2.1. Natural Logarithm

On the contents of the lecture.

In the beginning of Calculus was the Word, and the Word was
with Arithmetic, and the Word was Logarithm!

Logarithmic tables. Multiplication is much more difficult than addition. A
logarithm reduces multiplication to addition. The invention of logarithms was one
of the great achievements of our civilization.

In early times, when logarithms were unknown instead of them one used trigono-
metric functions. The following identity

2cosz cosy = cos(x + y) + cos(z — y)

can be applied to calculate products via tables of cosines. To multiply numbers z
and y, one represents them as cosines x = cosa, y = cosb using the cosine table.
Then evaluate (a + b) and (@ — b) and find their cosines in the table. Finally, the
results are summed and divided by 2. That is all. A single multiplication requires
four searches in the table of cosines, two additions, one subtraction and one division
by 2.

A logarithmic function /() is a function such that I(zy) = I(z) + I(y) for any
z and y. If one has a logarithmic table, to evaluate the product xy one has to find
in the logarithmic table [(z) and I(y) then sum them and find the antilogarithm of
the sum. This is much easier.

The idea of logarithms arose in 1544, when M. Stiefel compared geometric and
arithmetic progressions. The addition of exponents corresponds to the multiplica-
tion of powers. Hence consider a number close to 1, say, 1.000001. Calculate the
sequence of its powers and place them in the left column. Place in the right col-
umn the corresponding values of exponents, which are just the line numbers. The
logarithmic table is ready.

Now to multiply two numbers z and y, find them (or their approximations) in
the left column of the logarithmic table, and read their logarithms from the right
column. Sum the logarithms and find the value of the sum in the right column.
Next to this sum in the left column the product zy stands. The first tables of such
logarithms were composed by John Napier in 1614.

Area of a curvilinear trapezium. Recall that a sequence is said to be mono-
tone, if it is either increasing or decreasing. The minimal interval which contains
all elements of a given sequence of points will be called supporting interval of the
sequence. And a sequence is called exhausting for an interval I if I is the supporting
interval of the sequence.

Let f be a non-negative function defined on [a,b]. The set {(z,y) | = €
[a,b] and 0 < y < f(z)} is called a curvilinear trapezium under the graph of f
over the interval [a, b].

To estimate the area of a curvilinear trapezium under the graph of f over [a, b],
choose an exhausting sequence {z;}}, for [a,b] and consider the following sums:

n—1 n—1
(2.1.1) Z flz) |0z, Z f(xpy1)|0zr| (where dzp = Tp41 — k).
k=0 k=0

1)\07og is Greek for “word”, aptfuos means “number”.
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FIGURE 2.1.1. A curvilinear trapezium

We will call the first of them the receding sum, and the second the advancing sum, of
the sequence {z},} for the function f. If the function f is monotone the area of the

curvilinear trapezium is contained between these two sums. To see this, consider the

following step-figures: g [k, r+1] %[0, f(zx)] and Up—s [ek, Tri1] X [0, f(zri1)]-

If f and {z} both increase or both decrease the first step-figure is contained in
the curvilinear trapezium and the second step-figure contains the trapezium with
possible exception of a vertical segment [a x [0, f(a)] or [b x [0, f(b)]. If one of f
and {z} increases and the other decreases, then the step-figures switch the roles.
The rededing sum equals the area of the first step-figure, and the advancing sum
equals the area of the second one. Thus we have proved the following lemma.

LEMMA 2.1.1. Let f be a monotone function and let S be the area of the
curvilinear trapezium under the graph of f over [a,b]. Then for any sequence
{zx}}_, exhausting [a,b] the area S is contained between ZZ;S fz)|0zy| and

SRy @) |z

Fermat’s quadratures of parabolas. In 1636 Pierre Fermat proposed an
ingenious trick to determine the area below the curve y = z°.

|t

FIGURE 2.1.2. Fermat’s quadratures of parabolas



36 2.1 NATURAL LOGARITHM

If @ > —1 then consider any interval of the form [0, B]. Choose a positive
q < 1. Then the infinite geometric progression B, Bq, Bq?, B¢®, ... exhausts [0, B]
and the values of the function for this sequence also form a geometric progression

B®,q°B%, ¢**B*,¢3*B?,.... Then both the receding and advancing sums turn into
geometric progressions:
o o] o ]
Z Baqka (qu _ qchrlB) Ba+1 Z qk a+1)
k=0
B*(1—q)
BT

00 00
ZBaq(k+1)a(qu _ qk+1B) — BaJrl(]_ _ q) Zq(kJrl)(aJrl)

_ B - g)g
B 1 —got!

