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3.1. Newton-Leibniz FormulaOn the ontents of the leture. In this leture appears the elebratedNewton-Leibniz formula | the main tool in the evaluation of integrals. It is aom-panied with suh fundamental onepts as the derivative, the limit of a funtionand ontinuity.Motivation. Consider the following problem: for a given funtion F �nd afuntion f suh that dF (x) = f(x) dx, over [a; b℄, that is, R d f(t) dt = F (d)� F ()for any subinterval [; d℄ of [a; b℄.Suppose that suh an f exists. Sine the value of f at a single point does nota�ets the integral, we annot say anything about the value of f at any given point.But if f is ontinuous at a point x0, its value is uniquely de�ned by F .To be preise, the di�erene quotient F (x)�F (x0)x�x0 tends to f(x0) as x tends tox0. Indeed, F (x) = F (x0) + R xx0 f(t) dt. Furthermore, R xx0 f(t) dt = f(x0)(x�x0) +R xx0(f(t)� f(x0)) dt. Also, j R xx0(f(t)� f(x0) dtj � varf [x0; x℄jx�x0j. Consequently(3.1.1) ����F (x) � F (x0)x� x0 � f(x0)���� � varf [x; x0℄:However, varf [x; x0℄ an be made arbitrarily small by hoosing x suÆiently loseto x0, sine varf x0 = 0.In�nitesimally small funtions. A set is alled a neighborhood of a point xif it ontains all points suÆiently lose to x, that is, all points y suh that jy � xjis less then a positive number ".We will say that a funtion f is loally bounded (above) by a onstant C at apoint x, if f(x) � C for all y suÆiently lose to x.A funtion o(x) is alled in�nitesimally small at x0, if jo(x)j is loally boundedat x0 by any " > 0.Lemma 3.1.1. If the funtions o and ! are in�nitesimally small at x0 then o�!are in�nitesimally small at x0.Proof. Let " > 0. Let O1 be a neighborhood of x0 where jo(x)j < "=2,and let O2 be a neighborhood of x0 where j!(x)j < "=2. Then O1 \ O2 is aneighborhood where both inequalities hold. Hene for all x 2 O1 \ O2 one hasjo(x) � !(x)j < "=2 + "=2 = ". �Lemma 3.1.2. If o(x) is in�nitesimally small at x0 and f(x) is loally boundedat x0, then f(x)o(x) is in�nitesimally small at x0.Proof. The neighborhood where jf(x)o(x)j is bounded by a given " > 0 anbe onstruted as the intersetion of a neighborhood U , where jf(x)j is boundedby a onstant C, and a neighborhood V , where jo(x)j is bounded by "=C. �Definition. One says that a funtion f(x) tends to A as x tends to x0 andwrites limx!x0 f(x) = A, if f(x) = A+ o(x) on the omplement of x0, where o(x)is in�nitesimally small at x0.Corollary 3.1.3. If both the limits limx!x0 f(x) and limx!x0 g(x) exist, thenthe limit limx!x0 (f(x) + g(x)) also exists and limx!x0 (f(x) + g(x)) = limx!x0 f(x)+limx!x0 g(x). 64



3.1 newton-leibniz formula 65Proof. This follows immediately from Lemma 3.1.1. �Lemma 3.1.4. If the limits limx!x0 f(x) and limx!x0 g(x) exist, then alsolimx!x0 f(x)g(x) exists and limx!x0 f(x)g(x) = limx!x0 f(x) limx!x0 g(x).Proof. If f(x) = A+o(x) and g(x) = B+!(x), then f(x)g(x) = AB+A!(x)+Bo(x) + !(x)o(x), where A!(x), Bo(x) and !(x)o(x) all are in�nitesimally smallat x0 by Lemma 3.1.2, and their sum is in�nitesimally small by Lemma 3.1.1. �Definition. A funtion f is alled ontinuous at x0, if limx!x0 f(x) = f(x0).A funtion is said to be ontinuous (without mentioning a point), if it is on-tinuous at all points under onsideration.The following lemma gives a lot of examples of ontinuous funtions.Lemma 3.1.5. If f is a monotone funtion on [a; b℄ suh that f [a; b℄ = [f(a);f(b)℄ then f is ontinuous.Proof. Suppose f is nondereasing. Suppose a positive " is given. For agiven point x denote by x" = f�1(f(x) + ") and x" = f�1(f(x)� "). Then [x"; x"℄ontains a neighborhood of x, and for any y 2 [x"; x"℄ one has f(x) + " = f(x") �f(y) � f(x") = f(x) + ". Hene the inequality jf(y)� f(x)j < " holds loally at xfor any ". �The following theorem immediately follows from Corollary 3.1.3 and Lemma3.1.4.Theorem 3.1.6. If the funtions f and g are ontinuous at x0, then f + g andfg are ontinuous at x0.The following property of ontinuous funtions is very important.Theorem 3.1.7. If f is ontinuous at x0 and g is ontinuous at f(x0), theng(f(x)) is ontinuous at x0.Proof. Given " > 0, we have to �nd a neighborhood U of x0, suh thatjg(f(x)) � g(f(x0))j < " for x 2 U . As limy!f(x0) g(y) = g(f(x0)), there exists aneighborhood V of f(x0) suh that jg(y)�g(y0)j < " for y 2 V . Thus it is suÆientto �nd a U suh that f(U) � V . And we an do this. Indeed, by the de�nition ofneighborhood there is Æ > 0 suh that V ontains VÆ = fy j jy� f(x0)j < Æg. Sinelimx!x0 f(x) = f(x0), there is a neighborhood U of x0 suh that jf(x)�f(x0)j < Æfor all x 2 U . Then f(U) � VÆ � V . �Definition. A funtion f is alled di�erentiable at a point x0 if the di�erenequotient f(x)�(f0)x�x0 has a limit as x tends to x0. This limit is alled the derivativeof the funtion F at the point x0, and denoted f 0(x0) = limx!x0 f(x)�f(x0)x�x0 .Immediately from the de�nition one evaluates the derivative of linear funtion(3.1.2) (ax+ b)0 = aThe following lemma is a diret onsequene of Lemma 3.1.3.Lemma 3.1.8. If f and g are di�erentiable at x0, then f + g is di�erentiableat x0 and (f + g)0(x0) = f 0(x0) + g0(x0).



