
1.1. Autore
ursion of In�nite ExpressionsOn the 
ontents of the le
ture. The le
ture presents a romanti
 style ofearly analyti
s. The motto of the le
ture 
ould be \in�nity, equality and no de�-nitions!". In�nity is the main personage we will play with today. We demonstratehow in�nite expressions (i.e., in�nite sums, produ
ts, fra
tions) arise in solutionsof simple equations, how it is possible to 
al
ulate them, and how the results ofsu
h 
al
ulations apply to �nite mathemati
s. In parti
ular, we will dedu
e theEuler-Binet formula for Fibona

i numbers, the �rst Euler's formula of the 
ourse.We be
ome a
quainted with geometri
 series and the golden se
tion.A
hilles and the turtle. The an
ient Greek philosopher Zeno 
laimed thatA
hilles pursuing a turtle 
ould never pass it by, in spite of the fa
t that his velo
itywas mu
h greater than the velo
ity of the turtle. His arguments adopted to ourpurposes are the following.First Zeno proposed a pursuing algorithm for A
hilles:Initialization. Assign to the variable goal the original position of the turtle.A
tion. Rea
h the goal.Corre
tion. If the 
urrent turtle's position is goal, then stop, else reassign tothe variable goal the 
urrent position of the turtle and go to A
tion.Se
ondly, Zeno remarks that this algorithm never stops if the turtle 
onstantlymoves in one dire
tion.And �nally, he notes that A
hilles has to follow his algorithm if he want passthe turtle by. He may be not aware of this algorithm, but un
ons
iously he mustperform it. Be
ause he 
annot run the turtle down without rea
hing the originalposition of the turtle and then all positions of the turtle whi
h the variable goaltakes.Zeno's algorithm generates a sequen
e of times ftkg, where tk is the time ofexe
ution of the k-th a
tion of the algorithm. And the whole time of work of thealgorithm is the in�nite sum P1k=1 tk; and this sum expresses the time A
hillesneeds to run the turtle down. (The 
orre
tions take zero time, be
ause A
hillesreally does not think about them.) Let us name this sum the Zeno series.Assume that both A
hilles and the turtle run with 
onstant velo
ities v andw, respe
tively. Denote the initial distan
e between A
hilles and the turtle by d0.Then t1 = d0v . The turtle in this time moves by the distan
e d1 = t1w = wv d0. Byhis se
ond a
tion A
hilles over
omes this distan
e in time t2 = d1v = wv t1, while theturtle moves away by the distan
e d2 = t2w = wv d1. So we see that the sequen
es oftimes ftkg and distan
es fdkg satisfy the following re
urren
e relations : tk = wv tk�1,dk = wv dk�1.Hen
e ftkg as well as fdkg are geometri
 progressions with ratio wv . And thetime t whi
h A
hilles needs to run the turtle down ist = t1 + t2 + t3 + � � � = t1 + wv t1 + w2v2 t1 + � � � = t1 �1 + wv + w2v2 + � � �� :In spite of Zeno, we know that A
hilles does 
at
h up with the turtle. Andone easily gets the time t he needs to do it by the following argument: the distan
ebetween A
hilles and the turtle permanently de
reases with the velo
ity v � w.Consequently it be
omes 0 in the time t = d0v�w = t1 vv�w . Comparing the resultswe 
ome to the following 
on
lusion(1.1.1) vv�w = 1 + wv + w2v2 + w3v3 + � � � :2



