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4.1. Newton SeriesOn the ontents of the leture. The formula with the binomial series wasengraved on Newton's gravestone in 1727 at Westminster Abbey.Interpolation problem. Suppose we know the values of a funtion f at somepoints alled interpolation nodes and we would like to interpolate the value of f atsome point, not ontained in the data. This is the so-alled interpolation problem.Interpolation was applied in the omputation of logarithms, maritime navigation,astronomial observations and in a lot of other things.A natural idea is to onstrut a polynomial whih takes given values at theinterpolation nodes and onsider its value at the point of interest as the interpola-tion. Values at n + 1 points de�ne a unique polynomial of degree n, whih takesjust these values at these points. In 1676 Newton disovered a formula for thispolynomial, whih is now alled Newton's interpolation formula.Consider the ase, when interpolation nodes are natural numbers. Reall thatthe di�erene of a funtion f is the funtion denoted Æf and de�ned by Æf(x) =f(x + 1) � f(x). De�ne iterated di�erenes Ækf by indution: Æ0f = f , Æk+1f =Æ(Ækf). Reall that xk denotes the k-th fatorial power xk = x(x�1) : : : (x�k+1).Lemma 4.1.1. For any polynomial P (x), its di�erene �P (x) is a polynomialof degree one less.Proof. The proof is by indution on the degree of P (x). The di�erene isonstant for any polynomial of degree 1. Indeed, Æ(ax + b) = a. Suppose thelemma is proved for polynomials of degree � n and let P (x) = Pn+1k=0 akxk be apolynomial of degree n + 1. Then P (x) � an+1xn+1 = Q(x) is a polynomial ofdegree � n. �P (x) = �axn+1 +�Q(x). By the indution hypothesis, �Q(x) hasdegree � n� 1 and, as we know, �xn+1 = (n+ 1)xn has degree n. �Lemma 4.1.2. If �P (x) = 0, and P (x) is a polynomial, then P (x) is onstant.Proof. If �P (x) = 0, then degree of P (x) annot be positive by Lemma 4.1.1,hene P (x) is onstant. �Lemma 4.1.3 (Newton Polynomial Interpolation Formula). For any polynomialP (x)(4.1.1) P (x) = 1Xk=0 �kP (0)k! xk:Proof. If P (x) = ax + b, then �0P (0) = b, �1P (0) = a and ÆkP (x) = 0 fork > 1. Hene the Newton series (4.1.1) turns into b+ax. This proves our assertionfor polynomials of degree � 1. Suppose it is proved for polynomials of degree n.Consider P (x) of degree n + 1. Then �P (x) = P1k=1 �kP (0)k! xk by the indutionhypothesis. Denote by Q(x) the Newton series P1k=0 �kP (0)k! xk for P (x).96



4.1 newton series 97Then �Q(x) = 1Xk=0 �kP (0)k! (x+ 1)k � 1Xk=0 �kP (0)k! xk= 1Xk=0 �kP (0)k! �xk= 1Xk=0 �kP (0)k! kxk�1= 1Xk=0 �kP (0)(k � 1)!xk�1= 1Xk=0 Æk(ÆP (0))k! xk= �P (x):Hene �(P (x) � Q(x)) = 0 and P (x) = Q(x) + . Sine P (0) = Q(0), one gets = 0. This proves P (x) = Q(x). �Lemma 4.1.4 (Lagrange Formula). For any sequene fykgnk=0, the polynomialLn(x) =Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k has the property Ln(k) = yk for 0 � k � n.Proof. For x = k, all terms of the sum Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k but thek-th vanish, and xkx�k is equal to k!(n� k)!(�1)n�k. �Lemma 4.1.5. For any funtion f and for any natural number m � n one hasf(m) =Pnk=0 Ækf(0)k! mk.Proof. Consider the Lagrange polynomial Ln suh that Ln(k) = f(k) fork � n. Then ÆkLn(0) = Ækf(0) for all k � n and ÆkLn(0) = 0 for k > n,beause the degree of Ln is n. Hene, Ln(x) = P1k=0 Ækf(0)k! xk = Pnk=0 Ækf(0)k! xkby Lemma 4.1.3. Putting x = m in the latter equality, one gets f(m) = Ln(m) =Pnk=0 Ækf(0)k! mk. �We see that the Newton polynomial gives a solution for the interpolation prob-lem and our next goal is to estimate the interpolation error.Theorem on extremal values. The least upper bound of a set of numbersA is alled the supremum of A and denoted by supA. In partiular, the ultimatesum of a positive series is the supremum of its partial sums. And the variation ofa funtion on an interval is the supremum of its partial variations.Dually, the greatest lower bound of a set A is alled the in�num and denotedby inf A.Theorem 4.1.6 (Weierstrass). If a funtion f is ontinuous on an interval[a; b℄, then it takes maximal and minimal values on [a; b℄.Proof. The funtion f is bounded by Lemma 3.6.3. Denote by B the supre-mum of the set of values of f on [a; b℄. If f does not take the maximum value, thenf(x) 6= B for all x 2 [a; b℄. In this ase 1B�f(x) is a ontinuous funtion on [a; b℄.



98 4.1 newton seriesHene it is bounded by Lemma 3.6.3. But the di�erene B� f(x) takes arbitrarilysmall values, beause B�" does not bound f(x). Therefore 1B�f(x) is not bounded.This is in ontradition to Lemma 3.6.3, whih states that a loally bounded fun-tion is bounded. The same arguments prove that f(x) takes its minimal value on[a; b℄. �Theorem 4.1.7 (Rolle). If a funtion f is ontinuous on the interval [a; b℄,di�erentiable in interval (a; b) and f(a) = f(b), then f 0() = 0 for some  2 (a; b).Proof. If the funtion f is not onstant on [a; b℄ then either its maximal valueor its minimal value di�ers from f(a) = f(b). Hene at least one of its extremalvalues is taken in some point  2 (a; b). Then f 0() = 0 by Lemma 3.2.1. �Lemma 4.1.8. If an n-times di�erentiable funtion f(x) has n+1 roots in theinterval [a; b℄, then f (n)(�) = 0 for some � 2 (a; b).Proof. The proof is by indution. For n = 1 this is Rolle's theorem. Letfxkgnk=0 be a sequene of roots of f . By Rolle's theorem any interval (xi; xi+1)ontains a root of f 0. Hene f 0 has n� 1 roots, and its (n� 1)-th derivative has aroot. But the (n� 1)-th derivative of f 0 is the n-th derivative of f . �Theorem 4.1.9 (Newton Interpolation Formula). Let f be an n + 1 timesdi�erentiable funtion on I � [0; n℄. Then for any x 2 I there is � 2 I suh thatf(x) = nXk=0 Ækf(0)k! xk + f (k+1)(�)(k + 1)! xk+1:Proof. The formula holds for x 2 f0; 1; : : : ng and any �, due to Lemma 4.1.5,beause xn+1 = 0 for suh x. For other x one has xn+1 6= 0, hene there is C suhthat f(x) =Pnk=0 Ækf(0)k! xk+Cxk+1. The funtion F (y) = f(y)�Pnk=0 Ækf(0)k! xk�Cyk+1 has roots 0; 1; : : : ; n; x. Hene its (n + 1)-th derivative has a root � 2 I .SinePnk=0 Ækf(0)k! xk is a polynomial of degree n its (n+1)-th derivative is 0. Andthe (n + 1)-th derivatives of Cxn+1 and Cxn+1 oinide, beause their di�ereneis a polynomial of degree n. Hene 0 = F (n+1)(�) = f (n+1)(�) � C(n + 1)! andC = f (n+1)(�)(n+1)! . �Binomial series. The series P1k=0 Ækf(0)k! xk is alled the Newton series of afuntion f . The Newton series oinides with the funtion at all natural points.And sometimes it onverges to the funtion. The most important example of suhonvergene is given by the so-alled binomial series.Consider the funtion (1 + x)y . This is a funtion of two variables. Fix x andevaluate its di�erene with respet to y. One has Æy(1+x)y = (1+x)y+1�(1+x)y =(1+x)y(1+x�1) = x(1+x)y. This simple formula allows us immediately to evaluateÆky (1 + x)y = xk(1 + x)y . Hene the Newton series for (1 + x)y as funtion of y is(4.1.2) (1 + x)y = 1Xk=0 xkykk! :For �xed y and variable x, the formula (4.1.2) represents the famous Newton bino-mial series. Our proof is not orret. We applied Newton's interpolation formula,proved only for polynomials, to an exponential funtion. But Newton's original



4.1 newton series 99proof was essentially of the same nature. Instead of interpolation of the wholefuntion, he interpolated oeÆients of its power series expansion. Newton onsid-ered the disovery of the binomial series as one of his greatest disoveries. And therole of the binomial series in further developments is very important.For example, Newton expands into a power series arsinx in the followingway. One �nds the derivative of arsinx by di�erentiating identity sin arsinx = x.This di�erentiation gives os(arsinx) arsin0 x = 1. Hene arsin0 x = 1os arsinx =(1� x2)� 12 . Sine(4.1.3) (1� x2)� 12 = 1Xk=0 (�x2)k(� 12 )kk! = 1Xk=0 (2k � 1)!!2k!! x2k;one gets the series for arsin by termwise integration of (4.1.3). The result isarsinx = 1Xk=0 (2k � 1)!!2k!! x2k+12k + 1 :It was more than a hundred years after the disovery Newton's Binomial The-orem that it was �rst ompletely proved by Abel.Theorem 4.1.10. For any omplex z and � suh that jzj < 1, the seriesP1k=0 zk�kk! absolutely onverges to (1 + z)� = exp (� ln(1 + z)).Proof. The analyti funtion exp � ln(1 + z) of variable z has no singularpoints in the disk jzj < 1, hene its Taylor series onverges to it. The derivativeof (1 + z)� by z is �(1 + z)��1. The k-th derivative is �k(1 + z)��k. In partiular,the value of k-th derivative for z = 0 is equal to �k. Hene the Taylor series of thefuntion is P1k=0 �kzkk! . �On the boundary of onvergene. Sine (1+z)� has its only singular pointon the irle jzj = 1, and this point is �1, the binomial series for all z on the irlehas (1 + z)� as its Abel's sum. In partiular, for z = 1 one gets1Xk=0 xkk! = 2x:The series on the left-hand side onverges for x > 0. Indeed, the series beomesalternating starting with k > x. The ratio k�xk+1 of modules of terms next to eahother is less then one. Hene the moduli of the terms form a monotone dereasingsequene onward k > x. And to apply the Leibniz Theorem 2.4.3, one needs onlyto prove that limn!1 xnn! = 0. Transform this limit into limn!1 xn Qn�1k=1 (xk � 1).The produt Qn�1k=1 (xk � 1) ontains at most x terms whih have moduli greaterthan 1, and all terms of the produt do not exeed x. Hene the absolute valueof this produt does not exeed xx. And our sequene fxnn! g is majorized by anin�nitesimally small fxx+1n g. Hene it is in�nitesimally small.Plain binomial theorem. For a natural exponent the binomial series ontainsonly �nitely many nonzero terms. In this ase it turns into (1 + x)n =Pnk=0 nkxkk! .



