
8 1.2 positive seriesSumming the numbers olumn-wise (i.e., by the Termwise Addition Formula), weget s+ (s� 1) + (s� 1� 0) = (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0)+ (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0) + : : : :The left-hand side is 3s � 2. The right-hand side is the zero series. That is whys = 23 .The series 1 � 1 + 1 � 1 + : : : arises as Zeno's series in the ase of a blindAhilles direted by a ruel Zeno, who is interested, as always, only in proving hislaim, and a foolish, but meriful turtle. The blind Ahilles is not fast, his veloityequals the veloity of the turtle. At the �rst moment Zeno tells the blind Ahilleswhere the turtle is. Ahilles starts the rally. But the meriful turtle wishing to helphim goes towards him instead of running away. Ahilles meets the turtle half-way.But he misses it, being busy to perform the �rst step of the algorithm. Whenhe aomplishes this step, Zeno orders: \Turn about!" and surprises Ahilles bysaying that the turtle is on Ahilles' initial position. The turtle disovers thatAhilles turns about and does the same. The situation repeats ad in�nitum. Nowwe see that assigning the sum 12 to the series 1 � 1 + 1 � 1 + : : : makes sense. Itpredits aurately the time of the �rst meeting of Ahilles and turtle.Positivity. The paradoxes disussed above are disouraging. Our intuitionbased on handling �nite sums fails when we turn to in�nite ones. Observe that allparadoxes above involve negative numbers. And to eliminate the evil in its root,let us onsider only nonnegative numbers.We return to the anient Greeks. They simply did not know what a negativenumber is. But in ontrast to the Greeks, we will retain zero. A series withnonnegative terms will be alled a positive series. We will show that for positiveseries all familiar laws, inluding assoiativity and ommutativity, hold true andzero terms do not a�et the sum.De�nition of In�nite Sum. Let us onsider what Euler's equality ouldmean: 1Xk=1 1k2 = �26 :The natural answer is: the partial sums Pnk=1 1k2 , whih ontain more and morereiproal squares, approah loser and loser the value �26 . Consequently, all par-tial sums have to be less than �26 , its ultimate sum. Indeed, if some partial sumexeeds or oinides with �26 then all subsequent sums will move away from �26 .Furthermore, any number  whih is less than �26 has to be surpassed by partialsums eventually, when they approah �26 loser than by �26 � . Hene the ultimatesum majorizes all partial ones, and any lesser number does not. This means thatthe ultimate sum is the smallest number whih majorizes all partial sums.Geometri motivation. Imagine a sequene [ai�1; ai℄ of intervals of the realline. Denote by li the length of i-th interval. Let a0 = 0 be the left end point ofthe �rst interval. Let [0; A℄ be the smallest interval ontaining the whole sequene.Its length is naturally interpreted as the sum P1i=1 liThis motivates the following de�nition.



1.2 positive series 9Definition. If the partial sums of the positive seriesP1k=1 ak inrease withoutbound, its sum is de�ned to be 1 and the series is alled divergent. In the oppositease the series alled onvergent, and its sum is de�ned as the smallest number Asuh that A �Pnk=1 ak for all n.This De�nition is equivalent to the following ouple of priniples. The �rstpriniple limits the ultimate sum from below:Priniple (One-for-All). The ultimate sum of a positive series majorizes allpartial sums.And the seond priniple limits the ultimate sum from above:Priniple (All-for-One). If all partial sums of a positive series do not exeeda number, then the ultimate sum also does not exeed it.Theorem 1.2.1 (Termwise Addition Formula).1Xk=1 ak + 1Xk=1 bk = 1Xk=1(ak + bk):Proof. The inequality P1k=1 ak +P1k=1 bk �P1k=1(ak + bk) is equivalent toP1k=1 ak �P1k=1(ak + bk)�P1k=1 bk. By All-for-One, the last is equivalent to thesystem of inequalitiesNXk=1 ak � 1Xk=1(ak + bk)� 1Xk=1 bk N = 1; 2; : : : :This system is equivalent to the following system1Xk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak N = 1; 2; : : : :Eah inequality of the last system, in its turn, is equivalent to the system of in-equalities MXk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak M = 1; 2; : : : :But these inequalities are true for all N and M , as the following omputationsshow. MXk=1 bk + NXk=1 ak � M+NXk=1 bk +M+NXk=1 ak = M+NXk=1 (ak + bk) � 1Xk=1(ak + bk):In the opposite diretion, we see that any partial sum on the right-hand sidePnk=1(ak + bk) splits into Pnk=1 ak +Pnk=1 bk. And by virtue of the One-for-Allpriniple, this does not exeedP1k=1 ak +P1k=1 bk. Now, the All-for-One prinipleprovides the inequality in the opposite diretion. �Theorem 1.2.2 (Shift Formula).1Xk=0 ak = a0 + 1Xk=1 ak:



10 1.2 positive seriesProof. The Shift Formula immediately follows from the Termwise Additionformula. To be preise, immediately from the de�nition, one gets the following:a0 +0+ 0+ 0+ 0+ � � � = a0 and that 0 + a1 + a2 + a3 + � � � =P1k=1 ak. TermwiseAddition of these series givesa0 + 1Xk=1 ak = (a0 + 0) + (0 + a1) + (0 + a2) + (0 + a3) + � � � = 1Xk=0 ak: �Theorem 1.2.3 (Termwise Multipliation Formula).� 1Xk=1 ak = 1Xk=1 �ak:Proof. For any partial sum from the right-hand side one hasnXk=1 �ak = � nXk=1 ak � � 1Xk=1 akby the Distributivity Law for �nite sums and One-for-All. This implies the inequal-ity �P1k=1 ak � P1k=1 �ak by All-for-One. The opposite inequality is equivalentto P1k=1 ak � 1�P1k=1 �ak. As any partial sum Pnk=1 ak is equal to 1�Pnk=1 �ak ,whih does not exeed 1�P1k=1 �ak, one gets the opposite inequality. �Geometri series. We have to return to the geometri series, beause theautoreursion equation produed by shift and multipliation formulas says nothingabout onvergene. So we have to prove onvergene for P1k=0 qk with positiveq < 1. It is suÆient to prove the following inequality for all n1 + q + q2 + q3 + � � �+ qn < 11�q :Multiplying both sides by 1� q one gets on the left-hand side(1� q) + (q � q2) + (q2 � q3) + � � �+ (qn�1 � qn) + (qn � qn+1)= 1� q + q � q2 + q2 � q3 + q3 � � � � � qn + qn � qn+1= 1� qn+1and 1 on the right-hand side. The inequality 1�qn+1 < 1 is obvious. Hene we haveproved the onvergene. Now the autoreursion equation x = 1 + qx for P1k=0 qkis onstruted in usual way by the shift formula and termwise multipliation. Itleaves only two possibilities for P1k=0 qk, either 1q�1 or 1. For q < 1 we haveproved onvergene, and for q � 1 in�nity is the true answer.Let us pay speial attention to the ase q = 0. We adopt a ommon onvention:00 = 1:This means that the seriesP1k=0 0k satis�es the ommon formula for a onvergentgeometri series P1k=0 0k = 11�0 = 1. Finally we state the theorem, whih isessentially due to Eudoxus, who proved the onvergene of the geometri serieswith ratio q < 1.



1.2 positive series 11Theorem 1.2.4 (Eudoxus). For every nonnegative q one has1Xk=0 qk = 11� q for q < 1, and 1Xk=0 qk =1 for q � 1:Comparison of series. Quite often exat summation of series is too diÆult,and for pratial purposes it is enough to know the sum approximatively. In thisase one usually ompares the series with another one whose sum is known. Suha omparison is based on the following Termwise Comparison Priniple, whihimmediately follows from the de�nition of a sum.Priniple (Termwise Comparison). If ak � bk for k, then1Xk=1 ak � 1Xk=1 bk:The only series we have so far to ompare with are the geometri ones. Thefollowing lemma is very useful for this purposes.Lemma 1.2.5 (Ratio Test). If ak+1 � qak for k holds for some q < 1 then1Xk=0 ak � a01� q :Proof. By indution one proves the inequality ak � a0qk. Now by TermwiseComparison one estimatesP1k=0 ak from above by the geometri seriesP1k=0 a0qk =a01�q �If the series under onsideration satis�es an autoreursion equation, to proveits onvergene usually means to evaluate it exatly. For proving onvergene, theTermwise Comparison Priniple an be strengthened. Let us say that the seriesP1k=1 ak is eventually majorized by the series P1k=1 bk, if the inequality bk � akholds for eah k starting from k = n for some n. The following lemma is very usefulto prove onvergene.Priniple (Eventual Comparison). A seriesP1k=1 ak, whih is eventually ma-jorized by a onvergent series P1k=1 bk, is onvergent.Proof. Consider a tail P1k=n bk, whih termwise majorizesP1k=n ak. Then1Xk=1 ak = n�1Xk=1 ak + 1Xk=n ak� n�1Xk=1 ak + 1Xk=n bk� n�1Xk=1 ak + 1Xk=1 bk<1: �Consider the series P1k=1 k2�k. The ratio of two suessive terms ak+1ak of theseries is k+12k . This ratio is less or equal to 23 starting with k = 3. Hene this series



12 1.2 positive seriesis eventually majorizes by the geometri series P1k=0 a3 2k3k , (a3 = 23 ). This provesits onvergene. And now by autoreursion equation one gets its sum.Harmoni series paradox. Now we have a solid bakground to evaluatepositive series. Nevertheless, we must be areful about in�nity! Consider thefollowing alulation:1Xk=1 12k(2k � 1) = 1Xk=1 12k � 1 � 1Xk=1 12k= 1Xk=1 12k � 1 � 12 1Xk=1 1k= 1Xk=1 12k � 1 � 12  1Xk=1 12k � 1 + 1Xk=1 12k!=  1Xk=1 12k � 1 � 12 1Xk=1 12k � 1!� 12 1Xk=1 12k= 12  1Xk=1 12k � 1!� 12 1Xk=1 12k= 12 1Xk=1 12k(2k � 1) :We get that the sumP1k=1 1(2k�1)2k satis�es the equation s = s2 . This equation hastwo roots 0 and 1. But s satis�es the inequalities 12 < s < �26 . What is wrong?Problems.1. ProveP1k=1 0 = 0.2. ProveP1k=1 0k = 1.3. ProveP1k=0 ak =P1k=0 a2k +P1k=0 a2k+1.4. ProveP1k=1(ak � bk) =P1k=1 ak �P1k=1 bk for onvergent series.5. Evaluate P1k=1 1k(k+1) .6. Prove (1� 12 ) + ( 13 � 14 ) + ( 15 � 16 ) + � � � = 1� [( 12 � 13 ) + ( 14 � 15 ) + � � � .7. Prove the onvergene of P1k=0 2kk! .8. Prove the onvergene of P1k=1 1000kk! .9. Prove the onvergene of P1k=1 k10002k .10. Prove that qn < 1n(1�q) for 0 < q < 1.11. Prove that for any positive q < 1 there is an n that qn < 12 .12. ProveP1k=1 1k! � 2.13. Evaluate P1k=1 1k(k+2) .14. Prove the onvergene of the Euler series P1k=1 1k2 .�15. Prove that P1i=1P1j=1 aij =P1j=1P1i=1 aij for aij � 0.


