1.3. Unordered Sums

On the contents of the lecture. Our summation theory culminates in the
Sum Partition Theorem. This lecture will contribute towards evaluation of the
Euler series in two ways: we prove its convergence, and even estimate its sum by 2.
On the other hand, we will realize that evaluation of the Euler series with Euler’s
accuracy (107'%) seems to be beyond a human being’s strength.

Counsider a family {a;};c; of nonnegative numbers indexed by elements of an
arbitrary set I. An important special case of I is the set of pairs of natural numbers
N x N. Families indexed by N x N are called double series. They arise when one
multiplies one series by another one.

Any sum of the type ), a;, where K is a finite subset of [ is called a subsum
of {a,'},'ej over K.

DEFINITION. The least number majorizing all subsums of {a;}ic; over finite
subsets is called its (ultimate) sum and denoted by ), a;

The One-for-All and All-for-One principles for non-ordered sums are obtained
from the corresponding principles for ordered sums by replacing “partial sums” by
“finite subsums”.

Commutativity. In case I = N we have a definition which apparently is new.
But fortunately this definition is equivalent to the old one. Indeed, as any finite
subsum of positive series does not exceed its ultimate (ordered) sum, the non-
ordered sum also does not exceed it. On the other hand, any partial sum of the
series is a finite subsum. This implies the opposite inequality. Therefore we have

established the equality.
Su=Yu
k=1

kEN
This means that positive series obey the Commutativity Law. Because the non-
ordered sum obviously does not depend on the order of summands.

Partitions. A family of subsets {I}rcx of a set I is called a partition of I
and is written | | o, Ix if I = Upci Ix and Iy N I; = @ for all k # j.

THEOREM 1.3.1 (Sum Partition Theorem). For any partition I = | |
the indexing set and any family {a;}icr of nonnegative numbers,

(1.3.1) dai=> ai

iel jeJiel;

jeJ I of

Iverson notation. We will apply the following notation: a statement included
into [ ] takes value 1, if the statement is true, and 0, if it is false. Prove the following
simple lemmas to adjust to this notation. In both lemmas one has K C I.

LEMMA 1.3.2. Y a; = icrafi € K.

In particular, for K = I, Lemma 1.3.2 turns into

LEMMA 1.3.3. Y., a; = ;o ali € I].

LeMMA 1.3.4. 7, [i € It] = [i € Ik] for all i € I iff I = | |;c i Ik
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Proof of Sum Partition Theorem. At first we prove the following Sum
Transposition formula for finite .J,

(1.3.2) o> ai =) ai;.

iel jeJ jeJ iel
Indeed, if J contains just two elements, this formula turns into the Termwise Ad-
dition formula. The proof of this formula is the same as for series. Suppose the
formula is proved for any set which contains fewer elements than J does. Decom-

pose J into a union of two nonempty subsets J; UJ>. Then applying only Termwise
Addition and Lemmas 1.3.2, 1.3.3, 1.3.4, we get

DD a =Y > ayli€ ]

i€l jeJ i€l jeJ
=3 (aisli € I+ ai;lj € Ja))
i€l jeJ
= Y ayli€ A+ DD aili € Jl
icl jeJ icl jeJ
SIS o
i€l jeJ, i€l jeJo

But the last two sums can be transposed by the induction hypothesis. After such
a transposition one gets

Z Zaij+ Z Zaij :Z[j GJl]Zaij-FZ[jE J‘Z]Zaij

jeJ1 i€l jEJ2 i€l jeJ el jeJ el
=Y (Fenl+lien)) ay
jeJ iel
=D i€y ay
jeJ iel
=Y
jeJ iel

and the Sum Transposition formula for finite J is proved. Consider the general case.
To prove < in (1.3.2), consider a finite K C I. By the finite Sum Transposition
formula the subsum -, ;> c; aj is equal to Y- ;> e jc aij. But this sum is
termwise majorized by the right-hand side sum in (1.3.2). Therefore the left-hand
side does not exceed the right-hand side by All-for-One principle.

To derive the Sum Partition Theorem from the Sum Transposition formula,
pose a;j = a;[i € I;]. Then a; = } ;. ;a;; and (1.3.1) turns into (1.3.2). This
completes the proof of the Sum Partition Theorem.

Blocking. For a given a series Y- aj and an increasing sequence of natural
numbers {n}%, starting with ng = 0 one defines a new series Y ;- Ay by the

rule Ay, = ZL’“;;A a;. The series > o Ay, is called blocking of Y -, ar by {ng}.

The Sum Partition Theorem implies that the sums of blocked and unblocked
series coincide. Blocking formalizes putting of brackets. Therefore the Sum Parti-
tion Theorem implies the Sequential Associativity Law: Placing brackets does not

change the sum of series.
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Estimation of the Euler series. Let us compare the Euler series with the
n4l
series Y17 5r, blocked by {2"} to 327 ax. The sum Zi 20 k2 consists of 2"

summands, all of which are less then the first one, which is 227, . As 2”2% = 2%, it
follows that a, < zin for each n. Summing these inequalities, one gets Zzozl ar < 2.

Now let us estimate how many terms of Euler’s series one needs to take into
account to find its sum up to the eighteenth digit. To do this, we need to estimate
its tail. The arguments above give >~ 2 1 < 5a=r- To obtain a lower estimate,

let us remark that all terms of sum Zk - k12 exceed 55y~ As the number

of summands is 2", one gets a,, > ;4=. Hence > ;7,. 7z > . Since 210 =
1024 ~ 103, one gets 269 ~ 108, So, to provide an accuracy of 10718 one needs
to sum approximately 10'® terms. This task is inaccessible even for a modern
computer. How did Euler manage to do this? He invented a summation formula
(Euler-MacLaurin formula) and transformed this slowly convergent series into non-
positive divergent (!) one, whose partial sum containing as few as ten terms gave
eighteen digit accuracy. The whole calculation took him an evening. To introduce
this formula, one needs to know integrals and derivatives. We will do this later.

Problems.

1. Find 3207, gz and 3207, griyye, assuming 3207, g5 = 72/6.

Prove the convergence of Y7~ ,ml/E.

[

3. Estimate how many terms of the series Z;o:l # are necessary for calculation
of its sum with precision 1073,

Estimate the value of Y77 5 .

Prove the equality 3.7 ar 2 pZo bk = 22 pen @50k

Estimate how many terms of the Harmonic series give the sum surpassing 1000.
Prove the Dlrlchlet formula >°p_, Zl L ki = Dty i ki

Evaluate Y-, iy 5757 -
i+j
Evaluate }_; ;e v 5735
10. Represent an unordered sum Y

11. Evaluate }; ;c .

12. Change the summation order in )7, ZJ 0 @ij-
13. Define by Iverson notation the following functions:
e [z] (integral part),
e |z| (module),
e sgnaz (signum),
e n! (factorial).
14. Define only by formulas the expression [p is prime].
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i+j<n @ij as a double sum.