100 4.1 newton seriesBeause (a+ b)n = an(1 + ba )n, one gets the following famous formula(a+ b)n = n+1Xk=0 nkk! akbn�k:This is the formula that is usually alled Newton's Binomial Theorem. But thissimple formula was known before Newton. In Europe it was proved by Pasal in1654. Newton's disovery onerns the ase of non integer exponents.Symboli alulus. One de�nes the shift operation Sa for a funtion f bythe formula Saf(x) = f(x+a). Denote by 1 the identity operation and by S = S1.Hene S0 = 1. The omposition of two operations is written as a produt. So, forany a and b one has the following sum formula SaSb = Sa+b.We will onsider only so-alled linear operations. An operationO is alled linearif O(f+g) = O(f)+O(g) for all f; g and O(kf) = kO(f) for any onstant k. De�nethe sum A+B of operations A and B by the formula (A+B)f = Af+Bf . Further,de�ne the produt of an operation A by a number k as (kA)f = k(Af). For linearoperations O, U , V one has the distributivity law O(U + V ) = OU + OV . If theoperations under onsideration ommute UV = V U , (for example, all iterationsof the same operation ommute) then they obey all usual numeri laws, and allidentities whih hold for numbers extend to operations. For example, U2 � V 2 =(U � V )(U + V ), or the plain binomial theorem.Let us say that an operation O is dereasing if for any polynomial P the degreeof O(P ) is less than the degree of P . For example, the operation of di�ereneÆ = S � 1 and the operation D of di�erentiation Df(x) = f 0(x) are dereasing.For a dereasing operation O, any power series P1k=0 akOk de�nes an operationat least on polynomials, beause this series applied to a polynomial ontains only�nitely many terms. Thus we an apply analyti funtions to operations.For example, the binomial series (1+ Æ)y =P1k=0 Ækykk! represents Sy. And theequality Sy = P1k=0 Ækykk! , whih is in fat the Newton Polynomial InterpolationFormula, is a diret onsequene of binomial theorem. Another example, onsiderÆn = S xn � 1. Then S xn = 1+ Æn and Sx = (1+ Æn)n. Further, Sx =Pnk=0 nkÆknk! =P1k=0 nknk (nÆn)kk! . Now we follow Euler's method to \substitute n = 1". ThennÆn onverts into xD, and nknk turns into 1. As result we get the Taylor formulaSx = P1k=0 xkDkk! . Our proof is opied from the Euler proof in his Introdutio oflimn!1(1 + xn )n = P1k=0 xkk! . This substitution of in�nity means passing to thelimit. This proof is suÆient for dereasing operations on polynomials beause theseries ontains only �nitely many nonzero terms. In the general ase problems ofonvergene arise.The binomial theorem was the main tool for the expansion of funtions intopower series in Euler's times. Euler also applied it to get power expansions fortrigonometri funtions.The Taylor expansion for x = 1 gives a symboli equality S = expD. HeneD = lnS = ln(1+Æ) =P1k=1(�1)k+1 Ækk . We get a formula for numerial di�erenti-ation. Symboli alulations produe formulas whih hold at least for polynomials.



4.1 newton series 101Problems.1. Prove (x+ y)n =Pnk=0 nkxkyn�kk! .2. Evaluate Pnk=0 nkk! 2n�k.3. Prove: If p is prime, then pkk! is divisible by p.4. Prove: nkk! = nn�k(n�k)! .5. Dedue the plain binomial theorem from multipliation of series for exponenta.6. One de�nes the Catalan number n as the number of orret plaement ofbrakets in the sum a1 + a2 + � � � + an. Prove that Catalan numbers satisfythe following reursion equation n = Pn�1k=0 kn�k and dedue a formula forCatalan numbers.7. Prove that �kxnxm = 0 for x = 0 and k < n.8. Prove that Pnk=0(�1)k nkk! = 0.9. Get a di�erential equation for the binomial series and solve it.10. Prove (a+ b)n =Pnk=0 nkk! akbn�k.11. Prove: A sequene fakg suh that �2ak � 0 satis�es the inequality maxfa1; : : : ; ang �ak for any k between 1 and n.12. ProveP1k=0(�1)k x2k2k! = 2x=2 os x�4 .13. ProveP1k=0(�1)k x2k+1(2k+1)! = 2x=2 sin x�4 .14. Prove �n0p is divisible by p!.�15. Prove that �n0p =Pn�1k=0 (�1)n�k nkk! kp.16. Prove os2 x+ sin2 x = 1 via power series.



4.2. Bernoulli NumbersOn the ontents of the leture. In this leture we give expliit formulasfor telesoping powers. These formulas involve a remarkable sequene of numbers,whih were disovered by Jaob Bernoulli. They will appear in formulas for sumsof series of reiproal powers. In partiular, we will see that �26 , the sum of Eulerseries, ontains the seond Bernoulli number 16 .Summation Polynomials. Jaob Bernoulli found a general formula for thesum Pnk=1 kq . To be preise he disovered that there is a sequene of numbersB0; B1; B2; : : : ; Bn; : : : suh that(4.2.1) nXk=1 kq = q+1Xk=0Bk qk�1nq+1�kk! :The �rst 11 of the Bernoulli numbers are 1;� 12 ; 16 ; 0;� 130 ; 0; 142 ; 0;� 130 ; 0; 566 . Theright-hand side of (4.2.1) is a polynomial of degree q + 1 in n. Let us denote thispolynomial by  q+1(n). It has the following remarkable property: Æ q+1(x) =(1 + x)q . Indeed the latter equality holds for any natural value n of the variable,hene it holds for all x, beause two polynomials oiniding in in�nitely manypoints oinide. Replaing in (4.2.1) q +1 by m, n by x and reversing the order ofsummation, one gets the following: m(x) = mXk=0Bm�k (m� 1)m�k�1(m� k)! xk= mXk=0Bm�k (m� 1)!k!(m� k)!xk= mXk=0Bm�k (m� 1)k�1k! xk :Today's leture is devoted to the proof of this Bernoulli theorem.Telesoping powers. Newton's Formula represents xm as a fatorial poly-nomial Pnk=0 Æk0mk! xk , where �k0m denotes the value of Ækxm at x = 0. SineÆxk = kxk�1, one immediately gets a formula for a polynomial �m+1(x) whihtelesopes xm in the form �m+1(x) = 1Xk=0 �k0m(k + 1)!xk+1This polynomial has the property �m+1(n) =Pn�1k=0 km for all n.The polynomials �m(x), as follows from Lemma 4.1.2, are haraterized by twoonditions: ��m(x) = xm�1; �m(1) = 0:Lemma 4.2.1 (on di�erentiation). �0m+1(x) = �0m+1(0) +m�m(x).Proof. Di�erentiation of ��m+1(x) = xm gives ��0m+1(x) = mxm�1. Thepolynomial m�m has the same di�erenes, hene �(�0m+1(x) �m�m(x)) = 0. ByLemma 4.1.2 this implies that �0m+1(x)�m�m(x) is onstant. Therefore, �0m+1(x)�102



4.2 bernoulli numbers 103m�m(x) = �0m+1(0) �m�m(0). But �m(1) = 0 and �m(0) = �m(1) � Æ�m(0) =0� 0m�1 = 0. �Bernoulli polynomials. Let us introdue the m-th Bernoulli number Bmas �0m+1(0), and de�ne the Bernoulli polynomial of degree m > 0 as Bm(x) =m�m(x)+Bm. The Bernoulli polynomial B0(x) of degree 0 is de�ned as identiallyequal to 1. Consequently Bm(0) = Bm and B0m+1(0) = (m+ 1)Bm.The Bernoulli polynomials satisfy the following ondition:�Bm(x) = mxm�1 (m > 0):In partiular, �Bm(0) = 0 for m > 1, and therefore we get the following boundaryonditions for Bernoulli polynomials:Bm(0) = Bm(1) = Bm for m > 1, andB1(0) = �B1(1) = B1:The Bernoulli polynomials, in ontrast to �m(x), are normed : their leadingoeÆient is equal to 1 and they have a simpler rule for di�erentiation:B0m(x) = mBm�1(x)Indeed, B0m(x) = m�0m(x) = m((m�1)�m�1(x)+�0m(0)) = mBm�1(x), by Lemma4.2.1.Di�erentiating Bm(x) at 0, k times, we get B(k)m (0) = mk�1B0m�k+1(0) =mk�1(m� k + 1)Bm�k = mkBm�k. Hene the Taylor formula gives the followingrepresentation of the Bernoulli polynomial:Bm(x) = mXk=0 mkBm�kk! xk :Charaterization theorem. The following important property of Bernoullipolynomials will be alled the Balane property :(4.2.2) Z 10 Bm(x) dx = 0 (m > 0):Indeed, R 10 Bm(x) dx = R 10 (m+ 1)B0m+1(x) dx = �Bm+1(0) = 0.The Balane property and the Di�erentiation rule allow us to evaluate Bernoullipolynomials reursively. Thus, B1(x) has 1 as leading oeÆient and zero integralon [0; 1℄; this allows us to identify B1(x) with x � 1=2. Integration of B1(x) givesB2(x) = x2 � x + C, where C is de�ned by (4.2.2) as � R 10 x2 dx = 16 . IntegratingB2(x) we get B3(x) modulo a onstant whih we �nd by (4.2.2) and so on. Thuswe obtain the following theorem:Theorem 4.2.2 (haraterization). If a sequene of polynomials fPn(x)g sat-is�es the following onditions:� P0(x) = 1,� R 10 Pn(x) dx = 0 for n > 0,� P 0n(x) = nPn�1(x) for n > 0,then Pn(x) = Bn(x) for all n.



