P1k=1 Æa2k�1 andP1k=1 Æa2k are positive and 
onvergent, be
ause their termwise sum isP1k=1 Æak =a1. Hen
e S =P1k=1 Æa2k�1 � a1. Denote by Sn the partial sumPn�1k=1 (�1)k+1ak.Then S2n = Pn�1k=1 Æa2n�1 = S + �n, where lim�n = 0. Then Sn = S[[n℄℄ +an[n is odd℄+�[[n℄℄. As an[n is odd℄+�[[n℄℄ is in�nitesimally small, this implies thetheorem. �Lemma 2.4.4. Let f be a non-in
reasing nonnegative fun
tion. Then the seriesP1k=1 (f(k)� R k+1k f(x) dx) is positive and 
onvergent and has sum 
f � f(1).Proof. Integration of the inequalities f(k) � f(x) � f(k + 1) over [k; k + 1℄gives f(k) � R k+1k f(x) dx � f(n+ 1). This proves the positivity of the series andallows us to majorize it by the teles
opi
 seriesP1k=1(f(k)� f(k+1)) = f(1). �Theorem 2.4.5 (Integral Test on Convergen
e). If a nonnegative fun
tionf(x) de
reases monotoni
ally on [1;+1), then P1k=1 f(k) 
onverges if and onlyif R11 f(x) dx <1.Proof. Sin
e R11 f(x) dx = P1k=1 R k+1k f(x) dx, one has P1k=1 f(k) = 
f +R11 f(x) dx. �Euler 
onstant. The sumP1k=1 � 1k � ln(1 + 1k )�, whi
h is 
f for f(x) = 1x , is
alled Euler's 
onstant and denoted by 
. Its �rst ten digits are 0:5772156649 : : : .Harmoni
 numbers. The sum Pnk=1 1k is denoted Hn and is 
alled the n-thharmoni
 number.Theorem 2.4.6. Hn = lnn+ 
 + on where lim on = 0.Proof. Sin
e ln n = Pn�1k=1 (ln(k + 1) � ln k) = Pn�1k=1 ln(1 + 1k ), one haslnn+Pn�1k=1 � 1k � ln(1 + 1k )� = Hn�1. But Pn�1k=1 � 1k � ln(1 + 1k )� = 
 + �n, wherelim�n = 0. Therefore Hn = lnn+ 
 + ( 1n + �n). �



2.4 asymptoti
s of sums 49Alternating harmoni
 series. The alternating harmoni
 series P1k=1(�1)k+1kis a 
onditionally 
onvergent series due to the Leibniz Theorem 2.4.3, and it is notabsolutely 
onvergent. To �nd its sum we apply our Theorem 2.4.6 on asymptoti
sof harmoni
 numbers.Denote by Sn = Pnk=1 (�1)k+1k the partial sum. Then Sn = H 0n � H 00n , whereH 0n = Pnk=1 1k [k is odd℄ and H 00n = Pnk=1 1k [k is even℄. Sin
e H 002n = 12Hn andH 02n = H2n �H 002n = H2n � 12Hn one getsS2n = H2n � 12Hn � 12Hn= H2n �Hn= ln 2n+ 
 + o2n � lnn� 
 � on= ln 2 + (o2n � on):Consequently Sn = ln 2+(o[[n℄℄�o[n=2℄+ (�1)n+1n [n is odd℄). As the sum in bra
ketsis in�nitesimally small, one gets1Xk=1 (�1)k+1k = ln 2:The same arguments for a permutated alternating harmoni
 series give(2.4.1) 1 + 13 � 12 + 15 + 17 � 14 + 19 + 111 � 16 + � � � = 32 ln 2:Indeed, in this 
ase its 3n-th partial sum isS3n = H 04n �H 002n= H4n � 12H2n � 12Hn= ln 4n+ 
 + o4n � 12 (ln 2n+ 
 + o2n + lnn+ 
 + on)= ln 4� 12 ln 2 + o0n= 32 ln 2 + o0n;where lim o0n = 0. Sin
e the di�eren
e between Sn and S3m where m = [n=3℄ isin�nitesimally small, this proves (2.4.1).Stirling's Formula. We will try to estimate lnn!. Integration of the inequal-ities ln[x℄ � lnx � ln[x+ 1℄ over [1; n℄ gives ln(n� 1)! � R n1 lnx dx � lnn!. Let usestimate the di�eren
e D between R n1 lnx dx and 12 (lnn! + ln(n� 1)!).D = Z n1 (lnx� 12 (ln[x℄ + ln[x+ 1℄)) dx= n�1Xk=1 Z 10 �ln(k + x)� lnpk(k + 1)� dx:(2.4.2)To prove that all summands on the left-hand side are nonnegative, we apply thefollowing general lemma.Lemma 2.4.7. R 10 f(x) dx = R 10 f(1� x) dx for any fun
tion.Proof. The re
e
tion of the plane a
ross the line y = 12 transforms the 
urvi-linear trapezium of f(x) over [0; 1℄ into 
urvilinear trapezium of f(1 � x) over[0; 1℄. �



50 2.4 asymptoti
s of sumsLemma 2.4.8. R 10 ln(k + x) dx � lnpk(k + 1).Proof. Due to Lemma 2.4.7 one hasZ 10 ln(k + x) dx = Z 10 ln(k + 1� x) dx= Z 10 12 (ln(k + x) + ln(k + 1� x)) dx= Z 10 lnp(k + x)(k + 1� x) dx= Z 10 lnpk(k + 1) + x� x2 dx� Z 10 lnpk(k + 1) dx= lnpk(k + 1): �Integration of the inequality ln(1 + x=k) � x=k over [0; 1℄ givesZ 10 ln(1 + x=k) dx � Z 10 xk dx = 12k :This estimate together with the inequality ln(1 + 1=k) � 1=(k + 1) allows us toestimate the summands from the right-hand side of (2.4.2) in the following way:Z 10 ln(k + x)� lnpk(k + 1) dx = Z 10 ln(k + x)� ln k � 12 (ln(k + 1)� ln k) dx= Z 10 ln �1 + xk �� 12 ln �1 + 1k � dx� 12k � 12(k+1) :We see that Dn � P1k=1 12k � 12(k+1) = 12 for all n. Denote by D1 the sum(2.4.2) for in�nite n. Then Rn = D1 �Dn = �2n for some nonnegative � < 1, andwe get D1 � �2n = Z n1 lnx dx� 12 (lnn! + ln(n� 1)!)= Z n1 lnx dx� lnn! + 12 lnn:(2.4.3)Substituting in (2.4.3) the value of the integral R n1 ln x dx = R n1 d(x ln x � x) =(n lnn� n)� (1 ln 1� 1) = n lnn� n+ 1, one getslnn! = n lnn� n+ 12 lnn+ (1�D1) + �2n :Now we know that 1 � (1 �D1) � 12 , but it is possible to evaluate the value ofD1 with more a

ura
y. Later we will prove that 1�D1 = p2�.



2.4 asymptoti
s of sums 51Problems.1. Does P1k=1 sin k 
onverge?2. Does P1k=1 sin k2 
onverge?3. Evaluate 1 + 12 � 23 + 14 + 15 � 26 + � � � � 23n + 13n+1 + 13n+2 � : : : .4. Prove: If lim an+1an < 1, then P1k=1 ak 
onverge.5. Prove: If P1k=1 jak � ak�1j <1, then fakg 
onverges.6. Prove the 
onvergen
e of P1k=1 (�1)[pk℄k .7. Prove the 
onvergen
e of P1k=2 1ln3 k .8. Prove the 
onvergen
e of P1k=2 1k ln kpln lnk .9. Prove the 
onvergen
e of P1k=2 1k ln k(ln ln k)2 .10. Prove the 
onvergen
e of P1k=2 1k ln k and �nd its asymptoti
 formula.11. Prove the 
onvergen
e of P1k=2 1k ln2 k .12. Whi
h partial sum of the above series is 0:01 
lose to its ultimate sum?13. Evaluate P1k=2 1k ln2 k with pre
ision 0:01.14. Evaluate R 31 lnx d[x℄.15. Express the Stirling 
onstant via the Wallis produ
t �2 =Q1n=1 2n2n�1 2n2n+1 .