66 3.1 newton-leibniz formulaLinearization. Let f be di�erentiable at x0. Denote by o(x) the di�erenef(x)�f(x0)x�x0 � f 0(x0). Then(3.1.3) f(x) = f(x0) + f 0(x0)(x� x0) + o(x)(x � x0);where o(x) is in�nitesimally small at x0. We will all suh a representation alinearization of f(x).Lemma 3.1.9. If f is di�erentiable at x0, then it is ontinuous at x0.Proof. All summands but f(x0) on the right-hand side of (3.1.3) are in�nites-imally small at x0; hene limx!x0 f(x) = f(x0). �Lemma 3.1.10 (on uniqueness of linearization). If f(x) = a + b(x � x0) +o(x)(x� x0), where limx!x0 o(x) = 0, then f is di�erentiable at x0 and a = f(x0),b = f 0(x0).Proof. The di�erene f(x)� f(x0) is in�nitesimally small at x0 beause f isontinuous at x0 and the di�erene f(x)� a = b(x�x0) + o(x)(x�x0) is in�nites-imally small by the de�nition of linearization. Hene f(x0) � a is in�nitesimallysmall. But it is onstant, hene f(x0)� a = 0. Thus we established a = f(x0).The di�erene f(x)�ax�x0 � b = o(x) is in�nitesimally small as well as f(x)�f(x0)x�x0 �f 0(x0). But f(x)�f(x0)x�x0 = f(x)�ax�x0 . Therefore b�f 0(x0) is in�nitesimally small. Thatis b = f 0(x0). �Lemma 3.1.11. If f and g are di�erentiable at x0, then fg is di�erentiable atx0 and (fg)0(x0) = f 0(x0)g(x0) + g0(x0)f(x0).Proof. Consider lineariations f(x0)+f 0(x0)(x�x0)+o(x)(x�x0) and g(x0)+g0(x0)(x � x0) + !(x)(x � x0). Their produt is f(x0)g(x0) + (f 0(x0)g(x0) +f(x0)g0(x0))(x� x0) + (f(x)!(x) + f(x0)o(x))(x� x0). This is the linearization off(x)g(x) at x0, beause f! and go are in�nitesimally small at x0. �Theorem 3.1.12. If f is di�erentiable at x0, and g is di�erentiable at f(x0)then g(f(x)) is di�erentiable at x0 and (g(f(x0)))0 = g0(f(x0))f 0(x0).Proof. Denote f(x0) by y0 and substitute into the linearization g(y) = g(y0)+g0(y0)(y � y0) + o(y)(y � y0) another linearization y = f(x0) + f 0(x0)(x � x0) +!(x)(x� x0). Sine y � y0 = f 0(x0)(x� x0) + !(x)(x� x0), we get g(y) = g(y0) +g0(y0)f 0(x0)(x�x0) + g0(y0)(x�x0)!(x) + o(f(x))(x�x0). Due to Lemma 3.1.10,it is suÆient to prove that g0(y0)!(x) + o(f(x)) is in�nitesimally small at x0. The�rst summand is obviously in�nitesimally small. To prove that the seond one alsois in�nitesimally small, we remark that o(f(x0) = 0 and o(y) is ontinuous at f(x0)and that f(x) is ontinuous at x0 due to Lemma 3.1.9. Hene by Theorem 3.1.6the omposition is ontinuous at x0 and in�nitesimally small. �Theorem 3.1.13. Let f be a virtually monotone funtion on [a; b℄. ThenF (x) = R xa f(t) dt is virtually monotone and ontinuous on [a; b℄. It is di�eren-tiable at any point x0 where f is ontinuous, and F 0(x0) = f(x0).Proof. If f has a onstant sign, then F is monotone. So, if f = f1 + f2 is amonotonization of f , then R xa f1(x) dx + R xa f1(x) dx is a monotonization of F (x).This proves that F (x) is virtually monotone.



