
2.1. Natural LogarithmOn the ontents of the leture.In the beginning of Calulus was the Word, and the Word waswith Arithmeti, and the Word was Logarithm1Logarithmi tables. Multipliation is muh more diÆult than addition. Alogarithm redues multipliation to addition. The invention of logarithms was oneof the great ahievements of our ivilization.In early times, when logarithms were unknown instead of them one used trigono-metri funtions. The following identity2 osx os y = os(x+ y) + os(x� y)an be applied to alulate produts via tables of osines. To multiply numbers xand y, one represents them as osines x = osa, y = os b using the osine table.Then evaluate (a + b) and (a � b) and �nd their osines in the table. Finally, theresults are summed and divided by 2. That is all. A single multipliation requiresfour searhes in the table of osines, two additions, one subtration and one divisionby 2.A logarithmi funtion l(x) is a funtion suh that l(xy) = l(x) + l(y) for anyx and y. If one has a logarithmi table, to evaluate the produt xy one has to �ndin the logarithmi table l(x) and l(y) then sum them and �nd the antilogarithm ofthe sum. This is muh easier.The idea of logarithms arose in 1544, when M. Stiefel ompared geometri andarithmeti progressions. The addition of exponents orresponds to the multiplia-tion of powers. Hene onsider a number lose to 1, say, 1:000001. Calulate thesequene of its powers and plae them in the left olumn. Plae in the right ol-umn the orresponding values of exponents, whih are just the line numbers. Thelogarithmi table is ready.Now to multiply two numbers x and y, �nd them (or their approximations) inthe left olumn of the logarithmi table, and read their logarithms from the rightolumn. Sum the logarithms and �nd the value of the sum in the right olumn.Next to this sum in the left olumn the produt xy stands. The �rst tables of suhlogarithms were omposed by John Napier in 1614.Area of a urvilinear trapezium. Reall that a sequene is said to be mono-tone, if it is either inreasing or dereasing. The minimal interval whih ontainsall elements of a given sequene of points will be alled supporting interval of thesequene. And a sequene is alled exhausting for an interval I if I is the supportinginterval of the sequene.Let f be a non-negative funtion de�ned on [a; b℄. The set f(x; y) j x 2[a; b℄ and 0 � y � f(x)g is alled a urvilinear trapezium under the graph of fover the interval [a; b℄.To estimate the area of a urvilinear trapezium under the graph of f over [a; b℄,hoose an exhausting sequene fxigni=0 for [a; b℄ and onsider the following sums:(2.1.1) n�1Xk=0 f(xk)jÆxkj; n�1Xk=0 f(xk+1)jÆxkj (where Æxk = xk+1 � xk):1�oo& is Greek for \word", �%���o& means \number".34
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a bFigure 2.1.1. A urvilinear trapeziumWe will all the �rst of them the reeding sum, and the seond the advaning sum, ofthe sequene fxkg for the funtion f . If the funtion f is monotone the area of theurvilinear trapezium is ontained between these two sums. To see this, onsider thefollowing step-�gures: Sn�1k=0 [xk; xk+1℄�[0; f(xk)℄ and Sn�1k=0 [xk; xk+1℄�[0; f(xk+1)℄.If f and fxkg both inrease or both derease the �rst step-�gure is ontained inthe urvilinear trapezium and the seond step-�gure ontains the trapezium withpossible exeption of a vertial segment [a � [0; f(a)℄ or [b � [0; f(b)℄. If one of fand fxkg inreases and the other dereases, then the step-�gures swith the roles.The rededing sum equals the area of the �rst step-�gure, and the advaning sumequals the area of the seond one. Thus we have proved the following lemma.Lemma 2.1.1. Let f be a monotone funtion and let S be the area of theurvilinear trapezium under the graph of f over [a; b℄. Then for any sequenefxkgnk=0 exhausting [a; b℄ the area S is ontained between Pn�1k=0 f(xk)jÆxk j andPn�1k=0 f(xk+1)jÆxkj.Fermat's quadratures of parabolas. In 1636 Pierre Fermat proposed aningenious trik to determine the area below the urve y = xa.