1.1 autore
ursion of infinite expressions 3In�nite substitution. We see that some in�nite expressions represent �nitevalues. The fra
tion in the left-hand side of (1.1.1) expands into the in�nite serieson the right-hand side. In�nite expressions play a key rôle in mathemati
s andphysi
s. Solutions of equations quite often are presented as in�nite expressions.For example let us 
onsider the following simple equation(1.1.2) t = 1 + qt:Substituting on the right-hand side 1 + qt instead of t, one gets a new equationt = 1 + q(1 + qt) = 1 + q + q2t. Any solution of the original equation satis�es thisone. Repeating this tri
k, one gets t = 1 + q(1 + q(1 + qt)) = 1 + q + q2 + q3t.Repeating this in�nitely many times, one eliminates t on the right hand side andgets a solution of (1.1.2) in an in�nite formt = 1 + q + q2 + q3 + � � � = 1Xk=0 qk:On the other hand, the equation (1.1.2) solved in the usual way gives t = 11�q . Asa result, we obtain the following formula(1.1.3) 11� q = 1 + q + q2 + q3 + q4 + � � � = 1Xk=0 qk:whi
h represents a spe
ial 
ase of (1.1.1) for v = 1, w = q.Autore
ursion. An in�nite expression of the form a1+a2+a3+ : : : is 
alled aseries and is 
on
isely denoted byP1k=1 ak. Now we 
onsider a summation methodfor series whi
h is inverse to the above method of in�nite substitution. To �nd thesum of a series we shall 
onstru
t an equation whi
h is satis�ed by its sum. Wename this method autore
ursion. Re
ursion means \return to something known".Autore
ursion is \return to oneself".The series a2+a3+ � � � =P1k=2 ak obtained fromP1k=1 ak by dropping its �rstterm is 
alled the shift of P1k=1 ak.We will 
all the following equality the shift formula:1Xk=1 ak = a1 + 1Xk=2 ak:Another basi
 formula we need is the following multipli
ation formula:� 1Xk=1 ak = 1Xk=1 �ak:These two formulas are all one needs to �nd the sum of geometri
 seriesP1k=0 qk. To be exa
t, the multipli
ation formula gives the equality P1k=1 qk =qP1k=0 qk. Hen
e the shift formula turns into equation x = 1 + qx, where x isP1k=0 qk. The solution of this equation gives us the formula (1.1.3) for the sum ofthe geometri
 series again.From this formula, one 
an dedu
e the formula for the sum of a �nite geometri
progression. By Pnk=0 ak is denoted the sum a0 + a1 + a2 + � � �+ an. One hasn�1Xk=0 qk = 1Xk=0 qk � 1Xk=n qk = 11� q � qn1� q = 1� qn1� q :



4 1.1 autore
ursion of infinite expressionsThis is an important formula whi
h was traditionally studied in s
hool.The series P1k=0 kxk. To �nd the sum of P1k=1 kxk we have to apply addi-tionally the following addition formula,1Xk=1(ak + bk) = 1Xk=1 ak + 1Xk=1 bkwhi
h is the last general formula for series we introdu
e in the �rst le
ture.Reindexing the shift P1k=2 kxk we give it the form P1k=1(k + 1)xk+1. Furtherit splits into two partsx 1Xk=1(k + 1)xk = x 1Xk=1 kxk + x 1Xk=1 xk = x 1Xk=1 kxk + x x1� xby the addition formula. The �rst summand is the original sum multiplied byx. The se
ond is a geometri
 series. We already know its sum. Now the shiftformula for the sum s(x) of the original series turns into the equation s(x) =x+ x x1�x + xs(x). Its solution is s(x) = x(1�x)2 :Fibona

i Numbers. Starting with �0 = 0, �1 = 1 and applying the re
ur-ren
e relation �n+1 = �n + �n�1;one 
onstru
ts an in�nite sequen
e of numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; : : : , 
alledFibona

i numbers. We are going to get a formula for �n.To do this let us 
onsider the following fun
tion �(x) = P1k=0 �kxk, whi
his 
alled the generating fun
tion for the sequen
e f�kg. Sin
e �0 = 0, the sum�(x) + x�(x) transforms in the following way:1Xk=1�kxk + 1Xk=1 �k�1xk = 1Xk=1 �k+1xk = �(x) � xx :Multiplying both sides of the above equation by x and 
olle
ting all terms 
ontaining�(x) on the right-hand side, one gets x = �(x) � x�(x) � x2�(x) = x. It leads to�(x) = x1� x� x2 :The roots of the equation 1� x � x2 = 0 are �1�p52 . More famous is the pairof their inverses 1�p52 . The number � = �1+p52 is the so-
alled golden se
tion orgolden mean. It plays a signi�
ant rôle in mathemati
s, ar
hite
ture and biology.Its dual is �̂ = �1�p52 . Then ��̂ = �1, and � + �̂ = 1. Hen
e (1� x�)(1 � x�̂) =1� x� x2, whi
h in turn leads to the following de
omposition:xx2 + x� 1 = 1p5 � 11� �x � 11� �̂x� :We expand both fra
tions on the right hand side into geometri
 series:11� �x = 1Xk=0�kxk ; 11� �̂x = 1Xk=0 �̂kxk :