3.1 newton-leibniz formula 67To prove ontinuity of F (x) at x0, �x a onstant C whih bounds f in someneighborhood U of x0. Then for x 2 U one proves that jF (x)� F (x0)j is in�nites-imally small via the inequalities jF (x) � F (x0)j = j R xx0 f(x) dxj � j R xx0 C dxj =Cjx� x0j.Now suppose f is ontinuous at x0. Then o(x) = f(x0) � f(x) is in�nitesi-mally small at x0. Therefore limx!x0 1x�x0 R xx0 o(x) dx = 0. Indeed for any " > 0the inequality jo(x)j � " holds over [x"; x0℄ for some x". Hene j R xx0 o(x) dxj �j R xx0 " dxj = "jx� x0j for any x 2 [x0; x"℄.Then F (x) = F (x0)+f(x0)(x�x0)+( 1x�x0 R xx0 o(t) dt)(x�x0) is a linearizationof F (x) at x0. �Corollary 3.1.14. The funtions ln, sin, os are di�erentiable and ln0(x) = 1x ,sin0 = os, os0 = � sin.Proof. Sine d sinx = osx dx, d osx = � sinx dx, due to Theorem 3.1.13both sinx and osx are ontinuous, and, as they are ontinuous, the result followsfrom Theorem 3.1.13. And ln0 x = 1x , by Theorem 3.1.13, follows from the ontinuityof 1x . The ontinuity follows from Lemma 3.1.5. �Sine sin0(0) = os 0 = 1 and sin 0 = 0, the linearization of sinx at 0 is x+xo(x).This implies the following very important equality(3.1.4) limx!0 sinxx = 1:Lemma 3.1.15. If f 0(x) > 0 for all x 2 [a; b℄, then f(b) > f(a)j.Proof. Suppose f(a) � f(b). We onstrut a sequene of intervals [a; b℄ �[a1; b1℄ � [a2; b2℄ � : : : suh that their lengths tend to 0 and f(ak) � f(bk). Allsteps of onstrution are the same. The general step is: let m be the middle pointof [ak; bk℄. If f(m) � f(ak) we set [ak+1; bk+1℄ = [ak;m℄, otherwise f(m) > f(ak) �f(bk) and we set [ak+1; bk+1℄ = [m; bk℄.Now onsider a point x belonging to all [ak; bk℄. Let f(y) = f(x) + (f 0(x) +o(x))(y � x) be the linearization of f at x. Let U be neighborhood where jo(x)j <f 0(x). Then sgn(f(y) � f(x)) = sgn(y � x) for all y 2 U . However for some nwe get [an; bn℄ � U . If an � x < bn we get f(an) � f(x) < f(bn) else an < xand f(an) < f(x) � f(bn). In the both ases we get f(an) < f(bn). This is aontradition with our onstrution of the sequene of intervals. �Theorem 3.1.16. If f 0(x) = 0 for all x 2 [a; b℄, then f(x) is onstant.Proof. Set k = f(b)�f(a)b�a . If k < 0 then g(x) = f(x) � kx=2 has derivativeg0(x) = f 0(x) � k=2 > 0 for all x. Hene by Lemma 3.1.15 g(b) > g(a) and furtherf(b) � f(a) > k(b � a)=2. This ontradits the de�nition of k. If k > 0 then onegets the same ontradition onsidering g(x) = �f(x) + kx=2. �Theorem 3.1.17 (Newton-Leibniz). If f 0(x) is a ontinuous virtually monotonefuntion on an interval [a; b℄, then R ba f 0(x) dx = f(b)� f(a).Proof. Due to Theorem 3.1.13, the derivative of the di�erene R xa f 0(t) dt �f(x) is zero. Hene the di�erene is onstant by Theorem 3.1.16. Substituting



68 3.1 newton-leibniz formulax = a we �nd the onstant whih is f(a). Consequently, R xa f 0(t) dt � f(x) = f(a)for all x. In partiular, for x = b we get the Newton-Leibniz formula. �Problems.1. Evaluate (1=x)0, px0, (psinx2)0.2. Evaluate exp0 x.3. Evaluate artg0 x, tan0 x.4. Evaluate jxj0, Re z0.5. Prove: f 0(x) � 1 if and only if f(x) = x+ onst.6. Evaluate �R x2x sin tt dt�0 as a funtion of x.7. Evaluate p1� x20.8. Evaluate (R 10 sin ktt dt)0 as a funtion of k.9. Prove: If f is ontinuous at a and limn!1 xn = a then limn!1 f(xn) = f(a).10. Evaluate �R y0 [x℄ dx�0y.11. Evaluate arsin0 x.12. Evaluate R dx2+3x2 .13. Prove: If f 0(x) < 0 for all x < m and f 0(x) > 0 for all x > m then f 0(m) = 0.14. Prove: If f 0(x) is bounded on [a; b℄ then f is virtually monotone on [a; b℄.