104 4.2 bernoulli numbersAnalyti properties.Lemma 4.2.3 (on reetion). Bn(x) = (�1)nBn(1� x) for any n.Proof. We prove that the sequene Tn(x) = (�1)nBn(1 � x) satis�es all theonditions of Theorem 4.2.2. Indeed, T0 = B0 = 1,Z 10 Tn(x) dx = (�1)n Z 01 Bn(x) dx = 0and Tn(x)0 = (�1)nB0n(1� x)= (�1)nnBn�1(1� x)(1� x)0= (�1)n+1nBn�1(x)= nTn�1(x): �Lemma 4.2.4 (on roots). For any odd n > 1 the polynomial Bn(x) has on [0; 1℄just three roots: 0; 12 ; 1.Proof. For odd n, the reetion Lemma 4.2.3 implies that Bn( 12 ) = �Bn( 12 ),that is Bn( 12 ) = 0. Furthermore, for n > 1 one has Bn(1) � Bn(0) = n0n�1 = 0.Hene Bn(1) = Bn(0) for any Bernoulli polynomial of degree n > 1. By thereetion formula for an odd n one obtains Bn(0) = �Bn(1). Thus any Bernoullipolynomial of odd degree greater than 1 has roots 0; 12 ; 1.The proof that there are no more roots is by ontradition. In the oppositease onsider Bn(x), of the least odd degree > 1 whih has a root � di�erent fromthe above mentioned numbers. Say � < 12 . By Rolle's Theorem 4.1.7 B0n(x) hasat least three roots �1 < �2 < �3 in (0; 1). To be preise, �1 2 (0; �), �2 2 (�; 12 ),�3 2 ( 12 ; 1). Then Bn�1(x) has the same roots. By Rolle's Theorem B0n�1(x) hasat least two roots in (0; 1). Then at least one of them di�ers from 12 and is a rootof Bn�2(x). By the minimality of n one onludes n� 2 = 1. However, B1(x) hasthe only root 12 . This is a ontradition. �Theorem 4.2.5. Bn = 0 for any odd n > 1. For n = 2k, the sign of Bnis (�1)k+1. For any even n one has either Bn = maxx2[0;1℄Bn(x) or Bn =minx2[0;1℄Bn(x). The �rst ours for positive Bn, the seond for negative.Proof. B2k+1 = B2k+1(0) = 0 for k > 0 by Lemma 4.2.4. Above we havefound that B2 = 16 . Suppose we have established that B2k > 0 and that this isthe maximal value for B2k(x) on [0; 1℄. Let us prove that B2k+2 < 0 and it isthe minimal value for B2k+2(x) on [0; 1℄. The derivative of B2k+1 in this ase ispositive at the ends of [0; 1℄, hene B2k+1(x) is positive for 0 < x < 12 and negativefor 12 < x < 1, by Lemma 4.2.4 on roots and the Theorem on Intermediate Values.Hene, B02k+2(x) > 0 for x < 12 and B02k+2(x) < 0 for x > 12 . Therefore, B2k+2(x)takes the maximal value in the middle of [0; 1℄ and takes the minimal values atthe ends of [0; 1℄. Sine the integral of the polynomial along [0; 1℄ is zero andthe polynomial is not onstant, its minimal value has to be negative. The samearguments prove that if B2k is negative and minimal, then B2k+2 is positive andmaximal. �



4.2 bernoulli numbers 105Lemma 4.2.6 (Lagrange Formula). If f is a di�erentiable funtion on [a; b℄,then there is a � 2 (a; b), suh that(4.2.3) f(b) = f(a) + f 0(�)f(b)� f(a)b� a :Proof. The funtion g(x) = f(x) � (x � a) f(b)�f(a)b�a is di�erentiable on [a; b℄and g(b) = g(a) = 0. By Rolle's Theorem g0(�) = 0 for some � 2 [a; b℄. Henef 0(�) = f(b)�f(a)b�a . Substitution of this value of f 0(�) in (4.2.3) gives the equality. �Generating funtion. The following funtion of two variables is alled thegenerating funtion of Bernoulli polynomials.(4.2.4) B(x; t) = 1Xk=0Bk(x) tkk!Sine Bk � k!2k , the series on the right-hand side onverges for t < 2 for any x. Let usdi�erentiate it termwise as a funtion of x, for a �xed t. We getP1k=0 kBk�1(x) tkk! =tB(x; t). Consequently (lnB(x; t))0x = B0x(x;t)B(x;t) = t and lnB(x; t) = xt+ (t), wherethe onstant (t) depends on t. It follows that B(x; t) = exp(xt)k(t), where k(t) =exp((t)). For x = 0 we get B(0; t) = k(t) = P1k=0 Bk tkk! . To �nd k(t) onsiderthe di�erene B(x + 1; t) � B(x; t). It is equal to exp(xt + t)k(t) � exp(xt). Onthe other hand the di�erene is P1k=0�Bk(x) tkk! = P1k=0 kBk�1(x) tkk! = tB(x; t).Comparing these expressions we get expliit formulas for the generating funtionsof Bernoulli numbers: k(t) = texp t� 1 = 1Xk=0 Bkk! tk;and Bernoulli polynomials:B(x; t) = 0�1Xk=+Bk(x) tkk! = t exp(tx)exp t� 1 :From (4.2.4) one gets t = (exp t � 1)P1k=0 Bk tkk! . Substituting exp t � 1 =P1k=1 tkk! in this equality, by the Uniqueness Theorem 3.6.9, one gets the equalitiesfor the oeÆients of the power seriesnXk=1 Bn�k(n� k)!k! = 0 for n > 1.Add Bnn! to both sides of this equality and multiply both sides by n! to get(4.2.5) Bn = nXk=0 Bknkk! for n > 1.The latter equality one memorizes via the formula Bn = (B + 1)n, where afterexpansion of the right hand side, one should move down all the exponents at Bturning the powers of B into Bernoulli numbers.Now we are ready to prove that(4.2.6) �m(1 + x) = Bm(x+ 1)m � Bmm = mXk=0Bm�k (m� 1)k�1k! xk =  m(x):



106 4.2 bernoulli numbersPutting x = 0 in the right hand side one gets  m(0) = Bm(m � 1)�1 = Bmm . Theleft-hand side takes the same value at x = 0, beause Bm(1) = Bm(0) = Bm. Itremains to prove the equality of the oeÆients in (4.2.6) for positive degrees.Bm(x+ 1)m = 1m mXk=0 mkBm�kk! (1 + x)k= 1m mXk=0 mkBm�kk! kXj=0 kjxjj!Now let us hange the summation order and hange the summation index of theinterior sum by i = m� k. = 1m mXj=0 xjj! mXk=j mkBm�kk! kj= 1m mXj=0 xjj! m�jXi=0 mm�iBi(m� i)! (m� i)jNow we hange mm�i(m�i)j(m�i)! by (m�j)imji! and apply the identity (4.2.5).= mXj=0 xjmjmj! m�jXi=0 Bi(m� j)ii!= mXj=0 (m� 1)j�1xjj! Bm�j :Problems.1. Evaluate R 10 Bn(x) sin 2�x dx.2. Expand x4 � 3x2 + 2x� 1 as a polynomial in (x� 2).3. Calulate the �rst 20 Bernoulli numbers.4. Prove the inequality jBn(x)j � jBnj for even n.5. Prove the inequality jBn(x)j � n4 jBn�1j for odd n.6. Prove that f(0)+f(1)2 = R 10 f(x) dx + R 10 f 0(x)B1(x) dx.7. Prove that f(0)+f(1)2 = R 10 f(x) dx + �f 0(0)2 � R 10 f 00(x)B2(x) dx.8. Dedue �Bn(x) = nxn�1 from the balane property and the di�erentiationrule.9. Prove that Bn(x) = Bn(1� x), using the generating funtion.10. Prove that B2n+1 = 0, using the generating funtion.11. Prove that Bm(nx) = nm�1Pn�1k=0 Bm �x+ kn�.12. Evaluate Bn( 12 ).13. Prove that B2k(x) = P (B2(x)), where P (x) is a polynomial with positive oef-�ient (Jaobi Theorem).14. Prove that Bn =P1k=0(�1)k�k0nk+1 .�15. Prove that Bm+P 1k+1 [k + 1 is prime and k is divisor of m℄ is an integer (StaudtTheorem).



4.3. Euler-Malaurin FormulaOn the ontents of the leture. From this leture we will learn how Eulermanaged to alulate eighteen digit plaes of the sum P1k=0 1k2 .Symboli derivation. Taylor expansion of a funtion f at point x givesf(x+ 1) = 1Xk=0 f (k)(x)k! :Hene Æf(x) = 1Xk=1 Dkf(x)k! ;whereD is the operation of di�erentiation. One expresses this equality symboliallyas(4.3.1) Æ = expD� 1:We are searhing for F suh that F (n) =Pn�1k=1 f(k) for all n. Then ÆF (x) = f(x),or symbolially F = Æ�1f . So we have to invert the operation of the di�erene.From (4.3.1), the inversion is given formally by the formula (expD � 1)�1. Thisfuntion has a singularity at 0 and annot be expanded into a power series in D.However we know the expansion texp t� 1 = 1Xk=0 Bkk! tk:This allows us to give a symboli solution of our problem in the formÆ�1 = D�1 DexpD� 1 = 1Xk=0 Bkk! Dk�1 = D�1 � 121+ 1Xk=1 B2k2k! D2k�1:Here we take into aount that B0 = 1, B1 = � 12 and B2k+1 = 0 for k > 0.Sine Pn�1k=1 f(k) = F (n) � F (1), the latter symboli formula gives the followingsummation formula:(4.3.2) n�1Xk=1 f(k) = Z n1 f(x) dx� f(n)� f(1)2 + 1Xk=1 B2k(2k)! (f (2k�1)(n)� f (2k�1)(1)):For f(x) = xm this formula gives the Bernoulli polynomial �m+1.Euler's estimate. Euler applied this formula to f(x) = 1(x+9)2 and estimatedthe sum P1k=10 1k2 . In this ase the k-th derivative of 1(x+9)2 at 1 has absolutevalue (k+1)!10k+2 . Hene the module of the k-th term of the summation formula doesnot exeed Bkk10k+2 . For an auray of eighteen digit plaes it is suÆient to sumup the �rst fourteen terms of the series, only eight of them do not vanish. Euleronjetured, and we will prove, that the value of error does not exeed of the value ofthe �rst rejeted term, whih is B1616�1018 . Sine B16 = � 3617510 this gives the promisedauray. 107