1.1 autore
ursion of infinite expressions 5This gives the following representation for the generating fun
tion�(x) = 1p5 1Xk=0(�k � �̂k)xk:On the other hand the 
oeÆ
ient at xk in the original presentation of �(x) is �k .Hen
e(1.1.4) �k = 1p5(�k � �̂k) = (p5 + 1)k + (�1)k(p5� 1)k2kp5 :This is 
alled the Euler-Binet formula. It is possible to 
he
k it for small k andthen prove it by indu
tion using Fibona

i re
urren
e.Continued fra
tions. The appli
ation of the method of in�nite substitutionto the solution of quadrati
 equation leads us to a new type of in�nite expressions,the so-
alled 
ontinued fra
tions. Let us 
onsider the golden mean equation x2 �x � 1 = 0. Rewrite it as x = 1 + 1x . Substituting 1 + 1x instead of x on the right-hand side we get x = 1 + 11+ 1x . Repeating the substitution in�nitely many timeswe obtain a solution in the form of the 
ontinued fra
tion:(1.1.5) 1 + 11 + 11 + 11+:::As this fra
tion seems to represent a positive number and the golden mean is theunique positive root of the golden mean equation, it is natural to 
on
lude that thisfra
tion is equal to � = 1+p52 . This is true and this representation allows one to
al
ulate the golden mean and p5 e�e
tively with great pre
ision.To be pre
ise, 
onsider the sequen
e(1.1.6) 1; 1 + 11 ; 1 + 11 + 11 ; 1 + 11 + 11 + 11 ; : : :of so-
alled 
onvergents of the 
ontinued fra
tion (1.1.5). Let us remark that allodd 
onvergents are less than � and all even 
onvergents are greater than �. Tosee this, 
ompare the n-th 
onvergent with the 
orresponding term of the followingsequen
e of fra
tions:(1.1.7) 1 + 1x ; 1 + 11 + 1x ; 1 + 11 + 11 + 1x ; : : : :We know that for x = � all terms of the above sequen
e are equal to �. Hen
eall we need is to observe how the removal of 1x a�e
ts the value of the 
onsideredfra
tion. The value of the �rst fra
tion of the sequen
e de
reases, the value of these
ond fra
tion in
reases. If we denote the value of n-th fra
tion by fn, then thevalue of the next fra
tion is given by the following re
urren
e relation:(1.1.8) fn+1 = 1 + 1fn :Hen
e in
reasing fn de
reases fn+1 and de
reasing fn in
reases fn+1. Consequentlyin general all odd fra
tions of the sequen
e (1.1.7) are less than the 
orresponding



6 1.1 autore
ursion of infinite expressions
onvergent, and all even are greater. The re
urren
e relation (1.1.8) is valid for thegolden mean 
onvergent. By this re
urren
e relation one 
an qui
kly 
al
ulate the�rst ten 
onvergents 1; 2; 32 ; 53 ; 85 ; 138 ; 2113 ; 3421 ; 5534 ; 8955 . The golden mean lies betweenlast two fra
tions, whi
h have the di�eren
e 134�55 . This allows us to determine the�rst four de
imal digits after the de
imal point of it and of p5.Problems.1. Evaluate P1k=0 22k33k .2. Evaluate 1� 1 + 1� 1 + � � � .3. Evaluate 1 + 1� 1� 1 + 1 + 1� 1� 1 + � � � .4. Evaluate P1k=1 k3k .5. Evaluate P1k=1 k22k .6. De
ompose the fra
tion 1a+x into a power series.7. Find the generating fun
tion for the sequen
e f2kg.8. Find sum the P1k=1 �k3�k.9. Prove by indu
tion the Euler-Binet formula.�10. Evaluate 1� 2 + 1 + 1� 2 + 1 + � � � .11. Approximate p2 by a rational with pre
ision 0:0001.12. Find the value of 1 + 12 + 11 + 12 + � � �.13. Find the value of q2 +p2 +p2 + � � �:14. By in�nite substitution, solve the equation x2 � 2x� 1 = 0, and represent p2by a 
ontinued fra
tion.15. Find the value of the in�nite produ
t 2 � 2 12 � 2 14 � 2 18 � � � � .16. Find a formula for n-th term of the re
urrent sequen
e xn+1 = 2xn + xn�1,x0 = x1 = 1.17. Find the sum of the Fibona

i numbers P1k=1 �k.18. Find sum 1 + 0� 1 + 1 + 0� 1 + � � � .19. De
ompose into the sum of partial fra
tions 1x2�3x+2 .