Figure 2.1.2. Fermat's quadratures of parabolas



36 2.1 natural logarithmIf a > �1 then onsider any interval of the form [0; B℄. Choose a positiveq < 1. Then the in�nite geometri progression B;Bq;Bq2; Bq3; : : : exhausts [0; B℄and the values of the funtion for this sequene also form a geometri progressionBa; qaBa; q2aBa; q3aBa; : : : . Then both the reeding and advaning sums turn intogeometri progressions:1Xk=0Baqka(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 qk(a+1)= Ba+1(1� q)1� qa+1 ;1Xk=0Baq(k+1)a(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(1� q)qa1� qa+1 :For a natural a, one has 1�q1�qa+1 = 11+q+q2+���+qa . As q tends to 1 both sumsonverge to Ba+1a+1 . This is the area of the urvilinear trapezium. Let us remark thatfor a < 0 this trapezium is unbounded, nevertheless it has �nite area if a > �1.If a < �1, then onsider an interval in the form [B;1℄. Choose a positiveq > 1. Then the in�nite geometri progression B;Bq;Bq2; Bq3; : : : exhausts [B;1℄and the values of the funtion for this sequene also form a geometri progressionBa; qaBa; q2aBa; q3aBa; : : : . The reeding and advaning sums are1Xk=0Baqka(qk+1B � qkB) = Ba+1(q � 1) 1Xk=0 qk(a+1)= Ba+1(q � 1)1� qa+1 ;1Xk=0Baq(k+1)a(qk+1B � qkB) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(q � 1)qa1� qa+1 :If a is an integer set p = q�1. Then q�11�qa+1 = q 1�p1�pjaj�1 = q 11+p+p2+���+pn�2 .As q tends to 1 both sums onverge to Ba+1jaj�1 . This is the area of the urvilineartrapezium.For a > �1 the area of the urvilinear trapezium under the graph of xa over[A;B℄ is equal to the di�erene between the areas of trapezia over [0; B℄ and [0; A℄.Hene this area is Ba+1�Aa+1a+1 .For a < �1 one an evaluate the area of the urvilinear trapezium under thegraph of xa over [A;B℄ as the di�erene between the areas of trapezia over [A;1℄and [B;1℄. The result is expressed by the same formula Ba+1�Aa+1a+1 .Theorem 2.1.2 (Fermat). The area below the urve y = xa over the interval[A;B℄ is equal to Ba+1�Aa+1a+1 for a 6= 1.We have proved this theorem for integer a, but Fermat proved it for all reala 6= �1.



2.1 natural logarithm 37The Natural Logarithm. In the ase a = �1 the geometri progression forareas of step-�gures turns into an arithmeti progression. This means that the areabelow a hyperbola is a logarithm! This disovery was made by Gregory in 1647.
1 xFigure 2.1.3. The hyperboli trapezium over [1; x℄The �gure bounded from above by the graph of hyperbola y = 1=x, from belowby segment [a; b℄ of the axis of absissas, and on eah side by vertial lines passingthrough the end points of the interval, is alled a hyperboli trapezium over [a; b℄.The area of hyperboli trapezium over [1; x℄ with x > 1 is alled the naturallogarithm of x, and it is denoted by lnx. For a positive number x < 1 its logarithmis de�ned as the negative number whose absolute value oinides with the area ofhyperboli trapezium over [x; 1℄. At last, ln 1 is de�ned as 0.Theorem 2.1.3 (on logarithm). The natural logarithm is an inreasing funtionde�ned for all positive numbers. For eah pair of positive numbers x, ylnxy = lnx+ ln y:Proof. Consider the ase x; y > 1. The di�erene lnxy � ln y is the area ofthe hyperboli trapezium over [y; xy℄. And we have to prove that it is equal tolnx, the area of trapezium over [1; x℄. Choose a large number n. Let q = x1=n.Then qn = x. The �nite geometri progression fqkgnk=0 exhausts [1; x℄. Then thereeding and advaning sums aren�1Xk=0 q�k(qk+1 � qk) = n(q � 1) n�1Xk=0 q�k�1(qk+1 � qk) = n(q � 1)q :(2.1.2)Now onsider the sequene fxqkgnk=0 exhausting [x; xy℄. Its reeding sumn�1Xk=0 x�1q�k(xqk+1 � xqk) = n(q � 1)just oinides with the reeding sum (2.1.2) for lnx. The same is true for theadvaning sum. As a result we obtain for any natural n the following inequalities:n(q � 1) � lnx � n(q � 1)q n(q � 1) � lnxy � ln y � n(q � 1)qThis implies that j lnxy� lnx� ln yj does not exeed the di�erene between the thereeding and advaning sums. The statement of Theorem 2.1.3 in the ase x; y > 1will be proved when we will prove that this di�erene an be made arbitrarily smallby a hoie of n. This will be dedued from the following general lemma.



