2.4. Asymptotics of Sums

On the contents of the lecture. We become at last acquainted with the
fundamental concept of a limit. We extend the notion of the sum of a series and
discover that a change of order of summands can affect the ultimate sum. Finally
we derive the famous Stirling formula for n!.

Asymptotic formulas. The Mercator series shows how useful series can be
for evaluating integrals. In this lecture we will use integrals to evaluate both partial
and ultimate sums of series. Rarely one has an explicit formula for partial sums
of a series. There are lots of important cases where such a formula does not exist.
For example, it is known that partial sums of the Euler series cannot be expressed
as a finite combination of elementary functions. When an explicit formula is not
available, one tries to find a so-called asymptotic formula. An asymptotic formula
for a partial sum S,, of a series is a formula of the type S, = f(n)+ R(n) where f is
a known function called the principal part and R(n) is a remainder, which is small,
in some sense, with respect to the principal part. Today we will get an asymptotic
formula for partial sums of the harmonic series.

Infinitesimally small sequences. The simplest asymptotic formula has a
constant as its principal part and an infinitesimally small remainder. One says that
a sequence {z} is infinitesimally small and writes lim z;, = 0, if z;, tends to 0 as n
tends to infinity. That is for any positive ¢ eventually (i.e., beginning with some n)
|zr| < e. With Iverson notation, this definition can be expressed in the following
clear form:

o0 o0 o0
[{zr}72, is infinitesimally small] = H 2 Z(—l)” H [m[k > n]|zx| < 1]].
m=1 [n=1 k=1

Three basic properties of infinitesimally small sequences immediately follow
from the definition:

e if limay = lim b, = 0 then lim(ay + bi) = 0;
e if limay = 0 then lim agb;, = 0 for any bounded sequence {by};
o if ai < b < ¢ for all k and limag = lim ¢, = 0, then lim b, = 0.
The third property is called the squeeze rule.
Today we need just one property of infinitesimally small sequences:

THEOREM 2.4.1 (Addition theorem). If the sequences {ay} and {b;} are in-
finitesimally small, than their sum and their difference are infinitesimally small
too.

PrOOF. Let € be a positive number. Then /2 also is positive number. And
by definition of infinitesimally small, the inequalities |a| < €/2 and |bg| < €/2 hold
eventually beginning with some n. Then for k& > n one has |ag £ bg| < |ag| + |br| <
ef2+¢e/2=¢.

Limit of sequence.

DEFINITION. A sequence {zy} of (complex) numbers converges to a number z
if lim z —z;, = 0. The number z is called the limit of the sequence {z1} and denoted
by lim 2.
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48 2.4 ASYMPTOTICS OF SUMS
An infinite sum represents a particular case of a limit as demonstrated by the
following.

THEOREM 2.4.2. The partial sums of an absolutely convergent series Z;’;l 2k
converge to its sum.

PROOF. | 577 2k — 20ty 2kl = | 02, 2l < 302, |ael- Since 532, |zl >
S22, |2k| — &, there is a partial sum such that S 7_1 |2¢| > S50, |2x] — &. Then
for all m > n one has Y o |zx| < Yope,, 2] <e. O

Conditional convergence. The concept of the limit of sequence leads to a
notion of convergence generalizing absolute convergence.

A series Y7 | ay is called (conditionally) convergent if im > | ap = A+ ay,
where lim , = 0. The number A is called its ultimate sum.

The following theorem gives a lot of examples of conditionally convergent series
which are not absolutely convergent. By [[n]] we denote the even part of the number
n, i.e., [[n]] = 2[n/2].

THEOREM 2.4.3 (Leibniz). For any of positive decreasing infinitesimally small

sequence {a,}, the series Y p— (—1)¥*1ay converges.

PRrROOF. Denote the difference ay — agt+1 by dag. The series Z;; dasy—1 and
> he, dasy are positive and convergent, because their termwise sum is ) .- | daj, =
ar. Hence S = 372, dasg—1 < ai. Denote by S, the partial sum Y7 (—1)F+1ay.

Then S, = Z;ll dazp—1 = S + an, where lima, = 0. Then S, = Sy +
ap[n is odd] +aqpn)). As an[n is odd] + ajp,) is infinitesimally small, this implies the
theorem. |

LEMMA 2.4.4. Let f be a non-increasing nonnegative function. Then the series
Sy (f(k) — :H f(x) dx) is positive and convergent and has sum cp < f(1).

PRrOOF. Integration of the inequalities f(k) > f(z) > f(k + 1) over [k, k + 1]
gives f(k) > kk+1 f(x)dz > f(n+ 1). This proves the positivity of the series and
allows us to majorize it by the telescopic series Y~ (f(k) — f(k+ 1)) = f(1). O

THEOREM 2.4.5 (Integral Test on Convergence). If a nonnegative function
f(z) decreases monotonically on [1,4+00), then Y oo, f(k) converges if and only

if [° f(z)dr < 0.
PROOF. Since [~ f(z)dz = Y pe, fkk—H f(z)dz, one has Y ,o, f(k) = ¢f +
[ f (@) da. O

Euler constant. The sum Y 2| (3 —In(1+ ¢)), which is ¢f for f(z) = 1, is
called Euler’s constant and denoted by . Its first ten digits are 0.5772156649. ...

