8 1.2 POSITIVE SERIES

Summing the numbers column-wise (i.e., by the Termwise Addition Formula), we
get

s+(s—1)+(s—1-0=(1+0-1)+0—-1+1)+(-1+1+0)
+(1+0-1)+O0—-14+1)+(-14+14+0)+....

The left-hand side is 3s — 2. The right-hand side is the zero series. That is why
s=2.

%he series 1 — 1+ 1 —1+ ... arises as Zeno’s series in the case of a blind
Achilles directed by a cruel Zeno, who is interested, as always, only in proving his
claim, and a foolish, but merciful turtle. The blind Achilles is not fast, his velocity
equals the velocity of the turtle. At the first moment Zeno tells the blind Achilles
where the turtle is. Achilles starts the rally. But the merciful turtle wishing to help
him goes towards him instead of running away. Achilles meets the turtle half-way.
But he misses it, being busy to perform the first step of the algorithm. When
he accomplishes this step, Zeno orders: “Turn about!” and surprises Achilles by
saying that the turtle is on Achilles’ initial position. The turtle discovers that
Achilles turns about and does the same. The situation repeats ad infinitum. Now
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we see that assigning the sum 5 to the series 1 —1+1—1+ ... makes sense. It

predicts accurately the time of the first meeting of Achilles and turtle.

Positivity. The paradoxes discussed above are discouraging. Our intuition
based on handling finite sums fails when we turn to infinite ones. Observe that all
paradoxes above involve negative numbers. And to eliminate the evil in its root,
let us consider only nonnegative numbers.

We return to the ancient Greeks. They simply did not know what a negative
number is. But in contrast to the Greeks, we will retain zero. A series with
nonnegative terms will be called a positive series. We will show that for positive
series all familiar laws, including associativity and commutativity, hold true and
zero terms do not affect the sum.

Definition of Infinite Sum. Let us consider what Euler’s equality could

mean:
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The natural answer is: the partial sums 2221 k%, which contain more and more
x?
¥ 6
tial sums have to be less than %, its ultimate sum. Indeed, if some partial sum

.. . 2 . 2
exceeds or coincides with 7 then all subsequent sums will move away from 7.

Furthermore, any number ¢ which is less than %2 has to be surpassed by partial

reciprocal squares, approach closer and closer the value Z-. Consequently, all par-

sums eventually, when they approach %2 closer than by %2 — c¢. Hence the ultimate
sum majorizes all partial ones, and any lesser number does not. This means that
the ultimate sum is the smallest number which majorizes all partial sums.

Geometric motivation. Imagine a sequence [a;_1, a;] of intervals of the real
line. Denote by I; the length of i-th interval. Let ag = 0 be the left end point of
the first interval. Let [0, A] be the smallest interval containing the whole sequence.
Its length is naturally interpreted as the sum Y =, I;

This motivates the following definition.



1.2 POSITIVE SERIES 9

DEFINITION. If the partial sums of the positive series Y -, ar increase without
bound, its sum is defined to be co and the series is called divergent. In the opposite
case the series called convergent, and its sum is defined as the smallest number A
such that A > Y7 _, ay for all n.

This Definition is equivalent to the following couple of principles. The first
principle limits the ultimate sum from below:

PRINCIPLE (One-for-All). The ultimate sum of a positive series magjorizes all
partial sums.

And the second principle limits the ultimate sum from above:

PriINcIPLE (All-for-One). If all partial sums of a positive series do not exceed
a number, then the ultimate sum also does not exceed it.

THEOREM 1.2.1 (Termwise Addition Formula).

Zak+zbk—z (ar + by).
k=1

Proor. The inequality o, ar + > opey bk < Y pey(ak + by) is equivalent to
Yoy ak < Yop (g +bg) = > 4o bi. By All-for-One, the last is equivalent to the
system of inequalities

N [e's} oS}
Zakfz(ak+bk)_zbk N=12....
k=1 k=1 k=1

This system is equivalent to the following system

o0 o0
Zbkf ak+bk Zak N=12....
k=1 k=

Each inequality of the last system, in its turn, is equivalent to the system of in-
equalities

M o] N
Zbk SZ(ak+bk)—Zak M=1,2,....
k=1 k=1 k=1

But these inequalities are true for all N and M, as the following computations
show.

M+N M+N M+N

Zbk+zak< Z bi, + Z ay = Z ak+bk)§2(ak+bk)-
k=1 k=1

In the opposite direction, we see that any partial sum on the right-hand side
> hoq(ag + bg) splits into >, ar + >.p_; by. And by virtue of the One-for-All
principle, this does not exceed Y7 | ar + > 4o bi. Now, the All-for-One principle
provides the inequality in the opposite direction. d

THEOREM 1.2.2 (Shift Formula).

(oo} o0
E ap = ag + E Q.
k=0 k=1
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PrOOF. The Shift Formula immediately follows from the Termwise Addition
formula. To be precise, immediately from the definition, one gets the following:
ap+0+04+0+0+---=ap and that 0+ ay +az +az +--- = >, a. Termwise
Addition of these series gives

o0 o0
a0+zak:(GO+0)+(0+a1)+(0+a2)+(0+a3)+---:Zak.
k=1 k=0

THEOREM 1.2.3 (Termwise Multiplication Formula).