108 4.3 euler-malaurin formulaB1 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20� 12 16 � 130 142 � 130 566 � 6912730 76 � 3617510 43867798 � 174611330Figure 4.3.1. Bernoulli numbersWe see from the table (Figure 4.3.1) that inreasing of the number of onsideredterms does not improve auray notieably.Summation formula with remainder. In this leture we assume that allfuntions under onsideration are di�erentiable as many times as needed.Lemma 4.3.1. For any funtion f(x) on [0; 1℄ one has12(f(1) + f(0)) = Z 10 f(x) dx� Z 10 f 0(x)B1(x) dx:Proof. Reall that B1(x) = x� 12 , hene R 10 f 0(x)B1(x) dx = R 10 (x� 12 ) df(x).Now, integration by parts givesZ 10 (x � 12) df(x) = 12(f(1) + f(0))� Z 10 f(x) dx: �Consider the periodi Bernoulli polynomials Bmfxg = Bm(x � [x℄). ThenB0mfxg = mBm�1fxg for non integer x.Let us denote by Pnm ak the sum 12am +Pn�1k=m+1 ak + 12an.Lemma 4.3.2. For any natural p, q and any funtion f(x) one hasqXp f(k) = Z qp f(x) dx � Z qp f 0(x)B1fxg dx:Proof. Applying Lemma 4.3.1 to f(x+ k) one gets12(f(k + 1) + f(k)) = Z 10 f(x+ k) dx+ Z 10 f 0(x+ k)B1(x) dx= Z k+1k f(x) dx+ Z k+1k f 0(x)B1fxg dx:Summing up these equalities for k from p to q, one proves the lemma. �Lemma 4.3.3. For m > 0 and a funtion f one has(4.3.3) Z qp f(x)Bmfxg dx = Bm+1m+ 1(f(q)� f(p))� Z qp f 0(x)Bm+1fxg dx:Proof. Sine Bmfxgdx = dBm+1fxgm+1 and Bm+1fkg = Bm+1 for any naturalk, the formula (4.3.3) is obtained by a simple integration by parts. �



4.3 euler-malaurin formula 109Theorem 4.3.4. For any funtion f and natural numbers n and m one has:(4.3.4) nX1 f(k) = Z n1 f(x) dx+ m�1Xk=1 Bk+1(k + 1)! �f (k)(n)� f (k)(1)�+ (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:Proof. The proof is by indution on m. For m = 1, formula (4.3.4) is justgiven by Lemma 4.3.2. Suppose (4.3.4) is proved for m. The remainder(�1)m+1m! Z n1 f (m)(x)Bmfxg dxan be transformed by virtue of Lemma 4.3.3 into(�1)m+1Bm+1(m+ 1)! (f (m)(n)� f (m)(1)) + (�1)m+2(m+ 1)! Z n1 Bm+1fxgf (m+1)(x) dx:Sine odd Bernoulli numbers vanish, (�1)m+1Bm+1 = Bm+1 for m > 0. �Estimation of the remainder. For m = 1, (4.3.4) turns into (4.3.2). De-note Rm = (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:This is the so-alled remainder of Euler-Malaurin formula.Lemma 4.3.5. R2m = R2m+1 for any m > 1.Proof. Beause B2m+1 = 0, the only thing whih hanges in (4.3.4) whenone passes from 2m to 2m + 1 is the remainder. Hene its value does not hangeeither. �Lemma 4.3.6. If f(x) is monotone on [0; 1℄ thensgnZ 10 f(x)B2m+1(x) dx = sgn(f(1)� f(0)) sgnB2m:Proof. Sine B2m+1(x) = �B2m+1(1� x), the hange x ! 1� x transformsthe integral R 10:5 f(x)B2m+1(x) dx to � R 0:50 f(1� x)B2m+1(x) dx:Z 10 f(x)B2m+1(x) dx = Z 0:50 f(x)B2m+1(x) dx + Z 10:5 f(x)B2m+1(x) dx= Z 0:50 (f(x)� f(1� x))B2m+1(x) dx:B2m+1(x) is equal to 0 at the end-points of [0; 0:5℄ and has onstant sign on (0; 0:5),hene its sign on the interval oinides with the sign of its derivative at 0, that is,it is equal to sgnB2m. The di�erene f(x) � f(1 � x) also has onstant sign asx < 1 � x on (0; 0:5) and its sign is sgn(f(1) � f(0)). Hene the integrand hasonstant sign. Consequently the integral itself has the same sign as the integrandhas. �Lemma 4.3.7. If f (2m+1)(x) and f (2m+3)(x) are omonotone for x � 1 thenR2m = �m B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)); 0 � �m � 1:



110 4.3 euler-malaurin formulaProof. The signs of R2m+1 and R2m+3 are opposite. Indeed, by Lemma 4.2.5sgnB2m = � sgnB2m+2, and sgn(f (2m+1)(n) � f (2m+1)(1)) = sgn(f (2m+3)(n) �f (2m+3)(1) due to the omonotonity ondition. Hene sgnR2m+1 = � sgnR2m+3by Lemma 4.3.6.Set T2m+2 = B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)):Then T2m+2 = R2m+1�R2m+2. By Lemma 4.3.5, T2m+2 = R2m+1�R2m+3. SineR2m+3 and R2m+1 have opposite signs, it follows that sgnT2m+2 = sgnR2m+1 andjT2m+2j � jR2m+1j. Hene �m = R2m+1T2m+2 = R2mT2m+2 belongs to [0; 1℄. �Theorem 4.3.8. If f (k) and f (k+2) are omonotone for any k > 1, then����� nX1 f(k)� Z n1 f(x) dx� mXk=1 B2k(2k)! �f (2k�1)(n)� f (2k�1)(1)������� ���� B2m+2(2m+ 2)! �f (2m+1)(n)� f (2m+1)(1)����� :Hene the value of the error whih gives the summation formula (4.3.2) withm terms has the same sign as the �rst rejeted term, and its absolute value doesnot exeed the absolute value of the term.Theorem 4.3.9. Suppose that R11 jf (k)(x)j dx <1, limx!1 f (k)(x) = 0 and f (k)is omonotone with f (k+2) for all k � K for some K. Then there is a onstant Csuh that for any m > K for some �m 2 [0; 1℄(4.3.5) nXk=1 f(k) = C + f(n)2 + Z n1 f(x) dx + mXk=1 B2k(2k)!f (2k�1)(n)+ �m B2m+2(2m+ 2)!f (2m+1)(n):Lemma 4.3.10. Under the ondition of the theorem, for any m � K,(4.3.6) (�1)mm! Z 1p f (m)(x)Bmfxg dx = ��m B2m+2(2m+ 2)!f (2m+1)(p):Proof. By Lemma 4.3.7,(�1)m+1m! Z qp f (m)(x)Bmfxg dx = �m B2m+2(2m+ 2)! (f (2m+1)(q)� f (2m+1)(p)):To get (4.3.6), pass to the limit as q tends to in�nity. �Proof of Theorem 4.3.9. To get (4.3.5) we hange the form of the remain-der RK for (4.3.4). SineZ n1 BKfxgf (K) dx = Z 11 BKfxgf (K)(x) dx � Z 1n BKfxgf (K)(x) dx;



4.3 euler-malaurin formula 111applying the equality (4.3.3) to the interval [n;1), one gets� (�1)k+1Bkk! Z 1n Bkfxgf (k)(x) dx= (�1)k+1Bk+1(k + 1)! f (k)(n)� (�1)k+2Bk+1(k + 1)! Z 1n Bk+1fxgf (k+1)(x) dx:Iterating this formula one getsRK = Z 11 BKfxgf (K) dx+ mXk=K Bk+1(k + 1)!f (k)(n)+ (�1)mm! Z 1n Bmfxgf (m)(x) dx:Here we take into aount the equalities (�1)kBk = Bk and (�1)m+2 = (�1)m.Now we substitute this expression of RK into (4.3.4) and set(4.3.7) C = (�1)K+1 Z 11 BKfxgf (K)(x) dx � f(1)2 � K�1Xk=1 Bk+1(k + 1)!f (k)(1): �Stirling formula. The logarithm satis�es all the onditions of Theorem 4.3.9with K = 2. Its k-th derivative at n is equal to (�1)k+1(k�1)!nk . Thus (4.3.5) for thelogarithm turns intonXk=1 ln k = n lnn� n+ � + ln n2 + mXk=1 B2k2k(2k � 1)n2k�1 + �mB2m+2(2m+ 2)(2m+ 1)n2k�1 :By (4.3.7), the onstant is � = Z 11 B2fxgx2 dx� B22 :But we already know this onstant as � = 12 ln 2�. For m = 0, the above formulagives the most ommon form of Stirling formula:n! = p2�nnne�n+ �12n :Problems.1. Write the Euler-Malaurin series telesoping 1x .2. Prove the uniqueness of the onstant in Euler-Malaurin formula.3. Calulate ten digit plaes of P1k=1 1n3 .4. Calulate eight digit plaes of P1000000k=1 1k .5. Evaluate ln 1000! with auray 10�4.



4.4. Gamma FuntionOn the ontents of the leture. Euler's Gamma-funtion is the funtionresponsible for in�nite produts. An in�nite produt whose terms are values ofa rational funtion at integers is expressed in terms of the Gamma-funtion. Inpartiular it will help us prove Euler's fatorization of sin.Telesoping problem. Given a funtion f(x), �nd a funtion F (x) suh thatÆF = f . This is the telesoping problem for funtions. In partiular, for f = 0any periodi funtion of period 1 is a solution. In the general ase, to any solutionof the problem we an add a 1-periodi funtion and get another solution. Thegeneral solution has the form F (x) + k(t) where F (x) is a partiular solution andk(t) is a 1-periodi funtion, alled the periodi onstant.The Euler-Malaurin formula gives a formal solution of the problem, but theEuler-Malaurin series rarely onverges. Another formal solution is(4.4.1) F (x) = � 1Xk=0 f(x+ k):Trigamma. Now let us try to telesope the Euler series. The series (4.4.1)onverges for f(x) = 1xm provided m � 2 and x 6= �n for natural n > 1. Inpartiular, the funtion(4.4.2) � (x) = 1Xk=1 1(x+ k)2is analyti; it is alled the trigamma funtion and it telesopes � 1(1+x)2 . Its value� (0) is just the sum of the Euler series.This funtion is distinguished among others funtions telesoping � 1(1+x)2 byits �nite variation.Theorem 4.4.1. There is a unique funtion � (x) suh that Æ� (x) = � 1(1+x)2 ,var� [0;1℄ <1 and � (0) =P1k=1 1k2 .Proof. Sine � is monotone, one has var� [0;1℄ = P1k=0 jÆ� j = P1k=1 1k2 <1. Suppose f(x) is another funtion of �nite variation telesoping 1(1+x)2 . Thenf(x) � � (x) is a periodi funtion of �nite variation. It is obvious that suh afuntion is onstant, and this onstant is 0 if f(1) = � (1). �Digamma. The series �P1k=0 1x+k , whih formally telesopes 1x , is divergent.However the series �P1k=0 � 1x+k � 1k [k 6= 0℄� is onvergent and it telesopes 1x ,beause adding a onstant does not a�et the di�erenes. Indeed,� 1Xk=0� 1x+1+k � 1k [k 6= 0℄�+ 1Xk=0 � 1x+k � 1k [k 6= 0℄� = � 1Xk=0 Æ 1x+k = 1x :The funtion(4.4.3) z(x) = � + 1Xk=1�1k � 1x+ k�112



