
2.1. Natural LogarithmOn the 
ontents of the le
ture.In the beginning of Cal
ulus was the Word, and the Word waswith Arithmeti
, and the Word was Logarithm1Logarithmi
 tables. Multipli
ation is mu
h more diÆ
ult than addition. Alogarithm redu
es multipli
ation to addition. The invention of logarithms was oneof the great a
hievements of our 
ivilization.In early times, when logarithms were unknown instead of them one used trigono-metri
 fun
tions. The following identity2 
osx 
os y = 
os(x+ y) + 
os(x� y)
an be applied to 
al
ulate produ
ts via tables of 
osines. To multiply numbers xand y, one represents them as 
osines x = 
osa, y = 
os b using the 
osine table.Then evaluate (a + b) and (a � b) and �nd their 
osines in the table. Finally, theresults are summed and divided by 2. That is all. A single multipli
ation requiresfour sear
hes in the table of 
osines, two additions, one subtra
tion and one divisionby 2.A logarithmi
 fun
tion l(x) is a fun
tion su
h that l(xy) = l(x) + l(y) for anyx and y. If one has a logarithmi
 table, to evaluate the produ
t xy one has to �ndin the logarithmi
 table l(x) and l(y) then sum them and �nd the antilogarithm ofthe sum. This is mu
h easier.The idea of logarithms arose in 1544, when M. Stiefel 
ompared geometri
 andarithmeti
 progressions. The addition of exponents 
orresponds to the multipli
a-tion of powers. Hen
e 
onsider a number 
lose to 1, say, 1:000001. Cal
ulate thesequen
e of its powers and pla
e them in the left 
olumn. Pla
e in the right 
ol-umn the 
orresponding values of exponents, whi
h are just the line numbers. Thelogarithmi
 table is ready.Now to multiply two numbers x and y, �nd them (or their approximations) inthe left 
olumn of the logarithmi
 table, and read their logarithms from the right
olumn. Sum the logarithms and �nd the value of the sum in the right 
olumn.Next to this sum in the left 
olumn the produ
t xy stands. The �rst tables of su
hlogarithms were 
omposed by John Napier in 1614.Area of a 
urvilinear trapezium. Re
all that a sequen
e is said to be mono-tone, if it is either in
reasing or de
reasing. The minimal interval whi
h 
ontainsall elements of a given sequen
e of points will be 
alled supporting interval of thesequen
e. And a sequen
e is 
alled exhausting for an interval I if I is the supportinginterval of the sequen
e.Let f be a non-negative fun
tion de�ned on [a; b℄. The set f(x; y) j x 2[a; b℄ and 0 � y � f(x)g is 
alled a 
urvilinear trapezium under the graph of fover the interval [a; b℄.To estimate the area of a 
urvilinear trapezium under the graph of f over [a; b℄,
hoose an exhausting sequen
e fxigni=0 for [a; b℄ and 
onsider the following sums:(2.1.1) n�1Xk=0 f(xk)jÆxkj; n�1Xk=0 f(xk+1)jÆxkj (where Æxk = xk+1 � xk):1�o
o& is Greek for \word", �%���o& means \number".34
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a bFigure 2.1.1. A 
urvilinear trapeziumWe will 
all the �rst of them the re
eding sum, and the se
ond the advan
ing sum, ofthe sequen
e fxkg for the fun
tion f . If the fun
tion f is monotone the area of the
urvilinear trapezium is 
ontained between these two sums. To see this, 
onsider thefollowing step-�gures: Sn�1k=0 [xk; xk+1℄�[0; f(xk)℄ and Sn�1k=0 [xk; xk+1℄�[0; f(xk+1)℄.If f and fxkg both in
rease or both de
rease the �rst step-�gure is 
ontained inthe 
urvilinear trapezium and the se
ond step-�gure 
ontains the trapezium withpossible ex
eption of a verti
al segment [a � [0; f(a)℄ or [b � [0; f(b)℄. If one of fand fxkg in
reases and the other de
reases, then the step-�gures swit
h the roles.The rededing sum equals the area of the �rst step-�gure, and the advan
ing sumequals the area of the se
ond one. Thus we have proved the following lemma.Lemma 2.1.1. Let f be a monotone fun
tion and let S be the area of the
urvilinear trapezium under the graph of f over [a; b℄. Then for any sequen
efxkgnk=0 exhausting [a; b℄ the area S is 
ontained between Pn�1k=0 f(xk)jÆxk j andPn�1k=0 f(xk+1)jÆxkj.Fermat's quadratures of parabolas. In 1636 Pierre Fermat proposed aningenious tri
k to determine the area below the 
urve y = xa.