A i ap = i /\ak.
k=1 k=1

PRroOF. For any partial sum from the right-hand side one has
n n o0
PIEIEY PIEY P
k=1 k=1 k=1

by the Distributivity Law for finite sums and One-for-All. This implies the inequal-
ity MY pe, ak > D ope Aay by All-for-One. The opposite inequality is equivalent
t0 Yopoq ar > 5 Y peq Aak. As any partial sum Y, ax is equal to § Y Aak,
which does not exceed % Ezozl Aayg, one gets the opposite inequality. a

Geometric series. We have to return to the geometric series, because the
autorecursion equation produced by shift and multiplication formulas says nothing
about convergence. So we have to prove convergence for E,;";O ¢* with positive
q < 1. It is sufficient to prove the following inequality for all n

ltg+@++-+q" < .
Multiplying both sides by 1 — g one gets on the left-hand side

Q-+ @-)+ @ =)+ + (" =¢") + (" —¢"™)
=l—q+q-C+¢ -+~ —q"+q" ="
:l_qn—‘rl

and 1 on the right-hand side. The inequality 1—¢"*! < 1is obvious. Hence we have
proved the convergence. Now the autorecursion equation z = 1 + gz for EZ’;O q"

is constructed in usual way by the shift formula and termwise multiplication. It
leaves only two possibilities for Y, ¢*, either q+1 or co. For ¢ < 1 we have

proved convergence, and for ¢ > 1 infinity is the true answer.
Let us pay special attention to the case ¢ = 0. We adopt a common convention:

0% =1.

This means that the series >~ 0" satisfies the common formula for a convergent
geometric series 3,2 0" = 15 = 1. Finally we state the theorem, which is

essentially due to Eudoxus, who proved the convergence of the geometric series
with ratio ¢ < 1.
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THEOREM 1.2.4 (Eudoxus). For every nonnegative q one has

oo 1 o0
qu =—— forq<1, and qu =00 forq>1.
k=0 1-q k=0
Comparison of series. Quite often exact summation of series is too difficult,
and for practical purposes it is enough to know the sum approximatively. In this
case one usually compares the series with another one whose sum is known. Such
a comparison is based on the following Termwise Comparison Principle, which
immediately follows from the definition of a sum.

PriNCIPLE (Termwise Comparison). If ay < by, for k, then
oo oo
Z (473 S Z bk.
k=1 k=1

The only series we have so far to compare with are the geometric ones. The
following lemma is very useful for this purposes.

LemMA 1.2.5 (Ratio Test). If ag+1 < qag for k holds for some q < 1 then
>k <y
k=0 —4

PROOF. By induction one proves the inequality aj; < apg*. Now by Termwise
Comparison one estimates ZZ’;O ay, from above by the geometric series Zzozo apq® =

ao
1—gq U

If the series under consideration satisfies an autorecursion equation, to prove
its convergence usually means to evaluate it exactly. For proving convergence, the
Termwise Comparison Principle can be strengthened. Let us say that the series
> e, ak is eventually majorized by the series Y~ by, if the inequality by > ax
holds for each k starting from k& = n for some n. The following lemma is very useful
to prove convergence.

PrINCIPLE (Eventual Comparison). A series Y .- | ax, which is eventually ma-
jorized by a convergent series ZZ’;I br, s convergent.

PRrOOF. Consider a tail >, by, which termwise majorizes Y .- aj. Then
o] n—1 o]
doak= it ) a
k=1 k=1 k=n
n—1 o'}
<D art ) b
k=1 k=n
n—1 (o]
<D ak+ ) b
k=1 k=1

< 00.
O

Consider the series Y-, k27%. The ratio of two successive terms ”Z—:l of the

series is ’“2—21 This ratio is less or equal to % starting with & = 3. Hence this series
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. . . . . S ok ) .
is eventually majorizes by the geometrlc. series Z 0 03 5% (a.g = ). This proves
its convergence. And now by autorecursion equation one gets its sum.

Harmonic series paradox. Now we have a solid background to evaluate
positive series. Nevertheless, we must be careful about infinity! Consider the
following calculation:

= 1

= 1 =1
];21:(21:—1)22%—1_27:

2
k=1 k=1

=1 1x1
:;219—1_52_:E

=1 k=1

=1 1 1 =1
:;2k—1_§<z_:2k—1+z_:ﬂ>
=1 k=1 k=1

=1 e 1 11X 1
:<kzl2k—1_§kzl2k—1>_§;%
1 [ Ry |
-+ (Ewsr) -5
_100
_5 2k—1

We get that the sum ZZ’;I m satisfies the equation s = 3. This equation has
2
two roots 0 and co. But s satisfies the inequalities % < s < %. What is wrong?

Problems.

Prove 27, 0=0.

Prove > ;7 , 0% = 1.

Prove Y07 o ar = Y pe o @2k + D pog Q2k41-
Prove Y7, (ay — bk) > hey Gk — 2oy by for convergent series.
Evaluate Y2, k(k+1)

Prove (1-3)+ (5 - D+ (G -5+ =1-[G -

Prove the convergence of Y~ i, .

JHGE =5+

Wl

Prove the convergence of Y~ | +2%

© XS ok

Prove the convergence of Yo, A

Prove that ¢" < (1 ) for0<g< 1.

. Prove that for any positive ¢ < 1 there is an n that ¢" < 3.
. Prove 17 & <2.

. Evaluate Zk:l TR
. Prove the convergence of the Euler series Y ;- 75
*15. Prove that >37°) 327 a;; = Y272, Yo7 aij for a;; > 0.
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