38 2.1 natural logarithmLemma 2.1.4. Let f be a monotone funtion over the interval [a; b℄ and letfxkgnk=0 be a sequene that exhausts [a; b℄. Then�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� � jf(b)� f(a)jmaxk<n jÆxk jProof of lemma. The proof of the lemma is a straightforward alulation.To shorten the notation, set Æf(xk) = f(xk+1)� f(xk).�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� = �����n�1Xk=0 Æf(xk)Æxk������ n�1Xk=0 jÆf(xk)jmax jÆxkj= max jÆxk j n�1Xk=0 jÆf(xk)j= max jÆxk j �����n�1Xk=0 Æf(xk)�����= max jÆxk jjf(b)� f(a)j:The equality ���Pn�1k=0 Æf(xk)��� =Pn�1k=0 jÆf(xk)j holds, as Æf(xk) have the same signsdue to the monotoniity of f . �The value max jÆxk j is alled maximal step of the sequene fxkg. For thesequene fqkg of [1; x℄ its maximal step is equal to qn � qn�1 = qn(1 � q�1) =x(1 � q)=q. It tends to 0 as q tends to 1. In our ase jf(b) � f(a)j = 1 � 1x < 1.By Lemma 2.1.4 the di�erene between the reeding and advaning sums ould bemade arbitrarily small. This ompletes the proof in the ase x; y > 1.Consider the ase xy = 1, x > 1. We need to prove the following(inversion rule) ln 1=x = � lnx:As above, put qn = x > 1. The sequene fq�kgnk=0 exhausts [1=x; 1℄. The orre-sponding reeding sumPn�1k=0 qk+1(q�k�q�k�1) =Pn�1k=0 (q�1) = n(q�1) oinideswith its ounterpart for lnx. The same is true for the advaning one. The samearguments as above prove j ln 1=xj = lnx. The sign of ln 1=x is de�ned as minusbeause 1=x < 1. This proves the inversion rule.Now onsider the ase x < 1, y < 1. Then 1=x > 1 and 1=y > 1 and by the�rst ase ln 1=xy = (ln 1=x+ln1=y). Replaing all terms of this equation aordingto the inversion rule, one gets � lnxy = � lnx� ln y and �nally lnxy = lnx+ ln y.The next ase is x > 1, y < 1, xy < 1. Sine both 1=x and xy are less then 1,then by the previous ase lnxy + ln 1=x = ln xyx = ln y. Replaing ln 1=x by � lnxone gets lnxy � lnx = ln y and �nally lnxy = lnx+ ln y.The last ase, x > 1, y < 1, xy > 1 is proved by lnxy + ln 1=y = lnx andreplaing ln 1=y by � ln y. �Base of a logarithm. Natural or hyperboli logarithms are not the only loga-rithmi funtions. Other popular logarithms are deimal ones. In omputer sieneone prefers binary logarithms. Di�erent logarithmi funtions are distinguished by



2.1 natural logarithm 39their bases. The base of a logarithmi funtion l(x) is de�ned as the number bfor whih l(b) = 1. Logarithms with the base b are denoted by logb x. What isthe base of the natural logarithm? This is the seond most important onstant inmathematis (after �). It is an irrational number denoted by e whih is equal to2:71828182845905 : : : . It was Euler who introdued this number and this notation.Well, e is the number suh that the area of hyperboli trapezium over [1; e℄is 1. Consider the geometri progression qn for q = 1 + 1n . All summands in theorresponding hyperboli reeding sum for this progression are equal to qk+1�qkqk =q � 1 = 1n . Hene the reeding sum for the interval [1; qn℄ is equal to 1 and it isgreater than ln qn. Consequently e > qn. The summands of the advaning sumin this ase are equal to qk+1�qkqk+1 = 1 � 1q = 1n+1 . Hene the advaning sum forthe interval [1; qn+1℄ is equal to 1. It is less than the orresponding logarithm.Consequently, e < qn+1. Thus we have proved the following estimates for e:�1 + 1n�n < e < �1 + 1n�n+1We see that �1 + 1n�n rapidly tends to e as n tends to in�nity.Problems.1. Prove that lnx=y = lnx� ln y.2. Prove that ln 2 < 1.3. Prove that ln 3 > 1.4. Prove that x > y implies lnx > ln y.5. Is lnx bounded?6. Prove that 1n+1 < ln(1 + 1=n) < 1n .7. Prove that x1+x < ln(1 + x) < x.8. Prove the Theorem 2.1.2 (Fermat) for a = 1=2; 1=3; 2=3.9. Prove the unboundedness of nlnn .10. Compare �1 + 1n�n and (1 + 1n+1 )n+1.11. Prove the monotoniity of nlnn .12. Prove that Pn�1k=2 1k < lnn <Pn�1k=1 1k .13. Prove that ln(1 + x) > x� x22 .14. Estimate integral part of ln 1000000.15. Prove that ln x+y2 � lnx+ln y2 .16. Prove the onvergene of P1k=1( 1k � ln(1 + 1k )).17. Prove that (n+ 12 )�1 � ln(1 + 1n ) < 12 ( 1n + 1n+1 ).�18. Prove that 11�2 + 13�4 + 15�6 + � � � = ln 2.


