
1.5. Telesopi SumsOn the ontent of this leture. In this leture we learn the main seret ofelementary summation theory. We will evaluate series via their partial sums. Weintrodue fatorial powers, whih are easy to sum. Following Stirling we expand11+x2 into a series of negative fatorial powers and apply this expansion to evaluatethe Euler series with Stirling's auray of 10�8.The series P1k=1 1k(k+1) . In the �rst leture we alulated in�nite sums di-retly without invoking partial sums. Now we present a dual approah to summingseries. Aording to this approah, at �rst one �nds a formula for the n-th par-tial sum and then substitutes in this formula in�nity instead of n. The seriesP1k=1 1k(k+1) gives a simple example for this method. The key to sum it up is thefollowing identity 1k(k + 1) = 1k � 1k + 1 :Beause of this identity P1k=1 1k(k+1) turns into the sum of di�erenes(1.5.1) �1� 12�+�12 � 13�+�13 � 14�+ � � �+� 1n � 1n+ 1�+ : : : :Its n-th partial sum is equal to 1� 1n+1 . Substituting in this formula n = +1, onegets 1 as its ultimate sum.Telesopi sums. The sum (1.5.1) represents a telesopi sum. This name isused for sums of the form Pnk=0(ak � ak+1). The value of suh a telesopi sumis determined by the values of the �rst and the last of ak, similarly to a telesope,whose thikness is determined by the radii of the external and internal rings. Indeed,nXk=0(ak � ak+1) = nXk=0 ak � nXk=0 ak+1 = a0 + nXk=1 ak � n�1Xk=0 ak+1 � an+1 = a0 � an+1:The same arguments for in�nite telesopi sums give(1.5.2) 1Xk=0(ak � ak+1) = a0:But this proof works only if P1k=0 ak <1. This is untrue for P1k=1 1k(k+1) , owingto the divergene of the Harmoni series. But the equality (1.5.2) holds also ifak tends to 0 as k tends to in�nity. Indeed, in this ase a0 is the least numbermajorizing all a0 � an, the n-th partial sums of P1k=0 ak.Di�erenes. For a given sequene fakg one denotes by f�akg the sequeneof di�erenes �ak = ak+1 � ak and alls the latter sequene the di�erene of fakg.This is the main formula of elementary summation theory.n�1Xk=0�ak = an � a0To telesope a seriesP1k=0 ak it is suÆient to �nd a sequene fAkg suh that�Ak = ak. On the other hand the sequene of sums An =Pn�1k=0 ak has di�erene�An = an. Therefore, we see that to telesope a sum is equivalent to �nd a formula20



1.5 telesopi sums 21for partial sums. This lead to onept of a telesopi funtion. For a funtion f(x)we introdue its di�erene �f(x) as f(x + 1) � f(x). A funtion f(x) telesopesPak if �f(k) = ak for all k.Often the sequene fakg that we would like to telesope has the form ak = f(k)for some funtion. Then we are searhing for a telesopi funtion F (x) for f(x),i.e., a funtion suh that �F (x) = f(x).To evaluate the di�erene of a funtion is usually muh easier than to telesopeit. For this reason one has evaluated the di�erenes of all basi funtions andorganized a table of di�erenes. In order to telesope a given funtion, look in thistable to �nd a table funtion whose di�erene oinides with or is lose to givenfuntion.For example, the di�erenes of xn for n � 3 are �x = 1, �x2 = 2x + 1,�x3 = 3x2 + 3x + 1. To telesope P1k=1 k2 we hoose in this table x3. Then�x33 �x2 = x+ 13 = �x22 ��x6 . Therefore, x2 = ��x33 � x22 + x6�. This immediatelyimplies the following formula for sums of squares:(1.5.3) n�1Xk=1 k2 = 2n3 � 3n2 + n6 :Fatorial powers. The usual powers xn have ompliated di�erenes. Theso-alled fatorial powers xk have simpler di�erenes. For any number x and anynatural number k, let xk denote x(x � 1)(x � 2) : : : (x � k + 1), and by x�k wedenote 1(x+1)(x+2):::(x+k) . At last we de�ne x0 = 1. The fatorial power satis�es thefollowing addition law. xk+m = xk(x� k)mWe leave to the reader to hek this rule for all integers m, k. The power nn fora natural n oinides with the fatorial n! = 1 � 2 � 3 � � �n. The main property offatorial powers is given by: �xn = nxn�1The proof is straightforward:(x + 1)k � xk = (x+ 1)1+(k�1) � x(k�1)+1= (x+ 1)xk�1 � xk�1(x� k + 1)= kxk�1:Applying this formula one an easily telesope any fatorial polynomial, i.e., anexpression of the forma0 + a1x1 + a2x2 + a3x3 + � � �+ anxn:Indeed, the expliit formula for the telesoping funtion isa0x1 + a12 x2 + a23 x3 + a34 x4 + � � �+ ann+1xn+1:Therefore, another strategy to telesope xk is to represent it as a fatorial polyno-mial.For example, to represent x2 as fatorial polynomial, onsider a+ bx+ x2, ageneral fatorial polynomial of degree 2. We are looking for x2 = a + bx + x2.Substituting x = 0 in this equality one gets a = 0. Substituting x = 1, one gets