. As ¢ tends to 1 both sums

1—q _ 1
For a natural a, one has ==t = =

converge to 2 +1 This is the area of the curvilinear trapezium. Let us remark that
for a < 0 this trapezium is unbounded, nevertheless it has finite area if a > —1.

If a < —1, then consider an interval in the form [B,c0]. Choose a positive
q > 1. Then the infinite geometric progression B, Bq, B¢*, Bq®, ... exhausts [B, 00]
and the values of the function for this sequence also form a geometric progression

B®,q°B%,¢**B%,¢3*B?, . ... The receding and advancing sums are
(oo} (ee]
ZBaqka (qk-‘rlB _ qu) Ba+1 qu a+1)
k=0 k=0
B Botl ((] _ 1)
1= g+l ’
ZBaq(k+1)a(qk+1B _ qu) Ba+1 Zq k+1)(a+1)

_ B*'(q - l)q“
- ]_ _ anrl

. . -1 -1 1-p 1
If a is an integer set p = ¢~ . Then an =41 P = AT

As ¢ tends to 1 both sums converge to ‘aT—Jri This is the area of the curvilinear
trapezium.

For a > —1 the area of the curvilinear trapezium under the graph of % over
[A, B] is equal to the difference between the areas of trapezia over [0, B] and [0, A].
Hence this area is B —=A"""
For a < —1 one can evaluate the area of the curvilinear trapezium under the

graph of z* over [A, B] as the difference between the areas of trapezia over [A, 0]
and [B, oo]. The result is expressed by the same formula %
THEOREM 2.1.2 (Fermat). The area below the curve y = x® over the interval

[A, B] is equal to W for a # 1.

We have proved this theorem for integer a, but Fermat proved it for all real

a# —1.
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The Natural Logarithm. In the case a = —1 the geometric progression for
areas of step-figures turns into an arithmetic progression. This means that the area
below a hyperbola is a logarithm! This discovery was made by Gregory in 1647.

F1Gureg 2.1.3. The hyperbolic trapezium over [1, z]

The figure bounded from above by the graph of hyperbola y = 1/z, from below
by segment [a, b] of the axis of abscissas, and on each side by vertical lines passing
through the end points of the interval, is called a hyperbolic trapezium over [a,b].

The area of hyperbolic trapezium over [1,z] with z > 1 is called the natural
logarithm of x, and it is denoted by In z. For a positive number z < 1 its logarithm
is defined as the negative number whose absolute value coincides with the area of
hyperbolic trapezium over [z, 1]. At last, In1 is defined as 0.

THEOREM 2.1.3 (on logarithm). The natural logarithm is an increasing function
defined for all positive numbers. For each pair of positive numbers x, y

Inzy =lnz +1ny.

ProOOF. Consider the case z,y > 1. The difference Inzy — Iny is the area of
the hyperbolic trapezium over [y,zy]. And we have to prove that it is equal to
Inz, the area of trapezium over [1,z]. Choose a large number n. Let ¢ = z/m,
Then ¢" = z. The finite geometric progression {g*}?_, exhausts [1,z]. Then the
receding and advancing sums are

(212) iqfk(qlwrl _ qk) _ n(q _ 1) iqfkfl(qlwrl _ qk) — @
k=0 k=0

Now consider the sequence {zg*}?_, exhausting [z, zy]. Its receding sum
n—1
> a g et — 2gh) = n(g - 1)
k=0

just coincides with the receding sum (2.1.2) for Inz. The same is true for the
advancing sum. As a result we obtain for any natural n the following inequalities:

M n(q—l)Zlnxy—lnyZM

q q
This implies that |ln zy —Inz —Iny| does not exceed the difference between the the
receding and advancing sums. The statement of Theorem 2.1.3 in the case z,y > 1
will be proved when we will prove that this difference can be made arbitrarily small
by a choice of n. This will be deduced from the following general lemma.

n(g—1) >Inz >



38 2.1 NATURAL LOGARITHM

LEMMA 2.1.4. Let f be a monotone function over the interval [a,b] and let
{zr}}i_o be a sequence that ezhausts [a,b]. Then

n—1 n—1
> flae)dzk = Y flarir)dm
k=0 k=0

< 1£(0) ~ (a) ma o

PRrROOF OF LEMMA. The proof of the lemma is a straightforward calculation.
To shorten the notation, set 0 f(zx) = f(xg+1) — f(zk)-

n—1 n—1 n—1
Z f(xg)ozy, — Z f(@pq1)dzr| = Z Of(zr)dxp
k=0 k=0 k=0
n—1
< 37 16 (w)| max| oz
k=0
n—1
= max |6z | Y [6f (ws)|
k=0
n—1
= max |0xg| Z df(xk)
k=0

= max |6z | £(b) — f(a).