4.4 gamma funtion 113is alled thedigamma funtion. Here  is the Euler onstant. The digamma fun-tion is an analyti funtion, whose derivative is the trigamma funtion, and whosedi�erene is 11+x .Monotoniity distinguishes z among others funtion telesoping 11+x .Theorem 4.4.2. There is a unique monotone funtion z(x) suh that Æz(x) =11+x and z(0) = �.Proof. Suppose f(x) is a monotone funtion telesoping 11+x . Denote by v thevariation of f�z on [0; 1℄. Then the variation of f�z over [1; n℄ is nv. On the otherhand, varf [1; n℄ =Pnk=1 1k < lnn+ . Hene the variation of f(x)�z(x) on [1; n℄is less than 2( + lnn). Hene v for any n satis�es the inequality nv � 2( + lnn).Sine limn!1 lnnn = 0, we get v = 0. Hene f � z is onstant, and it is zero iff(1) = z(1). �Lemma 4.4.3. z0 = � .Proof. To prove that z0(x) = � (x), onsider F (x) = R x1 � (t) dt. This fun-tion is monotone, beause F 0(x) = � (x) � 0. Further (ÆF )0 = ÆF 0 = Æ� (x) =� 1(1+x)2 . It follows that ÆF = 11+x + , where  is a onstant. By Theorem 4.4.2 itfollows that F (x+ 1)� x�  = z(x). Hene z(x)0 = F 0(x+ 1) +  = � (x). Thisproves that z0 is di�erentiable and has �nite variation. As Æz(x) = 11+x it followsthat Æz0(x) = � 1(1+x)2 . We get that z0(x) = � (x) by Theorem 4.4.1. �Telesoping the logarithm. To telesope the logarithm, we start with theformal solution �P1k=0 ln(x+k). To derease the divergene, addP1k=1 ln k term-wise. We get� lnx�P1k=1(ln(x+k)�ln k) = � lnx�P1k=1 ln(1+ xk ). We know thatln(1+x) is lose to x, but the series still diverges. Now onvergene an be reahedby the subtration of xk from the k-th term of the series. This substration hangesthe di�erene. Let us evaluate the di�erene of F (x) = � lnx�P1k=1(ln(1+ xk )� xk ).The di�erene of the n-th term of the series is�ln �1 + x+1k �� x+1k �� �ln �1 + xk �� xk �= �ln(x+ k + 1)� ln k � x+1k �� �ln(x+ k)� ln k � xk �= Æ ln(x+ k)� 1k :HeneÆF (x) = �Æ lnx�P1k=1 �Æ ln(x+ k)� 1k �= limn!1 ��Æ lnx�Pn�1k=1 �Æ ln(x+ k)� 1k ��= limn!1 �lnx� ln(n+ x) +Pn�1k=1 1k�= lnx+ limn!1(ln(n)� ln(n+ x)) + limn!1 �Pn�1k=1 1k � lnn�= lnx+ :As a result, we get the following formula for a funtion, whih telesopes thelogarithm:(4.4.4) �(x) = �x� lnx� 1Xk=1 �ln�1 + xk�� xk� :



114 4.4 gamma funtionTheorem 4.4.4. The series (4.4.4) onverges absolutely for all x exept nega-tive integers. It presents a funtion �(x) suh that �(1) = 0 and Æ�(x) = lnx.Proof. The inequality x1+x � ln(1 + x) � x implies(4.4.5) j ln(1 + x)� xj � ���� x1 + x � x���� = ���� x21 + x ���� :Denote by " the distane from x to the losest negative integer. Then due to(4.4.5), the series P1k=1 ln ��1 + yk �� yk � is termwise majorized by the onvergentseriesP1k=1 x2"k2 . This proves the absolute onvergene of (4.4.4).Sine limn!1Pn�1k=1 (ln(1 + 1k )� 1k ) = limn!1(lnn�Pn�1k=1 1k ) = �, one gets�(1) = 0. �Convexity. There are a lot of funtions that telesope the logarithm. Theproperty whih distinguishes � among others is onvexity.Throughout the leture � and � are nonnegative and omplementary to eahother, that is �+ � = 1. The funtion f is alled onvex if, for any x, y, it satis�esthe inequality:(4.4.6) f(�x+ �y) � �f(x) + �f(y) 8� 2 [0; 1℄:Immediately from the de�nition it follows thatLemma 4.4.5. Any linear funtion ax+ b is onvex.Lemma 4.4.6. Any sum (even in�nite) of onvex funtions is a onvex funtion.The produt of a onvex funtion by a positive onstant is a onvex funtion.Lemma 4.4.7. If f(p) = f(q) = 0 and f is onvex, then f(x) � 0 for allx =2 [p; q℄.Proof. If x > q then q = x�+ p� for � = q�px�p . Hene f(q) � f(x)�+ f(p)� =f(x), and it follows that f(x) � f(q) = 0. For x < p one has p = x� + q� for� = q�pq�x . Hene 0 = f(p) � f(x)� + f(q)� = f(x). �Lemma 4.4.8. If f 00 is nonnegative then f is onvex.Proof. Consider the funtion F (t) = f(l(t)), where l(t) = x� + y�. Newton'sformula for F (t) with nodes 0, 1 gives F (t) = F (0) + ÆF (0)t + 12F 00(�)t2. SineF 00(�) = (y � x)2f 00(�) > 0, and t2 = t(t � 1) < 0 we get the inequality F (t) �F (0)�+ tF (1). Sine F (�) = f(x�+ y�) this is just the inequality of onvexity. �Lemma 4.4.9. If f is onvex, then 0 � f(a) + �Æf(a)� f(a+ �) � Æ2f(a� 1)for any a and any � 2 [0; 1℄Proof. Sine a + � = �a + �(a + 1) we get f(a + �) � f(a)� + f(a + 1)� =f(a)+�Æf(a). On the other hand, the onvex funtion f(a+x)�f(a)�xÆf(a�1)has roots �1 and 0. By Lemma 4.4.7 it is nonnegative for x > 0. Hene f(a+ �) �f(a)+ �Æf(a�1). It follows that f(a)+ �Æf(a)�f(a+ �) � f(a)+ �Æf(a)�f(a)��Æf(a� 1) = �Æ2f(a� 1). �Theorem 4.4.10. �(x) is the unique onvex funtion that telesopes lnx andsatis�es �(1) = 1.



4.4 gamma funtion 115Proof. Convexity of � follows from the onvexity of the summands of itsseries. The summands are onvex beause their seond derivatives are nonnegative.Suppose there is another onvex funtion f(x) whih telesopes the logarithmtoo. Then �(x) = f(x) � �(x) is a periodi funtion, Æ� = 0. Let us prove that�(x) is onvex. Consider a pair ; d, suh that j�dj � 1. Sine f(�+d�)��f()��f(d) � 0, as f is onvex, one has�(� + d�)� ��() � ��(d) = (f(� + d�)� �f()� �f(d))� (�(� + d�)� ��()� ��(d))� ��() + ��(d)��(� + d�):First, prove that � satis�es the following "-relaxed inequality of onvexity:(4.4.7) �(� + d�) � ��() + ��(d) + ":Inreasing  and d by 1, we do not hange the inequality as Æ� = 0. Due to thisfat, we an inrease  and d to satisfy 1�1 < "3 . Set L(x) = �() + (x� ) ln . ByLemma 4.4.9 for x 2 [; +1℄ one has j�x�L(x)j � Æ2�(� 1) = ln � ln(� 1) =ln(1 + 1�1 ) � 1�1 < "3 . Sine j�(x) � L(x)j < "3 for x = ; d; +d2 , it follows that��() + ��(d) � �(� + d�) di�ers from �L() + �L(d) � L(� + d�) = 0 by lessthan by ". The inequality (4.4.7) is proved. Passing to the limit as " tends to 0,one eliminates ".Hene �(x) is onvex on any interval of length 1 and has period 1. Then �(x)is onstant. Indeed, onsider a pair a; b with ondition b � 1 < a < b. Thena = (b� 1)� + b� for � = b� a. Hene f(a) � f(b)� + f(b� 1)� = f(b). �Lemma 4.4.11. �00(1 + x) = � (x).Proof. The funtion F (x) = R x1 z(t) dt is onvex beause its seond derivativeis � . The di�erene of F 0 = z is 11+x . Hene ÆF (x) = ln(x+1)+, where  is someonstant. It follows that F (x� 1)� x+  = �(x). Hene � is twie di�erentiableand its seond derivative is � . �Gamma funtion. Now we de�ne Euler's gamma funtion �(x) as exp(�(x)),where �(x) is the funtion telesoping the logarithm. Exponentiating (4.4.4) givesa representation of the Gamma funtion in so-alled anonial Weierstrass form:(4.4.8) �(x) = e�xx 1Yk=1 �1 + xk��1 e xk :Sine Æ ln �(x) = lnx, one gets the following harateristi equation of the Gammafuntion(4.4.9) �(x+ 1) = x�(x):Sine �(1) = 0, aording to (4.4.4), one proves by indution that �(n) = (n� 1)!using (4.4.9).A nonnegative funtion f is alled logarithmially onvex if ln f(x) is onvex.Theorem 4.4.12 (haraterization). �(x) is the unique logarithmially onvexfuntion de�ned for x > 0, whih satis�es equation (4.4.9) for all x > 0 and takesthe value 1 at 1.