3.2. Exponential FuntionsOn the ontents of the leture. We solve the prinipal di�erential equationy0 = y. Its solution, the exponential funtion, is expanded into a power series. Webeome aquainted with hyperboli funtions. And, �nally, we prove the irrational-ity of e.Debeaune's problem. In 1638 F. Debeaune posed Desartes the followinggeometrial problem: �nd a urve y(x) suh that for eah point P the distanesbetween V and T , the points where the vertial and the tangent lines ut the x-axis, are always equal to a given onstant a. Despite the e�orts of Desartes andFermat, this problem remained unsolved for nearly 50 years. In 1684 Leibniz solvedthe problem via in�nitesimal analysis of this urve: let x, y be a given point P (seethe piture). Then inrease x by a small inrement of b, so that y inreases almostby yb=a. Indeed, in small the urve is onsidered as the line. Hene the point P 0 ofthe urve with vertial projetion V 0, one onsiders as lying on the line TP . Henethe triangle TP 0V 0 is similar to TPV . As TV = a, TV 0 = b+a this similarity givesthe equality a+by+Æy = ay whih gives Æy = yb=a.Repeating we obtain a sequene of valuesy; y(1 + ba ); y(1 + ba )2; y(1 + ba )3; : : : :We see that \in small" y(x) transforms an arithmeti progression into a geometrione. This is the inverse to what the logarithm does. And the solution is a funtionwhih is the inverse to a logarithmi funtion. Suh funtions are alled exponential.
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T’Figure 3.2.1. Debeaune's problemTangent line and derivative. A tangent line to a smooth onvex urve at apoint x is de�ned as a straight line suh that the line intersets the urve just at xand the whole urve lies on one side of the line.We state that the equation of the tangent line to the graph of funtion f at apoint x0 is just the prinipal part of linearization of f(x) at x0. In other words,the equation is y = f(x0) + (x� x0)f 0(x0).First, onsider the ase of a horizontal tangent line. In this ase f(x0) is eithermaximal or minimal value of f(x). 69



70 3.2 exponential funtionsLemma 3.2.1. If a funtion f(x) is di�erentiable at an extremal point x0, thenf 0(x0) = 0.Proof. Consider the linearization f(x) = f(x0)+f 0(x0)(x�x0)+o(x))(x�x0).Denote x�x0 by Æx, and f(x)�f(x0) by Æf(x). If we suppose that f 0(x0) 6= 0, then,for suÆiently small Æx, we get jo(x�Æx)j < jf 0(x)j, hene sgn(f 0(x0)+o(x0+Æx)) =sgn(f 0(x0)+o(x0�Æx)), and sgn Æf(x) = sgn Æx. Therefore the sign of Æf(x) hangeswhenever the sign of Æx hanges. The sign of Æf(x) annot be positive if f(x0) isthe maximal value of f(x), and it annot be negative if f(x0) is the minimal value.This is the ontradition. �Theorem 3.2.2. If a funtion f(x) is di�erentiable at x0 and its graph isonvex, then the tangent line to the graph of f(x) at x0 is y = f(x0)+f 0(x0)(x�x0).Proof. Let y = ax+ b be the equation of a tangent line to the graph y = f(x)at the point x0. Sine ax+ b passes through x0, one has ax0+ b = f(x0), thereforeb = f(x0)� ax0, and it remains to prove that a = f 0(x0). If the tangent line ax+ bis not horizontal, onsider the funtion g(x) = f(x) � ax. At x0 it takes either amaximal or a minimal value and g0(x0) = 0 by Lemma 3.2.1. On the other hand,g0(x0) = f 0(x0)� a. �Di�erential equation. The Debeaune problem leads to a so-alled di�eren-tial equation on y(x). To be preise, the equation of the tangent line to y(x) atx0 is y = y(x0) + y0(x0)(x � x0). So the x-oordinate of the point T an be foundfrom the equation 0 = y(x0) + y0(x0)(x � x0). The solution is x = x0 � y(x0)y0(x0) .The x-oordinate of V is just x0. Hene TV is equal to y(x0)y0(x0) . And Debeaune'srequirement is y(x0)y0(x0) = a. Or ay0 = y. Equations that inlude derivatives offuntions are alled di�erential equations. The equation above is the simplest dif-ferential equation. Its solution takes one line. Indeed passing to di�erentials onegets ay0 dx = y dx, further ady = y dx, then adyy = dx and a d ln y = dx. Henea ln y = x+ and �nally y(x) = exp(+ xa ), where expx denotes the funtion inverseto the natural logarithm and  is an arbitrary onstant.Exponenta. The funtion inverse to the natural logarithm is alled the ex-ponential funtion. We shall all it the exponenta to distinguish it from otherexponential funtions.Theorem 3.2.3. The exponenta is the unique solution of the di�erential equa-tion y0 = y suh that y0(0) = 1.Proof. Di�erentiation of the equality ln expx = x gives exp0 xexpx = 1. Heneexpx satis�es the di�erential equation y0 = y. For x = 0 this equation givesexp0(0) = exp 0. But exp 0 = 1 as ln 1 = 0.For the onverse, let y(x) be a solution of y0 = y. The derivative of ln y is y0y = 1.Hene the derivative of ln y(x) � x is zero. By Theorem 3.1.16 from the previousleture, this implies ln y(x)�x =  for some onstant . If y0(0) = 1, then y(0) = 1and  = ln 1� 0 = 0. Therefore ln y(x) = x and y(x) = exp ln y(x) = expx. �



3.2 exponential funtions 71Exponential series. Our next goal is to prove that(3.2.1) expx = 1 + x+ x22 + x32 � 3 + � � �+ xkk! + � � � = 1Xn=0 xnn! ;where 0! = 1. This series is absolutely onvergent for any x. Indeed, the ratio ofits subsequent terms is xn and tends to 0, hene it is eventually majorized by anygeometri series.Hyperboli funtions. To prove that the funtion presented by series (3.2.1)is virtually monotone, onsider its odd and even parts. These parts represent theso-alled hyperboli funtions : hyperboli sine shx, and hyperboli osine hx.sh(x) = 1Xk=0 x2k+1(2k + 1)! ; h(x) = 1Xk=0 x2k(2k)! :The hyperboli sine is an inreasing funtion, as all odd powers are inreasingover the whole line. The hyperboli osine is inreasing for positive x and dereasingfor negative. Hene both are virtually monotone; and so is their sum.Consider the integral R x0 sh t dt. As all terms of the series representing sh areinreasing, we an integrate the series termwise. This integration gives hx. Asshx is loally bounded, hx is ontinuous by Theorem 3.1.13. Consider the integralR x0 h t dt; here we also an integrate the series representing h termwise, beause forpositive x all the terms are inreasing, and for negative x, dereasing. Integrationgives shx, sine the ontinuity of hx was already proved. Further, by Theorem3.1.13 we get that shx is di�erentiable and sh0 x = hx. Now returning to theequality hx = R x0 sh t dt we get h0 x = shx, as shx is ontinuous.Therefore (shx+hx)0 = hx+shx. And sh 0+ h 0 = 0+1 = 1. Now by theabove Theorem 3.2.3 one gets expx = hx+ shx.Other exponential funtions. The exponenta as a funtion inverse to thelogarithm transforms sums into produts. That is, for all x and y one hasexp(x+ y) = expx exp y:A funtion whih has this property (i.e., transform sums into produts) is alledexponential.Theorem 3.2.4. For any positive a there is a unique di�erentiable funtiondenoted by ax alled the exponential funtion to base a, suh that a1 = a andax+y = axay for any x, y. This funtion is de�ned by the formula expa lnx.Proof. Consider l(x) = ln ax. This funtion has the property l(x+y) = l(x)+l(y). Therefore its derivative at any point is the same: it is equal to k = limx!0 l(x)x .Hene the funtion l(x)� kx is onstant, beause its derivative is 0. This onstantis equal to l(0), whih is 0. Indeed l(0) = l(0 + 0) = l(0) + l(0). Thus ln ax = kx.Substituting x = 1 one gets k = ln a. Hene ax = exp(x ln a). So if a di�erentiableexponential funtion with base a exists, it oinides with exp(x ln a). On the otherhand it is easy to see that exp(x ln a) satis�es all the requirements for an exponentialfuntion to base a, that is exp(1 lna) = a, exp((x+y) ln a) = exp(x ln a) exp(y ln a);and it is di�erentiable as omposition of di�erentiable funtions. �



72 3.2 exponential funtionsPowers. Hene for any positive a and any real b, one de�nes the number ab asab = exp(b ln a)a is alled the base, and b is alled the exponent. For rational b this de�nitionagrees with the old de�nition. Indeed if b = pq then the properties of the exponentaand the logarithm imply a pq = qpap.Earlier, we have de�ned logarithms to base b as the number , and alled thelogarithm of b to base a, if a = b and denoted  = loga b.The basi properties of powers are olleted here.Theorem 3.2.5.(ab) = a(b); ab+ = aba; (ab) = ab; loga b = log blog a:Power funtions. The power operation allows us to de�ne the power funtion x�for any real degree �. Now we an prove the equality (x�)0 = �x��1 in its full value.Indeed, (x�)0 = (exp(� lnx))0 = exp0(� ln x)(� lnx)0 = exp(� lnx)�x = �x��1.In�nite produts via the Logarithm.Lemma 3.2.6. Let f(x) be a funtion ontinuous at x0. Then for any sequenefxng suh that limn!1 xn = x0 one has limn!1 f(xn) = f(x0).Proof. For any given " > 0 there is a neighborhood U of x0 suh that jf(x)�f(x0)j � " for x 2 U . As limn!1 xn = x0, eventually xn 2 U . Hene eventuallyjf(xn)� f(x0)j < ". �As we already have remarked, in�nite sums and in�nite produts are limits ofpartial produts.Theorem 3.2.7. lnQ1k=1 pk =P1k=1 ln pk.Proof. exp(P1k=1 ln pk) = exp(limn!1Pnk=1 ln pk)= limn!1 exp(Pnk=1 ln pk)= limn!1Qnk=1 pk=Q1k=1 pk:Now take logarithms of both sides of the equation. �Symmetri arguments prove the following: expP1k=1 ak =Q1k=1 expak.Irrationality of e. The expansion of the exponenta into a power series givesan expansion into a series for e whih is exp 1.Lemma 3.2.8. For any natural n one has 1n+1 < en!� [en!℄ < 1n .Proof. en! = P1k=0 n!k! . The partial sum Pnk=0 n!k! is an integer. The tailP1k=n+1 n!k! is termwise majorized by the geometri series P1k=1 1(n+1)k = 1n . Onthe other hand the �rst summand of the tail is 1n+1 . Consequently the tail has itssum between 1n+1 and 1n . �Theorem 3.2.9. The number e is irrational.