The equality Yo 6f(a:k)‘ = 310 10f(x1)| holds, as §f(x) have the same signs
due to the monotonicity of f. O

The value max |dxy| is called mazimal step of the sequence {x;}. For the
sequence {g¥} of [1,z] its maximal step is equal to ¢" — ¢" ! = ¢"(1 — ¢ ') =
z(1 —¢)/q. It tends to 0 as ¢ tends to 1. In our case |f(b) — f(a)) =1 -1 < 1.
By Lemma 2.1.4 the difference between the receding and advancing sums could be
made arbitrarily small. This completes the proof in the case z,y > 1.

Consider the case zy = 1, x > 1. We need to prove the following

(inversion rule) Inl/z =—Inz.
As above, put ¢" = ¢ > 1. The sequence {¢g *}?_, exhausts [1/z,1]. The corre-
sponding receding sum 37— g*t1 (g7F —g=F=1) = 770 (¢—1) = n(g—1) coincides

with its counterpart for Inz. The same is true for the advancing one. The same
arguments as above prove |Inl/z| = Inz. The sign of In1/z is defined as minus
because 1/xz < 1. This proves the inversion rule.

Now consider the case # < 1, y < 1. Then 1/z > 1 and 1/y > 1 and by the
first case In1/zy = (In1/z+1n1/y). Replacing all terms of this equation according
to the inversion rule, one gets —Inzy = —Inz —Iny and finally Inzy = Inz + Iny.

The next caseis x > 1, y < 1, zy < 1. Since both 1/z and zy are less then 1,
then by the previous case Inzy +Inl/z = In %Y = Iny. Replacing In1/z by —Inz
one gets Inzxy —Inz =Iny and finally Inzy =Ilnz + Iny.

The last case, x > 1, y < 1, zy > 1 is proved by lnzy + In1/y = Inz and
replacing In 1/y by —Iny. O

Base of a logarithm. Natural or hyperbolic logarithms are not the only loga-
rithmic functions. Other popular logarithms are decimal ones. In computer science
one prefers binary logarithms. Different logarithmic functions are distinguished by
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their bases. The base of a logarithmic function () is defined as the number b
for which I(b) = 1. Logarithms with the base b are denoted by log, z. What is
the base of the natural logarithm? This is the second most important constant in
mathematics (after 7). It is an irrational number denoted by e which is equal to
2.71828182845905 . ... It was Euler who introduced this number and this notation.
Well, e is the number such that the area of hyperbolic trapezium over [1, €]

is 1. Consider the geometric progression ¢" for ¢ = 1 + % All summands in the
qk+17 k

corresponding hyperbolic receding sum for this progression are equal to e i =

q—1= % Hence the receding sum for the interval [1,¢"] is equal to 1 and it is

greater than In¢". Consequently e > ¢". The summands of the advancing sum
. . k41 k
in this case are equal to L= = 1 — 1 = _1

q — n+l’
the interval [1,¢"*!] is equal to 1. It is less than the corresponding logarithm.
Consequently, e < ¢"*'. Thus we have proved the following estimates for e:

1 n 1 n+1
<1+—> <e<<1+—>
n n

We see that (1+ 1)" rapidly tends to e as n tends to infinity.

Hence the advancing sum for

Problems.

1. Prove that Inz/y =lnz —Iny.

2. Prove that In2 < 1.

3. Prove that In3 > 1.

4. Prove that « > y implies Inz > Iny.
5. Is Inz bounded?

6. Prove that n}rl <In(l+1/n) < L.
7. Prove that {7 <In(l1+2) <=.

8.

Prove the Theorem 2.1.2 (Fermat) for a =1/2,1/3,2/3.
9. Prove the unboundedness of *-.

10. Compare (1+ %)n and (1 + HLH)“H.

11. Prove the monotonicity of .
12. Prove that Y p 5 L <Inn < Y} ) 1.
13. Prove that In(14+x) >z — %
14. Estimate integral part of In 1000000.
15. Prove that In ZT‘H’ > W
16. Prove the convergence of Y .2, (
17. Prove that (n+3) ' <In(1+ 2

*18. Prove that 11—2 + ﬁ + ﬁ +---=1In2