22 1.5 telesopi sums1 = b, and �nally for x = 2 one has 4 = 2+2. Hene  = 1. As result x2 = x+x2.And the telesoping funtion is given by12x2 + 13x3 = 12 (x2 � x) + 13 (x(x2 � 3x+ 2)) = 16 (2x3 � 3x2 + x):And we have one again proved the formula (1.5.3).Stirling Estimation of the Euler series. We will expand 1(1+x)2 into a seriesof negative fatorial powers in order to telesope it. A natural �rst approximationto 1(1+x2) is x�2 = 1(x+1)(x+2) . We represent 1(1+x)2 as x�2 +R1(x), whereR1(x) = 1(1 + x)2 � x�2 = 1(x+ 1)2(x + 2) :The remainder R1(x) is in a natural way approximated by x�3. If R1(x) = x�3 +R2(x) then R2(x) = 2(x+1)2(x+2)(x+3) . Further, R2(x) = 2x�4 +R3(x), whereR3(x) = 2 � 3(x+ 1)2(x+ 2)(x+ 3)(x+ 4) = 3!x+ 1x�4:The above alulations lead to the onjeture(1.5.4) 1(1 + x)2 = n�1Xk=0 k!x�k�2 + n!x+ 1x�n�1:This onjeture is easily proved by indution. The remainder Rn(x) = n!x+1x�n�1represents the di�erene 1(1+x)2 �Pn�1k=0 k!x�2�k. Owing to the inequality x�1�n� 1(n+1)! , whih is valid for all x � 0, the remainder dereases to 0 as n inreasesto in�nity. This impliesTheorem 1.5.1. For all x � 0 one has1(1 + x)2 = 1Xk=0 k!x�2�k :To alulateP1k=p 1(1+k)2 , replae all summands by the expressions (1.5.4). Wewill get 1Xk=p n�1Xm=0m!k�2�m + n!k + 1k�1�n! :Changing the order of summation we haven�1Xm=0m! 1Xk=p k�2�m + 1Xk=p n!k + 1k�1�n:Sine 11+mx�1�m telesopes the sequene fk�2�mg, P1k=p k�2�m = 11+mp�1�m,Denote the sum of remainders P1k=p n!k+1k�1�n by R(n; p). Then for all natural pand n one has 1Xk=p 1(1 + k)2 = n�1Xm=0 m!1 +mp�1�m +R(n; p)



1.5 telesopi sums 23For p = 0 and n = +1, the right-hand side turns into the Euler series, and oneould get a false impression that we get nothing new. But k�2�n � 1k+1k�1�n �(k � 1)�2�n, henen!1 + np�1�n = 1Xk=pn!k�2�n � R(n; p) � 1Xk=p n!(k � 1)�2�n = n!1 + n (p� 1)�1�n:Sine (p� 1)�1�n � p�1�n = (1 + n)(p� 1)�2�n, there is a � 2 (0; 1) suh thatR(n; p) = n!1 + np�1�n + �n!(p� 1)�2�n:Finally we get:1Xk=1 1k2 = p�1Xk=0 1(1 + k)2 + n�1Xk=0 k!1 + k p�1�k + �n!(p� 1)�2�n:For p = n = 3 this formula turns into1Xk=1 1k2 = 1 + 14 + 19 + 14 + 140 + 1180 + �420 :For p = n = 10 one gets R(10; 10) � 10!9�12. After anellations one has12�11�12�13�14�15�17�19 . This is approximately 2 � 10�8. Therefore10�1Xk=0 1(k + 1)2 + 10�1Xk=0 k!1 + k10�1�kis less than the sum of the Euler series by only 2 � 10�8. In suh a way one an inone hour alulate eight digits of P1k=1 1k2 after the deimal point. It is not a badresult, but it is still far from Euler's eighteen digits. For p = 10, to provide eighteendigits one has to sum essentially more than one hundred terms of the series. Thisis a bit too muh for a person, but is possible for a omputer.Problems.1. Telesope P k3.2. Represent x4 as a fatorial polynomial.3. Evaluate P1k=1 1k(k+2) .4. Evaluate P1k=1 1k(k+1)(k+2)(k+3) .5. Prove: If �ak � �bk for all k and a1 � b1 then ak � bk for all k.6. �(x + a)n = n(x+ a)n�1.7. Prove Arhimedes's inequality n33 �Pn�1k=1 k2 � (n+1)33 .8. Telesope P1k=1 k2k .9. Prove the inequalities 1n �P1k=n+1 1k2 � 1n+1 .10. Prove that the degree of �P (x) is less than the degree of P (x) for any polyno-mial P (x).11. Relying on �2n = 2n, prove that P (n) < 2n eventually for any polynomialP (x).12. ProveP1k=0 k!(x� 1)�1�k = 1x .