3.2 exponential funtions 73Proof. Suppose e = pq where p and q are natural. Then eq! is a naturalnumber. But it is not an integer by Lemma 3.2.8. �Problems.1. Prove the inequalities 1 + x � expx � 11�x .2. Prove the inequalities x1+x � ln(1 + x) � x.3. Evaluate limn!1 �1� 1n�n.4. Evaluate limn!1 �1 + 2n�n.5. Evaluate limn!1 �1 + 1n2 �n.6. Find the derivative of xx.7. Prove: x > y implies expx > exp y.8. Express via e: exp 2, exp(1=2), exp(2=3), exp(�1).9. Prove that exp(m=n) = emn .10. Prove that expx > 0 for any x.11. Prove the addition formulas h(x+ y) = h(x) h(y) + sh(x) sh(y), sh(x+ y) =sh(x) h(y) + sh(y) h(x).12. Prove that � sh(x � 0:5) = sh 0:5 h(x), � h(x� 0:5) = sh 0:5 sh(x).13. Prove sh 2x = 2 shx hx.14. Prove h2(x)� sh2(x) = 1.15. Solve the equation shx = 4=5.16. Express via e the sum P1k=1 k=k!.17. Express via e the sum P1k=1 k2=k!.18. Prove that f expkkn g is unbounded.19. Prove: The produt Q(1 + pn) onverges if and only if the sum P pn (pn � 0)onverges.20. Determine the onvergene of Q e1=n1+ 1n .21. Does Qn(e1=n � 1) onverges?22. Prove the divergene of P1k=1 [k�prime℄k .23. Expand ax into a power series.24. Determine the geometrial sense of shx and hx.25. Evaluate limn!1 sin�en!.26. Does the series P1k=1 sin�ek! onverge?�27. Prove the irrationality of e2.



3.3. Euler FormulaOn the ontents of the leture. The reader beomes aquainted with themost famous Euler formula. Its speial ase ei� = �1 symbolizes the unity ofmathematis: here e represents Analysis, i represents Algebra, and � representsGeometry. As a diret onsequene of the Euler formula we get power series for sinand os, whih we need to sum up the Euler series.Complex Newton-Leibniz. For a funtion of a omplex variable f(z) thederivative is de�ned by the same formula f 0(z0) = limz!z0 f(z)�f(z0)z�z0 . We willdenote it also by df(z)dz , to distinguish from derivatives of paths: omplex valuedfuntions of real variable. For a path p(t) its derivative will be denoted either p0(t)or dp(t)dt . The Newton-Leibniz formula for real funtions an be expressed by theequality df(t)dt dt = df(t). Now we extend this formula to omplex funtions.The linearization of a omplex funtion f(z) at z0 has the same form f(z0) +f 0(z0)(z � z0) + o(z)(z � z0), where o(z) is an in�nitesimally small funtion ofomplex variable. The same arguments as for real numbers prove the basi rules ofdi�erentiation: the derivative of sums, produts and ompositions.Theorem 3.3.1. dzndz = nzn�1.Proof. dzdz = 1 one gets immediately from the de�nition of the derivative.Suppose the equality dzndz = nzn�1 is proved for n. Then dzn+1dz = dzzndz = z dzndz +zn dzdz = znzn�1 + zn = (n+ 1)zndz. And the theorem is proved by indution. �A smooth path is a di�erentiable mapping p : [a; b℄ ! C with a ontinuousbounded derivative. A funtion f(z) of a omplex variable is alled virtually mono-tone if for any smooth path p(t) the funtions Re f(p(t)) and Im f(p(t)) are virtuallymonotone.Lemma 3.3.2. If f 0(z) is bounded, then f(z) is virtually monotone.Proof. Consider a smooth path p. Then df(p(t))dt = f 0(p(t))p0(t) is bounded bysome K. Due to Lemma 3.1.15 one has jf(p(t))� f(p(t0))j � Kjt� t0j. Hene anypartial variation of f(p(t)) does not exeed K(b � a). Therefore varf(p(t))[a; b℄ �K. �Theorem 3.3.3. If a omplex funtion f(z) has a bounded virtually monotoneontinuous omplex derivative over the image of a smooth path p : [a; b℄! C , thenRp f 0(z) dz = f(p(b))� f(p(a)).Proof. df(p(t))dt = f 0(p(t))p0(t) = dRe f(p(t))dt + id Im f(p(t))dt . All funtions hereare ontinuous and virtually monotone by hypothesis. Passing to di�erential formsone gets df(p(t))dt dt = dRe f(p(t))dt dt+ i d Im f(p(t))dt dt= d(Re f(p(t))) + i d(Im f(p(t)))= d(Re f(p(t)) + i Im f(p(t)))= d(f(p(t)):Hene Rp f 0(z) dz = Rp df(z). �74



