
8 1.2 positive seriesSumming the numbers 
olumn-wise (i.e., by the Termwise Addition Formula), weget s+ (s� 1) + (s� 1� 0) = (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0)+ (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0) + : : : :The left-hand side is 3s � 2. The right-hand side is the zero series. That is whys = 23 .The series 1 � 1 + 1 � 1 + : : : arises as Zeno's series in the 
ase of a blindA
hilles dire
ted by a 
ruel Zeno, who is interested, as always, only in proving his
laim, and a foolish, but mer
iful turtle. The blind A
hilles is not fast, his velo
ityequals the velo
ity of the turtle. At the �rst moment Zeno tells the blind A
hilleswhere the turtle is. A
hilles starts the rally. But the mer
iful turtle wishing to helphim goes towards him instead of running away. A
hilles meets the turtle half-way.But he misses it, being busy to perform the �rst step of the algorithm. Whenhe a

omplishes this step, Zeno orders: \Turn about!" and surprises A
hilles bysaying that the turtle is on A
hilles' initial position. The turtle dis
overs thatA
hilles turns about and does the same. The situation repeats ad in�nitum. Nowwe see that assigning the sum 12 to the series 1 � 1 + 1 � 1 + : : : makes sense. Itpredi
ts a

urately the time of the �rst meeting of A
hilles and turtle.Positivity. The paradoxes dis
ussed above are dis
ouraging. Our intuitionbased on handling �nite sums fails when we turn to in�nite ones. Observe that allparadoxes above involve negative numbers. And to eliminate the evil in its root,let us 
onsider only nonnegative numbers.We return to the an
ient Greeks. They simply did not know what a negativenumber is. But in 
ontrast to the Greeks, we will retain zero. A series withnonnegative terms will be 
alled a positive series. We will show that for positiveseries all familiar laws, in
luding asso
iativity and 
ommutativity, hold true andzero terms do not a�e
t the sum.De�nition of In�nite Sum. Let us 
onsider what Euler's equality 
ouldmean: 1Xk=1 1k2 = �26 :The natural answer is: the partial sums Pnk=1 1k2 , whi
h 
ontain more and morere
ipro
al squares, approa
h 
loser and 
loser the value �26 . Consequently, all par-tial sums have to be less than �26 , its ultimate sum. Indeed, if some partial sumex
eeds or 
oin
ides with �26 then all subsequent sums will move away from �26 .Furthermore, any number 
 whi
h is less than �26 has to be surpassed by partialsums eventually, when they approa
h �26 
loser than by �26 � 
. Hen
e the ultimatesum majorizes all partial ones, and any lesser number does not. This means thatthe ultimate sum is the smallest number whi
h majorizes all partial sums.Geometri
 motivation. Imagine a sequen
e [ai�1; ai℄ of intervals of the realline. Denote by li the length of i-th interval. Let a0 = 0 be the left end point ofthe �rst interval. Let [0; A℄ be the smallest interval 
ontaining the whole sequen
e.Its length is naturally interpreted as the sum P1i=1 liThis motivates the following de�nition.