Figure 2.1.2. Fermat's quadratures of parabolas



36 2.1 natural logarithmIf a > �1 then 
onsider any interval of the form [0; B℄. Choose a positiveq < 1. Then the in�nite geometri
 progression B;Bq;Bq2; Bq3; : : : exhausts [0; B℄and the values of the fun
tion for this sequen
e also form a geometri
 progressionBa; qaBa; q2aBa; q3aBa; : : : . Then both the re
eding and advan
ing sums turn intogeometri
 progressions:1Xk=0Baqka(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 qk(a+1)= Ba+1(1� q)1� qa+1 ;1Xk=0Baq(k+1)a(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(1� q)qa1� qa+1 :For a natural a, one has 1�q1�qa+1 = 11+q+q2+���+qa . As q tends to 1 both sums
onverge to Ba+1a+1 . This is the area of the 
urvilinear trapezium. Let us remark thatfor a < 0 this trapezium is unbounded, nevertheless it has �nite area if a > �1.If a < �1, then 
onsider an interval in the form [B;1℄. Choose a positiveq > 1. Then the in�nite geometri
 progression B;Bq;Bq2; Bq3; : : : exhausts [B;1℄and the values of the fun
tion for this sequen
e also form a geometri
 progressionBa; qaBa; q2aBa; q3aBa; : : : . The re
eding and advan
ing sums are1Xk=0Baqka(qk+1B � qkB) = Ba+1(q � 1) 1Xk=0 qk(a+1)= Ba+1(q � 1)1� qa+1 ;1Xk=0Baq(k+1)a(qk+1B � qkB) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(q � 1)qa1� qa+1 :If a is an integer set p = q�1. Then q�11�qa+1 = q 1�p1�pjaj�1 = q 11+p+p2+���+pn�2 .As q tends to 1 both sums 
onverge to Ba+1jaj�1 . This is the area of the 
urvilineartrapezium.For a > �1 the area of the 
urvilinear trapezium under the graph of xa over[A;B℄ is equal to the di�eren
e between the areas of trapezia over [0; B℄ and [0; A℄.Hen
e this area is Ba+1�Aa+1a+1 .For a < �1 one 
an evaluate the area of the 
urvilinear trapezium under thegraph of xa over [A;B℄ as the di�eren
e between the areas of trapezia over [A;1℄and [B;1℄. The result is expressed by the same formula Ba+1�Aa+1a+1 .Theorem 2.1.2 (Fermat). The area below the 
urve y = xa over the interval[A;B℄ is equal to Ba+1�Aa+1a+1 for a 6= 1.We have proved this theorem for integer a, but Fermat proved it for all reala 6= �1.



2.1 natural logarithm 37The Natural Logarithm. In the 
ase a = �1 the geometri
 progression forareas of step-�gures turns into an arithmeti
 progression. This means that the areabelow a hyperbola is a logarithm! This dis
overy was made by Gregory in 1647.
1 xFigure 2.1.3. The hyperboli
 trapezium over [1; x℄The �gure bounded from above by the graph of hyperbola y = 1=x, from belowby segment [a; b℄ of the axis of abs
issas, and on ea
h side by verti
al lines passingthrough the end points of the interval, is 
alled a hyperboli
 trapezium over [a; b℄.The area of hyperboli
 trapezium over [1; x℄ with x > 1 is 
alled the naturallogarithm of x, and it is denoted by lnx. For a positive number x < 1 its logarithmis de�ned as the negative number whose absolute value 
oin
ides with the area ofhyperboli
 trapezium over [x; 1℄. At last, ln 1 is de�ned as 0.Theorem 2.1.3 (on logarithm). The natural logarithm is an in
reasing fun
tionde�ned for all positive numbers. For ea
h pair of positive numbers x, ylnxy = lnx+ ln y:Proof. Consider the 
ase x; y > 1. The di�eren
e lnxy � ln y is the area ofthe hyperboli
 trapezium over [y; xy℄. And we have to prove that it is equal tolnx, the area of trapezium over [1; x℄. Choose a large number n. Let q = x1=n.Then qn = x. The �nite geometri
 progression fqkgnk=0 exhausts [1; x℄. Then there
eding and advan
ing sums aren�1Xk=0 q�k(qk+1 � qk) = n(q � 1) n�1Xk=0 q�k�1(qk+1 � qk) = n(q � 1)q :(2.1.2)Now 
onsider the sequen
e fxqkgnk=0 exhausting [x; xy℄. Its re
eding sumn�1Xk=0 x�1q�k(xqk+1 � xqk) = n(q � 1)just 
oin
ides with the re
eding sum (2.1.2) for lnx. The same is true for theadvan
ing sum. As a result we obtain for any natural n the following inequalities:n(q � 1) � lnx � n(q � 1)q n(q � 1) � lnxy � ln y � n(q � 1)qThis implies that j lnxy� lnx� ln yj does not ex
eed the di�eren
e between the there
eding and advan
ing sums. The statement of Theorem 2.1.3 in the 
ase x; y > 1will be proved when we will prove that this di�eren
e 
an be made arbitrarily smallby a 
hoi
e of n. This will be dedu
ed from the following general lemma.