3.3 euler formula 75Corollary 3.3.4. If f 0(z) = 0 then f(z) is onstant.Proof. Consider p(t) = z0+(z�z0)t, then f(z)�f(z0) = Rp f 0(�) d� = 0. �Di�erentiation of series. Let us say that a omplex seriesP1k=1 ak majorizes(eventually) another suh series P1k=1 bk if jbkj � jakj for all k (resp. for k beyondsome n).The seriesP1k=1 kk(z�z0)k�1 is alled a formal derivative ofP1k=0 k(z�z0)k.Lemma 3.3.5. Any power series P1k=0 k(z� z0)k eventually majorizes its for-mal derivative P1k=0 kk(z1 � z0)k�1 if jz1 � z0j < jz � z0j.Proof. The ratio of the n-th term of the derivative to the n-th term of theseries tends to 0 as n tends to in�nity. Indeed, this ratio is k(z1�z0)k(z�z0)k = kqk, wherejqj < 1 sine jz1 � z0j < jz � z0j. The fat that limn!1 nqn = 0 follows fromthe onvergene of P1k=1 kqk whih we already have proved before. This series iseventually majorized by any geometri series P1k=0AQk with Q > q. �A path p(t) is alled monotone if both Re p(t) and Im p(t) are monotone.Lemma 3.3.6. Let p : [a; b℄ ! C be a smooth monotone path, and let f(z) bevirtually monotone. If jf(p(t))j �  for t 2 [a; b℄ then ���Rp f(z) dz��� � 4jp(b)� p(a)j.Proof. Integration of the inequalities � � Re f(p(t)) �  against dRe zalong the path gives j RpRe f(z) dRezj � jRe p(b)�Re p(a)j � jp(b)� p(a)j. Thesame arguments prove j Rp Im f(z) d Imzj � j Im p(b) � Im p(a)j � jp(b) � p(a)j.The sum of these inequalities gives jRe Rp f(z) dzj � 2jRe p(b) � Re p(a)j. Thesame arguments yields j Im Rp f(z) dzj � 2jRe p(b)�Re p(a)j. And the addition ofthe two last inequalities allows us to aomplish the proof of the Lemma beausej Rp f(z) dzj � jRe Rp f(z) dzj+ j Rp f(z) dzj. �Lemma 3.3.7. jzn � �nj � njz � �jmaxfjzn�1j; j�n�1jg.Proof. (zn � �n) = (z � �)Pn�1k=0 zk�n�k�1 and jzk�n�k�1j � maxfjzn�1j;j�n�1jg. �A linear path from z0 to z1 is de�ned as a linear mapping p : [a; b℄ ! C , suhthat p(a) = z0 and p(b) = z1, that is p(t) = z0(t� a) + (z1 � z0)(t� a)=(b� a).We denote by R ba f(z) dz the integral along the linear path from a to b.Lemma 3.3.8. For any omplex z, � and natural n > 0 one has(3.3.1) jzn � zn0 � nzn�10 (z � z0)j � 2n(n� 1)jz � z0j2maxfjzjn�2; jz0jn�2g:Proof. By the Newton-Leibniz formula, zn � zn0 = R zz0 n�n�1 d�. Further,Z zz0 n�n�1 d� = Z zz0 nzn�10 d� + Z zz0 n(�n�1 � zn�10 ) d�= nzn�10 + Z zz0 n(�n�1 � zn�10 ) d�:Consequently, the left-hand side of (3.3.1) is equal to ���R zz0 n(�n�1 � zn�10 ) d����. Dueto Lemma 3.3.7 the absolute value of the integrand along the linear path does not



76 3.3 euler formulaexeed (n � 1)jz � z0jmaxfjzn�2j; jzn�20 jg. Now the estimation of the integral byLemma 3.3.6 gives just the inequality (3.3.1). �Theorem 3.3.9. If P1k=0 k(z1 � z0)k onverges absolutely, then P1k=0 k(z �z0)k and P1k=1 kk(z � z0)k�1 absolutely onverge provided by jz � z0j < jz1 � z0j,and the funtionP1k=1 kk(z�z0)k�1 is the omplex derivative of P1k=0 k(z�z0)k.Proof. The series P1k=0 k(z � z0)k and its formal derivative are eventuallymajorized by P1k=0 k(z1 � z0)k if jz � z0j � jz1 � z0j by the Lemma 3.3.5. Henethey absolutely onverge in the irle jz � z0j � jz1 � z0j. ConsiderR(z) = 1Xk=0 k(z � z0)k � 1Xk=0 k(� � z0)k � (z � �) 1Xk=1 kk(� � z0)k�1:To prove that the formal derivative is the derivative of P1k=0 k(z � z0)k at � it issuÆient to prove that R(z) = o(z)(z � �), where o(z) is in�nitesimally small at �.One has R(z) = P1k=1 k �(z � z0)k � (� � z0)k � k(� � z0)k�1�. By Lemma 3.3.8one gets the following estimate: jR(z)j � P1k=1 2jkjk(k � 1)jz � �j2jz2 � z0jn�2,where jz2 � z0j = maxfjz � z0j; j� � z0jg. Hene all we need now is to prove thatP1k=1 2k(k � 1)jkjjz2 � z0jk�2jz � �j is in�nitesimally small at �. And this in itsturn follows from the onvergene of P1k=1 2k(k � 1)jkjjz2 � z0jk�2. The lattermay be dedued from Lemma 3.3.5. Indeed, onsider z3, suh that jz2 � z0j <jz3 � z0j < jz1 � z0j. The onvergene of P1k=1 kjkjjz3 � z0jk�1 follows fromthe onvergene of P1k=0 jkjjz1 � z0jk by Lemma 3.3.5. And the onvergene ofP1k=2 k(k�1)jkjjz2�z0jk�2 follows from the onvergene ofP1k=1 kjkjjz3�z0jk�1by the same lemma. �Corollary 3.3.10. Let f(z) =P1k=0 kzk onverge absolutely for jzj < r, andlet a; b have absolute