1.2 positive series 9Definition. If the partial sums of the positive seriesP1k=1 ak in
rease withoutbound, its sum is de�ned to be 1 and the series is 
alled divergent. In the opposite
ase the series 
alled 
onvergent, and its sum is de�ned as the smallest number Asu
h that A �Pnk=1 ak for all n.This De�nition is equivalent to the following 
ouple of prin
iples. The �rstprin
iple limits the ultimate sum from below:Prin
iple (One-for-All). The ultimate sum of a positive series majorizes allpartial sums.And the se
ond prin
iple limits the ultimate sum from above:Prin
iple (All-for-One). If all partial sums of a positive series do not ex
eeda number, then the ultimate sum also does not ex
eed it.Theorem 1.2.1 (Termwise Addition Formula).1Xk=1 ak + 1Xk=1 bk = 1Xk=1(ak + bk):Proof. The inequality P1k=1 ak +P1k=1 bk �P1k=1(ak + bk) is equivalent toP1k=1 ak �P1k=1(ak + bk)�P1k=1 bk. By All-for-One, the last is equivalent to thesystem of inequalitiesNXk=1 ak � 1Xk=1(ak + bk)� 1Xk=1 bk N = 1; 2; : : : :This system is equivalent to the following system1Xk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak N = 1; 2; : : : :Ea
h inequality of the last system, in its turn, is equivalent to the system of in-equalities MXk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak M = 1; 2; : : : :But these inequalities are true for all N and M , as the following 
omputationsshow. MXk=1 bk + NXk=1 ak � M+NXk=1 bk +M+NXk=1 ak = M+NXk=1 (ak + bk) � 1Xk=1(ak + bk):In the opposite dire
tion, we see that any partial sum on the right-hand sidePnk=1(ak + bk) splits into Pnk=1 ak +Pnk=1 bk. And by virtue of the One-for-Allprin
iple, this does not ex
eedP1k=1 ak +P1k=1 bk. Now, the All-for-One prin
ipleprovides the inequality in the opposite dire
tion. �Theorem 1.2.2 (Shift Formula).1Xk=0 ak = a0 + 1Xk=1 ak:



10 1.2 positive seriesProof. The Shift Formula immediately follows from the Termwise Additionformula. To be pre
ise, immediately from the de�nition, one gets the following:a0 +0+ 0+ 0+ 0+ � � � = a0 and that 0 + a1 + a2 + a3 + � � � =P1k=1 ak. TermwiseAddition of these series givesa0 + 1Xk=1 ak = (a0 + 0) + (0 + a1) + (0 + a2) + (0 + a3) + � � � = 1Xk=0 ak: �Theorem 1.2.3 (Termwise Multipli
ation Formula).� 1Xk=1 ak = 1Xk=1 �ak:Proof. For any partial sum from the right-hand side one hasnXk=1 �ak = � nXk=1 ak � � 1Xk=1 akby the Distributivity Law for �nite sums and One-for-All. This implies the inequal-ity �P1k=1 ak � P1k=1 �ak by All-for-One. The opposite inequality is equivalentto P1k=1 ak � 1�P1k=1 �ak. As any partial sum Pnk=1 ak is equal to 1�Pnk=1 �ak ,whi
h does not ex
eed 1�P1k=1 �ak, one gets the opposite inequality. �Geometri
 series. We have to return to the geometri
 series, be
ause theautore
ursion equation produ
ed by shift and multipli
ation formulas says nothingabout 
onvergen
e. So we have to prove 
onvergen
e for P1k=0 qk with positiveq < 1. It is suÆ
ient to prove the following inequality for all n1 + q + q2 + q3 + � � �+ qn < 11�q :Multiplying both sides by 1� q one gets on the left-hand side(1� q) + (q � q2) + (q2 � q3) + � � �+ (qn�1 � qn) + (qn � qn+1)= 1� q + q � q2 + q2 � q3 + q3 � � � � � qn + qn � qn+1= 1� qn+1and 1 on the right-hand side. The inequality 1�qn+1 < 1 is obvious. Hen
e we haveproved the 
onvergen
e. Now the autore
ursion equation x = 1 + qx for P1k=0 qkis 
onstru
ted in usual way by the shift formula and termwise multipli
ation. Itleaves only two possibilities for P1k=0 qk, either 1q�1 or 1. For q < 1 we haveproved 
onvergen
e, and for q � 1 in�nity is the true answer.Let us pay spe
ial attention to the 
ase q = 0. We adopt a 
ommon 
onvention:00 = 1:This means that the seriesP1k=0 0k satis�es the 
ommon formula for a 
onvergentgeometri
 series P1k=0 0k = 11�0 = 1. Finally we state the theorem, whi
h isessentially due to Eudoxus, who proved the 
onvergen
e of the geometri
 serieswith ratio q < 1.