116 4.4 gamma funtionProof. Logarithmial onvexity of �(x) follows from the onvexity of �(x).Further �(1) = exp�(1) = 1. If f is a logarithmially onvex funtion satisfyingthe gamma-equation, then ln f satis�es all the onditions of Theorem 4.4.4. Hene,ln f(x) = �(x) and f(x) = �(x). �Theorem 4.4.13 (Euler). For any x � 0 one has �(x) = R10 tx�1e�t dt.Let us hek that the integral satis�es all the onditions of Theorem 4.4.12.For x = 1 the integral gives R10 e�t dt = �e�t j10 = 1. The integration by partsR10 txe�t dt = � R10 tx de�t = �txe�t j10 + R10 e�txtx�1 dx proves that it satis-�es the gamma-equation (4.4.9). It remains to prove logarithmi onvexity of theintegral.Lemma 4.4.14 (mean riterium). If f is a monotone funtion whih satis�esthe following mean inequality 2f(x+y2 ) � f(x) + f(y) for all x; y then f is onvex.Proof. We have to prove the inequality f(x�+y�) � �f(x)+�f(y) = L(�) forall �, x and y. Set F (t) = f(x+(y�x)t); than F also satis�es the mean inequality.And to prove our lemma it is suÆient to prove that F (t) � L(t) for all t 2 [0; 1℄.First we prove this inequality only for all binary rational numbers t, that isfor numbers of the type m2n , m � 2n. The proof is by indution on n, the degreeof the denominator. If n = 0, the statement is true. Suppose the inequalityF (t) � L(t) is already proved for frations with denominators of degree � n.Consider r = m2n+1 , with odd m = 2k + 1. Set r� = k2n , r+ = k+12n . By theindution hypothesis F (r�) � L(r�). Sine r = r++r�2 , by the mean inequalityone has F (r) � f(r+)+f(r�)2 � L(r+)+L(r�)2 = L( r++r�2 ) = L(r).Thus our inequality is proved for all binary rational t. Suppose F (t) > L(t)for some t. Consider two binary rational numbers p, q suh that t 2 [p; q℄ andjq� pj < F (t)�L(t)jf(y)�f(x)j . In this ase jL(p)�L(t)j � jp� tjjf(y)� f(x)j < jF (t)�L(t)j.Therefore F (p) � L(p) < F (t). The same arguments give F (q) < F (t). This isa ontradition, beause t is between p and q and its image under a monotonemapping has to be between images of p and q. �Lemma 4.4.15 (Cauhy-Bunyakovski-Shwarz).(4.4.10)  Z ba f(x)g(x) dx!2 � Z ba f2(x) dx Z ba g2(x) dx:Proof. Sine R ba (f(x) + tg(x))2 dx � 0 for all t, the disriminant of the fol-lowing quadrati equation is non-negative:(4.4.11) t2 Z ba g2(x) dx + 2t Z ba f(x)g(x) dx + Z ba f2(x) dx = 0:This disriminant is 4�R ba f(x)g(x) dx�2 � 4 R ba f2(x) dx R ba g2(x) dx. �Now we are ready to prove the logarithmi onvexity of the Euler integral.The integral is obviously an inreasing funtion, hene by the mean riterion it issuÆient to prove the following inequality:(4.4.12) �Z 10 t x+y2 �1e�t dt�2 � Z 10 tx�1e�t dt Z 10 ty�1e�t dt:



4.4 gamma funtion 117This inequality turns into the Cauhy-Bunyakovski-Shwarz inequality (4.4.10) forf(x) = t x�12 e�t=2 and g(t) = t y�12 e�t=2.Evaluation of produts. From the anonial Weierstrass form it follows that1Yn=1f(1� x=n) exp(x=n)g = �exx�(�x) ;(4.4.13) 1Yn=1f(1 + x=n) exp(�x=n)g = e�xx�(x) :One an evaluate a lot of produts by splitting them into parts whih have thisanonial form (4.4.13). For example, onsider the produt Q1k=1 �1� x2k2 �. Divi-sion by n2 transforms it into Q1k=1 (1� 12n )�1(1 + 12n )�1. Introduing multiplierse 12n and e� 12n , one gets a anonial form(4.4.14) 1Yn=1��1� 12n� e 12n��1 1Yn=1��1 + 12n� e� 12n��1 :Now we an apply (4.4.13) for x = 12 . The �rst produt of (4.4.14) is equal to� 12�(�1=2)e�=2, and the seond one is 12�(1=2)e=2. Sine aording to the har-ateristi equation for �-funtion, �(1=2) = � 12�(1=2), one gets �(1=2)2=2 as thevalue of Wallis produt. Sine the Wallis produt is �2 , we get �(1=2) = p�.Problems.1. Evaluate the produt Q1n=1 �1 + xn� �1 + 2xn � �1� 3xn �.2. Evaluate the produt Q1k=1 k(5+k)(3+k)(2+k) .3. Prove: The sum of logarithmially onvex funtions is logarithmially onvex.4. Prove �(x) = limn!1 n!nxx�nx .5. Prove Q1k=1 kx+k �k+1k �x = �(x+ 1).6. Prove Legendre's doubling formula �(2x)�(0:5) = 22x�1�(x+ 0:5)�(x).



4.5. The CotangentOn the ontents of the leture. In this leture we perform what waspromised at the beginning: we sum up the Euler series and expand sinx intothe produt. We will see that sums of series of reiproal powers are expressed viaBernoulli numbers. And we will see that the funtion responsible for the summationof the series is the otangent.An ingenious idea, whih led Euler to �nding the sumP1k=1 1k2 , is the follow-ing. One an onsider sinx as a polynomial of in�nite degree. This polynomial hasas roots all points of the type k�. Any ordinary polynomial an be expanded intoa produt Q(x � xk) where xk are its roots. By analogy, Euler onjetured thatsinx an be expanded into the produtsinx = 1Yk=�1(x� k�):This produt diverges, but an be modi�ed to a onvergent one by division of then-th term by �n�. The division does not hange the roots. The modi�ed produtis(4.5.1) 1Yk=�1�1� xk�� = x 1Yk=1�1� x2k2�2� :Two polynomials with the same roots an di�er by a multipliative onstant. To�nd the onstant, onsider x = �2 . In this ase we get the inverse to the Wallisprodut in (4.5.1) multiplied by x = �2 . Hene the value of (4.5.1) is 1, whihoinides with sin �2 . Thus it is natural to expet that sinx oinides with theprodut (4.5.1).There is another way to tame Q1k=�1(x � k�). Taking the logarithm, weget a divergent series P1k=�1 ln(x � k�), but ahieve onvergene by termwisedi�erentiation. Sine the derivative of ln sinx is otx, it is natural to expet thatotx oinides with the following funtion(4.5.2) tg(x) = 1Xk=�1 1x� k� = 1x + 1Xk=1 2xx2 � k2�2 :Cotangent expansion. The expansion zez�1 =P1k=0 Bkk! zk allows us to get apower expansion for ot z. Indeed, representing ot z by Euler's formula one getsieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1 = i+ 2ie2iz � 1 = i+ 1z 2ize2iz � 1 = i+ 1z 1Xk=0 Bkk! (2iz)k:The term of the last series orresponding to k = 1 is 2izB1 = �iz. Multiplied by1z , it turns into �i, whih eliminates the �rst i. The summand orresponding tok = 0 is 1. Taking into aount that B2k+1 = 0 for k > 0, we getot z = 1z + 1Xk=1(�1)k 4kB2k(2k)! z2k�1:118



4.5 the otangent 119Power expansion of tg(z). Substituting1z2 � n2�2 = � 1n2�2 11� z2n2�2 = � 1Xk=0 z2k(n�)2k+2into (4.5.2) and hanging the order of summation, one gets:1Xn=1 1Xk=0 z2k(n�)2k+2 = 1Xk=0 z2k�2k+2 1Xn=1 1n2k+2 :The hange of summation order is legitimate in the disk jzj < 1, beause the seriesabsolutely onverges there. This proves the following:Lemma 4.5.1. tg(z)� 1z is an analyti funtion in the disk jzj < 1. The n-thoeÆient of the Taylor series of tg(z) � 1z at 0 is equal to 0 for even n and isequal to 1�n+1 P1k=1 1kn+1 for any odd n.Thus the equality ot z = tg(z) would imply the following remarkable equality:(�1)n 4nB2n2n! = � 1�2n 1Xk=1 1k2nIn partiular, for n = 1 it gives the sum of Euler series as �26 .Exploring the otangent.Lemma 4.5.2. j ot zj � 2 provided j Im zj � 1.Proof. Set z = x + iy. Then jeizj = jeix�yj = e�y. Therefore if y � 1, thenje2izj = e�2y � 1e2 < 13 . Hene je2iz + 1j � 1e2 + 1 < 43 and je2iz � 1j � 1� 1e2 > 23 .Thus the absolute value ofot z = ieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1is less than 2. For y � 1 the same arguments work for the representation of ot zas i 1+e�2iz1�e�2iz . �Lemma 4.5.3. j ot(�=2 + iy)j � 4 for all y.Proof. ot(�=2 + iy) = os(�=2+iy)sin(�=2+iy) = � sin iyos iy = et�e�tet+e�t . The module of thenumerator of this fration does not exeed e� e�1 for t 2 [�1; 1℄ and the denomi-nator is greater than 1. This proves the inequality for y 2 [�1; 1℄. For other y thisis the previous lemma. �Let us denote by �Z the set fk� j k 2 Zg of �-integers.Lemma 4.5.4. The set of singular points of ot z is �Z. All these points aresimple poles with residue 1.Proof. The singular points of ot z oinide with the roots of sin z. The rootsof sin z are roots of the equation eiz = e�iz whih is equivalent to e2iz = 1. Sineje2izj = je�2 Im zj one gets Im z = 0. Hene sin z has no roots beyond the realline. And all its real roots as we know have the form fk�g. Sine limz!0 z ot z =limz!0 z os zsin z = limz!0 zsin z = 1sin0 0 = 1, we get that 0 is a simple pole of ot z