Harmonic numbers. The sum Y, _, % is denoted H,, and is called the n-th
harmonic number.

THEOREM 2.4.6. H, =Inn + v+ 0, where limo, = 0.

PROOF. Since Inn = Y p_ (In(k + 1) — Ink) = > p_;In(l + 1), one has
Inn+ 3021 (2 —In(l+ 3)) = Hyy. But 307 (2 —In(1 + 2)) = v + ay,, where

lim o, = 0. Therefore H, =Inn+ v+ (% + a,). O
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k1

Alternating harmonic series. The alternating harmonic series 220:1%

is a conditionally convergent series due to the Leibniz Theorem 2.4.3, and it is not

absolutely convergent. To find its sum we apply our Theorem 2.4.6 on asymptotics
of harmonic numbers. -

Denote by S, = Y.¢_, S the partial sum. Then S, = H/, — H}!, where

= Y1 3lkisodd] and H]] = > ¢, £[k is even]. Since Hj, = $H, and
H), = Hy, — HY, = Hy,, — %Hn one gets

1
- 1H,

=ln2n+~v+o09, —lnn—-—7vy—-o0,
=1In2+ (02, — 0p)-

Consequently Sy, = In 24 (0[pu)] — 052 + (717);“ [ is odd]). As the sum in brackets
is infinitesimally small, one gets

N N

k=1
The same arguments for a permutated alternating harmonic series give
(2.4.1) 143 —24+t+2-1+5+5—s+--=32In2
Indeed, in this case its 3n-th partial sum is
Ssn = Hy,, — HY,
= Hy, — 5Hon — 5 H,
=1ndn + v+ 04y — %(1n2n—|—7+02n+lnn—l—7+on)
=In4—$In2+o0),
=3mn2+o0),

where lim o}, = 0. Since the difference between S,, and Ss,, where m = [n/3] is
infinitesimally small, this proves (2.4.1).

Stirling’s Formula. We will try to estimate Inn!. Integration of the inequal-
ities In[z] < Inz < Infz + 1] over [1,n] gives In(n — 1)! < ["Inzdz <Inn!. Let us
estimate the difference D between [,*Inzdz and i (Inn! + In(n — 1)!).

D= / (Inz — L(nfe] + Infz + 1])) dz

_Z/ (in(k +2) ~In Rk +1)) do.

To prove that all summands on the left-hand side are nonnegative, we apply the
following general lemma.

(2.4.2)

LEMMA 2.4.7. fo x)dr = fo f(1 —z)dx for any function.

PROOF. The reflection of the plane across the line y = % transforms the curvi-
linear trapezium of f(z) over [0,1] into curvilinear trapezium of f(1 — z) over
[0,1]. O
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LEMMA 2.4.8. [ ln(k +z)de > In/k(k +1).

PROOF. Due to Lemma 2.4.7 one has

1 1
/ ln(k-i—:v)dx:/ In(k+1—2x)de
0 0

:/1%(1n(k+$)—|—ln(k+1—az))dw
0

:/11n\/(k—|—az)(k+1—az)d:n
:/11n\/k(k+1)+x—x2dx

0

1
Z/ In\k(k+1)dz

0

=In/k(k + 1).

Integration of the inequality In(1 + z/k) < z/k over [0, 1] gives

1 1
/ln(1+x/k)dx§/ fda:_i
0 0 k

2k
This estimate together with the inequality In(1 4+ 1/k) > 1/(k + 1) allows us to
estimate the summands from the right-hand side of (2.4.2) in the following way:

/lnk+x —Invk(k+1) d:c—/ In(k +z) —Ink — $(In(k + 1) — Ink) dx
0 0

We see that D,, < 372, ﬁ - 2(% = % or all n. Denote by Dy, the sum

fo
(2.4.2) for infinite n. Then R,, = Do, — D,, = 21 for some nonnegative 6 < 1, and
we get

n
Dy — £ :/ Inzdr — 1 (Inn! +In(n — 1)!)
1

(2.4.3) n
:/ lna:da:—lnn!—l—%lnn.
1

Substituting in (2.4.3) the value of the integral [“Inzdr = [ d(zlnz — ) =
(nlnn—n) — (1lnl—1) =nlon —n+ 1, one gets
Inn!=nlnn—n+ilnn+(1-Dy)+ L.

Now we know that 1 > (1 — D) > %, but it is possible to evaluate the value of
D, with more accuracy. Later we will prove that 1 — Do, = /2.
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Problems.
Does >, sink converge?

Does Yo, sink? converge7
Evaluate1+———+ +____|_...__+
Prove: If lim a”“

1
3n+1 + 3nt+2

<1, then Zk | G converge.
Prove: If 3.2, |ak — ag—1| < o0, then {a} converges.
(DI

k

Prove the convergence of Y 77, lné T

Prove the convergence of Y, Tw \/—
n

Prove the convergence of Y~

Inln &
Prove the convergence of Y~ m

Prove the convergence of )7, kln 7 and find its asymptotic formula.
1
nZ k"

. Which partial sum of the above series is 0.01 close to its ultimate sum?
. Evaluate 2320:2 Tz With precision 0.01.

. Evaluate [] Inzd[z].

. Express the Stirling constant via the Wallis product Z = [];7 | 522 ;22

n=1 2n—1 2n+1"