1.2 positive series 11Theorem 1.2.4 (Eudoxus). For every nonnegative q one has1Xk=0 qk = 11� q for q < 1, and 1Xk=0 qk =1 for q � 1:Comparison of series. Quite often exa
t summation of series is too diÆ
ult,and for pra
ti
al purposes it is enough to know the sum approximatively. In this
ase one usually 
ompares the series with another one whose sum is known. Su
ha 
omparison is based on the following Termwise Comparison Prin
iple, whi
himmediately follows from the de�nition of a sum.Prin
iple (Termwise Comparison). If ak � bk for k, then1Xk=1 ak � 1Xk=1 bk:The only series we have so far to 
ompare with are the geometri
 ones. Thefollowing lemma is very useful for this purposes.Lemma 1.2.5 (Ratio Test). If ak+1 � qak for k holds for some q < 1 then1Xk=0 ak � a01� q :Proof. By indu
tion one proves the inequality ak � a0qk. Now by TermwiseComparison one estimatesP1k=0 ak from above by the geometri
 seriesP1k=0 a0qk =a01�q �If the series under 
onsideration satis�es an autore
ursion equation, to proveits 
onvergen
e usually means to evaluate it exa
tly. For proving 
onvergen
e, theTermwise Comparison Prin
iple 
an be strengthened. Let us say that the seriesP1k=1 ak is eventually majorized by the series P1k=1 bk, if the inequality bk � akholds for ea
h k starting from k = n for some n. The following lemma is very usefulto prove 
onvergen
e.Prin
iple (Eventual Comparison). A seriesP1k=1 ak, whi
h is eventually ma-jorized by a 
onvergent series P1k=1 bk, is 
onvergent.Proof. Consider a tail P1k=n bk, whi
h termwise majorizesP1k=n ak. Then1Xk=1 ak = n�1Xk=1 ak + 1Xk=n ak� n�1Xk=1 ak + 1Xk=n bk� n�1Xk=1 ak + 1Xk=1 bk<1: �Consider the series P1k=1 k2�k. The ratio of two su

essive terms ak+1ak of theseries is k+12k . This ratio is less or equal to 23 starting with k = 3. Hen
e this series



12 1.2 positive seriesis eventually majorizes by the geometri
 series P1k=0 a3 2k3k , (a3 = 23 ). This provesits 
onvergen
e. And now by autore
ursion equation one gets its sum.Harmoni
 series paradox. Now we have a solid ba
kground to evaluatepositive series. Nevertheless, we must be 
areful about in�nity! Consider thefollowing 
al
ulation:1Xk=1 12k(2k � 1) = 1Xk=1 12k � 1 � 1Xk=1 12k= 1Xk=1 12k � 1 � 12 1Xk=1 1k= 1Xk=1 12k � 1 � 12  1Xk=1 12k � 1 + 1Xk=1 12k!=  1Xk=1 12k � 1 � 12 1Xk=1 12k � 1!� 12 1Xk=1 12k= 12  1Xk=1 12k � 1!� 12 1Xk=1 12k= 12 1Xk=1 12k(2k � 1) :We get that the sumP1k=1 1(2k�1)2k satis�es the equation s = s2 . This equation hastwo roots 0 and 1. But s satis�es the inequalities 12 < s < �26 . What is wrong?Problems.1. ProveP1k=1 0 = 0.2. ProveP1k=1 0k = 1.3. ProveP1k=0 ak =P1k=0 a2k +P1k=0 a2k+1.4. ProveP1k=1(ak � bk) =P1k=1 ak �P1k=1 bk for 
onvergent series.5. Evaluate P1k=1 1k(k+1) .6. Prove (1� 12 ) + ( 13 � 14 ) + ( 15 � 16 ) + � � � = 1� [( 12 � 13 ) + ( 14 � 15 ) + � � � .7. Prove the 
onvergen
e of P1k=0 2kk! .8. Prove the 
onvergen
e of P1k=1 1000kk! .9. Prove the 
onvergen
e of P1k=1 k10002k .10. Prove that qn < 1n(1�q) for 0 < q < 1.11. Prove that for any positive q < 1 there is an n that qn < 12 .12. ProveP1k=1 1k! � 2.13. Evaluate P1k=1 1k(k+2) .14. Prove the 
onvergen
e of the Euler series P1k=1 1k2 .�15. Prove that P1i=1P1j=1 aij =P1j=1P1i=1 aij for aij � 0.