120 4.5 the otangentwith residue 1 and the other poles have the same residue beause of periodiity ofot z. �Lemma 4.5.5. Let f(z) be an analyti funtion on a domain D. Suppose thatf has in D �nitely many singular points, they are not �-integers and D has no�-integer point on its boundary. ThenI�D f(�) ot �d� = 2�i 1Xk=�1 f(k�)[k� 2 D℄+ 2�iXz2D resz(f(z) ot z)[z =2 �Z℄:Proof. In our situation every singular point of f(z) ot z in D is either a�-integer or a singular point of f(z). Sine resz=k� ot z = 1, it follows thatresz=k� f(z) ot z = f(k�). Hene the onlusion of the lemma is a diret on-sequene of Residue Theory. �Exploring tg(z).Lemma 4.5.6. tg(z + �) = tg(z) for any z.Proof.tg(z + �) = limn!1 nXk=�n 1z + � � k�= limn!1 n�1Xk=�n�1 1z + k�= limn!1 1z � (n+ 1)� + limn!1 1z � n� + limn!1 (n�1)Xk=�(n�1) 1z + � � k�= 0+ 0+ tg(z): �Lemma 4.5.7. The series representing tg(z) onverges for any z whih is nota �-integer. j tg(z)j � 2 for all z suh that j Im zj > �.Proof. For any z one has jz2 � k2�2j � k2 for k > jzj. This provides theonvergene of the series. Sine tg(z) has period �, it is suÆient to prove theinequality of the lemma in the ase x 2 [0; �℄, where z = x + iy. In this asejyj � jxj and Re z2 = x2 � y2 � 0. Then Re(z2 � k2�2) � �k2�2. It follows thatjz2�k2�2j � k2�2. Hene j tg(z)j is termwise majorized by 1�+P1k=1 1k2�2 < 2. �Lemma 4.5.8. j tg(z)j � 3 for any z with Re z = �2 .Proof. In this ase Re(z2 � k2�2) = �24 � y2 � k2�2 � �k2 for all k � 1.Hene jC(z)j � 2� +P1k=1 1k2 � 1 + 2 = 3. �Lemma 4.5.9. For any z 6= k� and domain D whih ontains z and whoseboundary does not ontain �-integers, one has(4.5.3) I�D tg(�)� � z d� = 2�i tg(z) + 2�i 1Xk=�1 1k� � z [k� 2 D℄:



4.5 the otangent 121Proof. As was proved in Leture 3.6, the series P1k=�1 1(��z)(��k�) admitstermwise integration. The residues of 1(��z)(��k�) are 1k��z at k� and 1z�k� at z.Hene I�D 1(� � z)(� � k�)d� = (2�i 1z�k� for k� =2 D,0 if k� 2 D.It follows that I�D tg(�)� � z d� = 2�i 1Xk=�1 1z � k� [k� =2 D℄= 2�i tg(z)� 1Xk=�1 1z � k� [k� 2 D℄: �Lemma 4.5.10. tg(z) is an analyti funtion de�ned on the whole plane, havingall �-integers as its singular points, where it has residues 1.Proof. Consider a point z =2 �Z. Consider a disk D, not ontaining �-integerswith enter at z. Then formula (4.5.3) transforms to the Cauhy Integral Formula.And our assertion is proved by termwise integration of the power expansion of 1��zjust with the same arguments as was applied there. The same formula (4.5.3) allowsus to evaluate the residues. �Theorem 4.5.11. ot z = 1z +P1k=1 2zz2�k2�2 .Proof. Consider the di�erene R(z) = ot z � tg(z). This is an analytifuntion whih has �-integers as singular points and has residues 0 in all of these.Hene R(z) = 12�i H�D R(�)��z d� for any z =2 �Z. We will prove that R(z) is onstant.Let z0 and � be a pair of di�erent points not belonging to �Z. Then for any D suhthat �D \ �Z= ? one hasR(z)�R(z0) = 12�i I�D R(�)� 1� � z � 1� � z0� d�= 12�i I�D R(z)(z � z0)(� � z)(� � z0) :(4.5.4)Let us de�ne Dn for a natural n > 3 as the retangle bounded by the lines Re z =�(�=2 � n�), Im z = �n�. Sine jR(z)j � 7 by Lemmas 4.5.2, 4.5.3, 4.5.7, and4.5.8 the integrand of (4.5.4) eventually is bounded by 7jz�z0jn2 . The ontour ofintegration onsists of four monotone urves of diameter < 2n�. By the EstimationLemma 3.5.4, the integral an be estimated from above by 32�n7jz�z0jn2 . Hene thelimit of our integral as n tends to in�nity is 0. This implies R(z) = R(z0). HeneR(z) is onstant and the value of the onstant we �nd by putting z = �=2. Asot�=2 = 0, the value of the onstant istg(�=2) = limn!1 nXk=�n 1�=2� k� = 2� limn!1 nXk=�n 11� 2k :



122 4.5 the otangentThis limit is zero beausenXk=�n 11� 2k = 0Xk=�n 11� 2k + nXk=1 11� 2k = nXk=0 12k + 1 + nXk=1� 12k � 1 = 12n+ 1 :�Summation of series by ot z.Theorem 4.5.12. For any rational funtion R(z), whih is not singular inintegers and has degree � �2, one has P1k=�1R(n) = �Pz res� ot(�z)R(z).Proof. In this ase the integral limn!1 H�Dn=pi R(z)� ot�z = 0. Henethe sum of all residues of R(z)� ot�z is zero. The residues at �-integers givesP1k=�1R(k). The rest gives �Pz res� ot(�z)R(z). �Fatorization of sinx. Theorem 4.5.11 with �z substituted for z gives the se-ries � ot�z =P1k=�1 1z�k . The half of the series on the right-hand side onsistingof terms with nonnegative indies represents a funtion, whih formally telesopes� 1z . The negative half telesopes 1z . Let us biset the series into nonnegative andnegative halves and add P1k=�1 1k [k 6= 0℄ to provide onvergene:�1Xk=�1� 1z � k + 1k�+ 1Xk=0� 1z � k + 1k + 1�= 1Xk=1��1k + 1z + k�+ 1Xk=1� 1z + 1� k + 1k� :The �rst of the series on the right-hand side represents �z(z) � , the seond isz(�z+1)+. We get the following omplement formula for the digamma funtion:�z(z) +z(1� z) = � ot�z:Sine �00(z+1) = z0(z) = � (z) (Lemma 4.4.11) it follows that �0(1+z) = z(z)+and �0(�z) = �(z(1�z)+). Therefore �0(1+z)+�0(�z) = � ot�z. Integrationof the latter equality gives ��(1 + z)��(�z) = ln sin�z + . Changing z by �zwe get �(1 � z) + �(z) = � ln sin�z + . Exponentiating gives �(1 � z)�(�z) =1sin�z . One de�nes the onstant by putting z = 12 . On the left-hand side one gets�( 12 )2 = �, on the right-hand side, . Finally we get the omplement formula forthe Gamma-funtion:(4.5.5) �(1� z)�(z) = �sin�z :Now onsider the produt Q1k=1(1� x2k2 ). Its anonial form is(4.5.6) 1Yn=1n�1� xn� e xno�1 1Yn=1n�1 + xn� e� xno�1 :The �rst produt of (4.5.6) is equal to � exx�(�x) , and the seond one is e�xx�(�x) .Therefore the whole produt is � 1x2�(x)�(�x) . Sine �(1 � x) = �x�(�x) we getthe following result 1�(x)�(1� x) = x 1Yk=1�1� x2k2� :



4.5 the otangent 123Comparing this to (4.5.5) and substituting �x for x we get the Euler formula:sinx = x 1Yk=1�1� x2�2k2� :Problems.1. Expand tan z into a power series.2. Evaluate P1k=1 11+k2 .3. Evaluate P1k=1 11+k4 .



4.6. Divergent SeriesOn the ontents of the leture. \Divergent series is a pure handiwork ofDiable. It is a full nonsense to say that 12n � 22n + 32n � � � � = 0. Do you keepto die laughing about this?" (N.H. Abel letter to . . . ). The twist of fate: now onesays that that the above mentioned equality holds in Abel's sense.The earliest analysts thought that any series, onvergent or divergent, has asum given by God and the only problem is to �nd it orretly. Sometimes theydisagreed what is the orret answer. In the nineteenth entury divergent serieswere expelled from mathematis as a \handiwork of Diable" (N.H. Abel). Laterthey were rehabilitated (see G.H. Hardy's book Divergent Series1). Euler remainsthe unsurpassed master of divergent series. For example, with the help of divergentseries he disovered Riemann's funtional equation of the �-funtion a hundredyears before Riemann.Evaluations with divergent series. Euler wrote: \My pen is lever thanmyself." Before we develop a theory let us simply follow to Euler's pen. Thefundamental equality is(4.6.1) 1 + x+ x2 + x3 + � � � = 11� x :Now we, following Euler, suppose that this equality holds for all x 6= 1. In theseond leture we were onfused by some unexpeted properties of divergent series.But now in ontrast with the seond leture we do not hurry up to land. Let uslook around.Substituting x = �ey in (4.6.1) one gets1� ey + e2y � e3y + � � � = 11 + ey :On the other hand(4.6.2) 11 + ey = 1ey � 1 � 2e2y � 1 :Sine(4.6.3) zez � 1 = 1Xk=0 Bkk! zk:One derives from (4.6.2) via (4.6.3)(4.6.4) 1ey + 1 = 1Xk=1 Bk(1� 2k)k! yk�1:Let us di�erentiate repeatedly n-times the equality (4.6) by y. The left-hand sidegives P1k=0(�1)kkneky . In partiular for y = 0 we get P1k=0(�1)kkn. We get onthe right-hand side by virtue of (4.6.4) the following� ddy�n 11 + ey = Bn+1(1� 2n+1)n+ 1 :Combining these results we get the following equality(4.6.5) 1n � 2n + 3n � 4n + � � � = Bn+1(2n+1 � 1)n+ 1 :1G.H. Hardy, Divergent Series, Oxford University Press, 1949.124



4.6 divergent series 125Sine odd Bernoulli numbers vanish, we get12n � 22n + 32n � 42n + � � � = 0:Consider an even analyti funtion f(x), suh that f(0) = 0. In this ase f(x)is presented by a power series a1x2 + a2x4 + a3x6 + : : : , then1Xk=1(�1)k�1 f(kx)k2 = 1Xk=1 (�1)k�1k2 1Xn=1 anx2nk2n= 1Xn=1 anx2n 1Xk=1(�1)k�1k2n�2= a1x2(1� 1 + 1� 1 + : : : )= a1x22 :In partiular, for f(x) = 1� osx this equality turns into(4.6.6) 1Xk=1(�1)k�1 1� os kxk2 = x24 :For x = � the equality (4.6.6) gives1 + 132 + 152 + 172 + � � � = �28 :Sine 1Xk=0 1(2k + 1)2 = 1Xk=1 1k2 � 1Xk=1 1(2k)2 = �1� 14� 1Xk=1 1k2one derives the sum of the Euler series:1Xk=1 1k2 = �26 :We see that alulations with divergent series sometimes give brilliant results.But sometimes they give the wrong result. Indeed the equality (4.6.6) generally isuntrue, beause on the left-hand side we have a periodi funtion and on the right-hand side a non-periodi one. But it is true for x 2 [��; �℄. Termwise di�erentiationof (4.6.6) gives the true equality (3.4.2), whih we know from Leture 3.4.Euler's sum of a divergent series. Now we develop a theory justifyingthe above evaluations. Euler writes that the value of an in�nite expression (inpartiular the sum of a divergent series) is equal to the value of a �nite expressionwhose expansion gives this in�nite expression. Hene, numerial equalities arise bysubstituting a numerial value for a variable in a generating funtional identity. Toevaluate the sum of a series P1k=0 ak Euler usually onsiders its power generatingfuntion g(z) represented by the power series P1k=0 akzk, and supposes that thesum of the series is equal to g(1).To be preise suppose that the power seriesP1k=0 akzk onverges in a neighbor-hood of 0 and there is an analyti funtion g(z) de�ned in a domain U ontaininga path p from 0 to 1 and suh that g(z) = P1k=0 akzk for z suÆiently lose to 0and 1 is a regular point of g. Then the series P1k=0 ak is alled Euler summableand the value g(1) is alled its analyti Euler sum with respet to p. And we willuse a speial sign ' to denote the analytial sum.