38 2.1 natural logarithmLemma 2.1.4. Let f be a monotone fun
tion over the interval [a; b℄ and letfxkgnk=0 be a sequen
e that exhausts [a; b℄. Then�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� � jf(b)� f(a)jmaxk<n jÆxk jProof of lemma. The proof of the lemma is a straightforward 
al
ulation.To shorten the notation, set Æf(xk) = f(xk+1)� f(xk).�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� = �����n�1Xk=0 Æf(xk)Æxk������ n�1Xk=0 jÆf(xk)jmax jÆxkj= max jÆxk j n�1Xk=0 jÆf(xk)j= max jÆxk j �����n�1Xk=0 Æf(xk)�����= max jÆxk jjf(b)� f(a)j:The equality ���Pn�1k=0 Æf(xk)��� =Pn�1k=0 jÆf(xk)j holds, as Æf(xk) have the same signsdue to the monotoni
ity of f . �The value max jÆxk j is 
alled maximal step of the sequen
e fxkg. For thesequen
e fqkg of [1; x℄ its maximal step is equal to qn � qn�1 = qn(1 � q�1) =x(1 � q)=q. It tends to 0 as q tends to 1. In our 
ase jf(b) � f(a)j = 1 � 1x < 1.By Lemma 2.1.4 the di�eren
e between the re
eding and advan
ing sums 
ould bemade arbitrarily small. This 
ompletes the proof in the 
ase x; y > 1.Consider the 
ase xy = 1, x > 1. We need to prove the following(inversion rule) ln 1=x = � lnx:As above, put qn = x > 1. The sequen
e fq�kgnk=0 exhausts [1=x; 1℄. The 
orre-sponding re
eding sumPn�1k=0 qk+1(q�k�q�k�1) =Pn�1k=0 (q�1) = n(q�1) 
oin
ideswith its 
ounterpart for lnx. The same is true for the advan
ing one. The samearguments as above prove j ln 1=xj = lnx. The sign of ln 1=x is de�ned as minusbe
ause 1=x < 1. This proves the inversion rule.Now 
onsider the 
ase x < 1, y < 1. Then 1=x > 1 and 1=y > 1 and by the�rst 
ase ln 1=xy = (ln 1=x+ln1=y). Repla
ing all terms of this equation a

ordingto the inversion rule, one gets � lnxy = � lnx� ln y and �nally lnxy = lnx+ ln y.The next 
ase is x > 1, y < 1, xy < 1. Sin
e both 1=x and xy are less then 1,then by the previous 
ase lnxy + ln 1=x = ln xyx = ln y. Repla
ing ln 1=x by � lnxone gets lnxy � lnx = ln y and �nally lnxy = lnx+ ln y.The last 
ase, x > 1, y < 1, xy > 1 is proved by lnxy + ln 1=y = lnx andrepla
ing ln 1=y by � ln y. �Base of a logarithm. Natural or hyperboli
 logarithms are not the only loga-rithmi
 fun
tions. Other popular logarithms are de
imal ones. In 
omputer s
ien
eone prefers binary logarithms. Di�erent logarithmi
 fun
tions are distinguished by



2.1 natural logarithm 39their bases. The base of a logarithmi
 fun
tion l(x) is de�ned as the number bfor whi
h l(b) = 1. Logarithms with the base b are denoted by logb x. What isthe base of the natural logarithm? This is the se
ond most important 
onstant inmathemati
s (after �). It is an irrational number denoted by e whi
h is equal to2:71828182845905 : : : . It was Euler who introdu
ed this number and this notation.Well, e is the number su
h that the area of hyperboli
 trapezium over [1; e℄is 1. Consider the geometri
 progression qn for q = 1 + 1n . All summands in the
orresponding hyperboli
 re
eding sum for this progression are equal to qk+1�qkqk =q � 1 = 1n . Hen
e the re
eding sum for the interval [1; qn℄ is equal to 1 and it isgreater than ln qn. Consequently e > qn. The summands of the advan
ing sumin this 
ase are equal to qk+1�qkqk+1 = 1 � 1q = 1n+1 . Hen
e the advan
ing sum forthe interval [1; qn+1℄ is equal to 1. It is less than the 
orresponding logarithm.Consequently, e < qn+1. Thus we have proved the following estimates for e:�1 + 1n�n < e < �1 + 1n�n+1We see that �1 + 1n�n rapidly tends to e as n tends to in�nity.Problems.1. Prove that lnx=y = lnx� ln y.2. Prove that ln 2 < 1.3. Prove that ln 3 > 1.4. Prove that x > y implies lnx > ln y.5. Is lnx bounded?6. Prove that 1n+1 < ln(1 + 1=n) < 1n .7. Prove that x1+x < ln(1 + x) < x.8. Prove the Theorem 2.1.2 (Fermat) for a = 1=2; 1=3; 2=3.9. Prove the unboundedness of nlnn .10. Compare �1 + 1n�n and (1 + 1n+1 )n+1.11. Prove the monotoni
ity of nlnn .12. Prove that Pn�1k=2 1k < lnn <Pn�1k=1 1k .13. Prove that ln(1 + x) > x� x22 .14. Estimate integral part of ln 1000000.15. Prove that ln x+y2 � lnx+ln y2 .16. Prove the 
onvergen
e of P1k=1( 1k � ln(1 + 1k )).17. Prove that (n+ 12 )�1 � ln(1 + 1n ) < 12 ( 1n + 1n+1 ).�18. Prove that 11�2 + 13�4 + 15�6 + � � � = ln 2.