126 4.6 divergent seriesBy the Uniqueness Theorem 3.6.9 the value of analyti sum of a series isuniquely de�ned for a �xed p. But this value generally speaking depends on thepath. For example, let us onsider the funtion p1 + x. Its binomial series forx = �2 turns into�1 + 1� 12! � 1 � 33! � 1 � 3 � 54! � � � � � (2k � 1)!!(k + 1)! � : : : :For p(t) = ei�t one sums up this series to i, beause it is generated by the funtionexp ln(1+z)2 de�ned in the upper half-plane. And along p(t) = e�i�t this series issummable to �i by exp � ln(1+z)2 de�ned in the lower half-plane.For a �xed path the analyti Euler sum evidently satis�es the Shift, Multipli-ation and Addition Formulas of the �rst leture. But we see that the analyti sumof a real series may be purely imaginary. Hene the rule ImP1k=0 ak 'P1k=0 Im akfails for the analyti sum. The Euler sum along [0; 1℄ oinides with the Abel sumof the series in the ase when both of them exist.In above evaluations we apply termwise di�erentiation to funtional series. Ifthe Euler sum P1k=1 fk(z) is equal to F (z) for all z in a domain this does notguarantee the possibility of termwise di�erentiation. To guarantee it we supposethat the funtion generating the equality P1k=1 fk(z) ' F (z) analytially dependson z. To formalize the last ondition we have to introdue analyti funtions of twovariables.Power series of two variables. A power series of two variables z; w is de�nedas a formal unordered sum Pk;m akmzkwm, over N � N | the set of all pairs ofnonnegative integers.For a funtion of two variables f(z; w) one de�nes its partial derivative �f(z0;w0)�zwith respet to z at the point (z0; w0) as the limit of f(z0+�z;w0)�f(z0;w0)�z as �ztends to 0.Lemma 4.6.1. If P akmzk1wm1 absolutely onverges, then both Pakmzkwm andPmakmzkwm�1 absolutely onverge provided jzj < jz1j, jwj < jw1j. And for any�xed z, suh that jzj < jz1j the funtion Pmakzkwm�1 is the partial derivative ofPakmzkwm with respet to w.Proof. SineP jakmjjz1jkjw1jm <1 the same is true forP jakmjjzjkjwjm forjzj < jz1j, jwj < jw1j. By the Sum Partition Theorem we get the equalityX akmzkwm = 1Xm=0wm 1Xk=0 akmzk:For any �xed z the right-hand side of this equality is a power series with respet tow as the variable. By Theorem 3.3.9 its derivative by w, whih oinides with thepartial derivative of the left-hand side, is equal to1Xm=0mwm�1 1Xk=0 akmzk =Xmakmwm�1zk: �Analyti funtions of two variables. A funtion of two variables F (z; w)is alled analyti at the point (z0; w0) if for (z; w) suÆiently lose to (z0; w0) itan be presented as a sum of a power series of two variables.



4.6 divergent series 127Theorem 4.6.2.(1) If f(z; w) and g(z; w) are analyti funtions, then f+g and fg are analytifuntions.(2) If f1(z); f2(z) and g(z; w) are analyti funtions, then g(f1(z); f2(w)) andf1(g(z; w)) are analyti funtions.(3) The partial derivative of any analyti funtion is an analyti funtion.Proof. The third statement follows from Lemma 4.6.1. The proofs of the �rstand the seond statements are straightforward and we leave them to the reader. �Funtional analytial sum. Let us say that a series P1k=1 fk(z) of analytifuntions is analytially summable to a funtion F (z) in a domain U � C alonga path p in C � C , suh that p(0) 2 U � 0 and p(1) 2 U � 1, if there exists ananalyti funtion of two variables F (z; w), de�ned on a domain W ontaining p,U � 0, U � 1, suh that for any z0 2 U the following two onditions are satis�ed:(1) F (z0; 1) = F (z0).(2) F (z; w) =P f (k)m (z0)k! (z � z0)kwm for suÆiently small jwj and jz � z0j.Let us remark that the analyti sum does not hange if we hange p keeping itinside W . That is why one says that the sum is evaluated along the domain W .To denote the funtional analytial sum we use the sign �=. And we will writealso �=W and �=p to speify the domain or the path of summation.The funtion F (z; w) will be alled the generating funtion for the analytialequality P1k=1 fk(z) �= F (z).Lemma 4.6.3. If f(z) is an analyti funtion in a domain U ontaining 0, suhthat f(z) = P1k=0 akzk for suÆiently small jzj, then f(z) �=W P1k=0 akzk in Ufor W = f(z; w) j wz 2 Ug.Proof. The generating funtion of this analytial equality is f((z�z0)w). �Lemma 4.6.4 (on substitution). If F (z) �=p P1k=0 fk(z) in U and g(z) is ananalyti funtion, then F (g(z)) �=g(p) P1k=0 fk(g(z)) in g�1(U).Proof. Indeed, if F (z; w) generates F (z) �=p P1k=0 fk(z), then F (g(z); w))generates F (g(z)) �=g(p) P1k=0 fk(g(z)). �N. H. Abel was the �rst to have some doubts about the legality of termwisedi�erentiation of funtional series. The following theorem justi�es this operationfor analyti funtions.Theorem 4.6.5. If P1k=1 fk(z) �=p F (z) in U then P1k=1 f 0k(z) �=p F 0(z) in U .Proof. Let F (z; w) be a generating funtion for P1k=1 fk(z) �=p F (z). Wedemonstrate that its partial derivative by z (denoted F 0(z; w)) is the generatingfuntion for P1k=1 f 0k(z) �=p F 0(z). Indeed, loally in a neighborhood of (z0; 0) onehas F (z; w) =P f (k)m (z0)k! wm(z� z0)k. By virtue of Lemma 4.6.1 its derivative by zis F 0(z; w) =P f (k)m (z0)(k�1)! wm(z � z0)k�1 =P f 0(k)m (z0)k! wm(z � z0)k. �The dual theorem on termwise integration is the following one.Theorem 4.6.6. Let P1k=1 fk �= F be generated by F (z; w) de�ned on W =U � V . Then for any path q in U one has Rq F (z) dz 'P1k=1 Rq fk(z) dz.



128 4.6 divergent seriesProof. The generating funtion for integrals is de�ned as Rq F (z; w) dz. �The proof of the following theorem is left to the reader.Theorem 4.6.7. If P1k=0 fk �=p F and P1k=0 gk �=p G then P1k=0(fk + gk) �=pF +G, P1k=1 fk �=p F � f0, P1k=0 fk �=p FRevision of evaluations. Now we are ready to revise the above evaluationequipped with the theory of analyti sums. Sine all onsidered generating funtionsin this paragraph are single valued, the results do not depend on the hoie of thepath of summation. That is why we drop the indiations of path below.The equality (4.6.1) is the analytial equivalene generated by 11�tx . The nextequality (4.6.7) is the analytial equivalene by Lemma 4.6.4. The equality (4.6.3)is analytial equivalene due to Lemma 4.6.3. Termwise di�erentiation of (4.6.7) isorret by virtue of Theorem 4.6.5. Therefore the equality (4.6.5) is obtained by therestrition of an analytial equivalene. Hene the Euler sum of P1k=1(�1)kk2n isequal to 0. Sine the seriesP1k=1(�1)kk2nzk onverges for jzj < 1 its value oinideswith the value of the generating funtion. And the limit limz!1�0P1k=1(�1)kk2nzkgives the Euler sum, whih is zero. Hene as a result of our alulations we havefound Abel's sum P1k=1(�1)kk2n = 0.Now we hoose another way to evaluate the Euler series. Substituting x = e�i�in (4.6.1) for 0 < � < 2� one gets1 + ei� + e2i� + e3i� + : : : �= 11� ei� ;1 + e�i� + e�2i� + e�3i� + : : : �= 11� e�i� :(4.6.7)Termwise addition of the above lines gives for � 2 (0; 2�) the following equality(4.6.8) os � + os 2� + os 3� + � � � �= �12 :Integration of (4.6.8) from � to x with subsequent replaement of x by � givesby Theorem 4.6.6: 1Xk=1 sin k�k �= � � �2 (0 < � < 2�):A seond integration of the same type gives1Xk=1 os k� � (�1)kk2 �= (� � �)24 :Putting � = �2 we get 1Xk=1 (�1)k+1k2 � 14 1Xk=1 (�1)k+1k2 ' �216 :Therefore 1Xk=1 (�1)k+1k2 = �212 :



4.6 divergent series 129Sine 1Xk=1 1k2 = 1Xk=1 (�1)k+1k2 + 2 1Xk=1 1(2k)2one gets 1Xk=1 1k2 = 12 1Xk=1 (�1)k+1k2 = �26 :Problems.1. Prove that the analyti sum of onvolution of two series is equal to the produtof analyti sums of the series.2. Suppose that for all n 2 N one has An ' P1k=0 an;k and Bn ' P1k=0 ak;n.Prove that the equalityP1k=0 Ak =P1k=0 Bk holds provided there is an analytifuntion F (z; w) oiniding withP ak;nzkwn for suÆiently small jwj,jzj whihis de�ned on a domain ontaining a path joining (0; 0) with (1; 1) analytiallyextended to (1; 1) (i.e., (1; 1) is a regular point of F (z; w)).