values less then r. Then R ba f(z) dz =P1k=0 kk+1 (bk+1�ak+1).Proof. Consider F (z) = P1k=0 kzk+1k+1 . This series is termwise majorized bythe series of f(z), hene it onverges absolutely for jzj < r. By Theorem 3.3.9 f(z)is its derivative for jzj < r. In our ase f(z) is di�erentiable and its derivative isbounded by P1k=0 kjkjrk0 , where r0 = maxfjaj; jbjg. Hene f(z) is ontinuous andvirtually monotone and our result now follows from Theorem 3.3.3. �Exponenta in C . The exponenta for any omplex number z is de�ned asexp z = P1k=0 zkk! . The de�nition works beause the series P1k=0 zkk! absolutelyonverges for any z 2 C .Theorem 3.3.11. The exponenta is a di�erentiable funtion of a omplex vari-able with derivative exp0 z = exp z, suh that for all omplex z, � the followingaddition formula holds: exp(z + �) = exp z exp �.Proof. The derivative of the exponenta an be evaluated termwise by Theo-rem 3.3.9. And this evaluation gives exp0 z = exp z. To prove the addition formulaonsider the following funtion r(z) = exp(z+�)exp z . Di�erentiation of the equalityr(z) exp z = exp(z+ �) gives r0(z) exp z+ r(z) exp z = exp(z+ �). Division by exp zgives r0(z) + r(z) = r(z). Hene r(z) is onstant. This onstant is determined bysubstitution z = 0 as r(z) = exp �. This proves the addition formula. �



3.3 euler formula 77Lemma 3.3.12. Let p : [a; b℄! C be a smooth path ontained in the omplementof a neighborhood of 0. Then exp Rp 1� d� = p(b)p(a) .Proof. First onsider the ase when p is ontained in a irle jz � z0j < jz0jwith enter z0 6= 0. In this irle, 1z expands in a power series:1� = 1z0 � (z0 � �) = 1z0 11� z0��z0 = 1Xk=0 (z0 � �)kzk+10 :Integration of this series is possible to do termwise due to Corollary 3.3.10. Henethe result of the integration does not depend on the path. And Theorem 3.3.9provides di�erentiability of the termwise integral and the possibility of its termwisedi�erentiation. Suh di�erentiation simply gives the original series, whih represents1z in this irle.Consider the funtion l(z) = R zz0 1� d�. Then l0(z) = 1z . The derivative ofthe omposition exp l(z) is exp l(z)z . Hene the omposition satis�es the di�erentialequation y0z = y. We searh for a solution of this equation in the form y = zw.Then y0 = w +w0z and our equation turns into wz +w0z2 = wz. Therefore w0 = 0and w is onstant. To �nd this onstant substitute z = z0 and get 1 = exp0 =exp l(z0) = wz0. Hene w = 1z0 and exp l(z) = zz0 .To prove the general ase onsider a partition fxkgnk=0 of [a; b℄. Denote bypk the restrition of p over [xk; xk+1℄. Choose the partition so small that jp(x) �p(xk)j < jp(xk)j for all x 2 [xk ; xk+1℄. Then any pk satis�es the requirement ofthe above onsidered ase. Hene exp Rpk 1� d� = p(xk+1)p(xk) . Further exp Rp 1� d� =expPn�1k=0 Rpk 1� d� =Qn�1k=0 p(xk+1)p(xk) = p(b)=p(a). �Theorem 3.3.13 (Euler Formula). For any real � one hasexp i� = os�+ i sin�Proof. In Leture 2.5 we have evaluated Rp 1z dz = i� for p(t) = os t+ i sin t,t 2 [0; �℄. Hene Lemma 3.3.12 applied to p(t) immediately gives the Euler formula.�Trigonometri funtions in C . The Euler formula gives power series expan-sions for sinx and osx:sinx = 1Xk=0(�1)k x2k+1(2k + 1)! ; osx = 1Xk=0(�1)k x2k(2k)! :These expansions are used to de�ne trigonometri funtions for omplex vari-able. On the other hand the Euler formula allows us to express trigonometrifuntions via the exponenta:sin z = exp(iz)� exp(�iz)2i ; os z = exp(iz) + exp(�iz)2 :The other trigonometri funtions tan, ot, se, ose are de�ned for omplex vari-ables by the usual formulas via sin and os.



78 3.3 euler formulaProblems.1. Evaluate P1k=1 sin kk! .2. Prove the formula of Joh. Bernoulli R 10 xx dx =P1k=1 (�1)k+1kk .3. Find ln(�1).4. Solve the equation exp z = i.5. Evaluate ii.6. Prove sin z = eiz�e�iz2i , os z = eiz+e�iz2 .7. Prove the identity sin2 z + os2 z = 1.8. Solve the equation sin z = 5=3.9. Solve the equation os z = 2.10. Evaluate P1k=0 os kk! .11. Evaluate Hjzj=1 dzz2 .12. Evaluate P1k=1 qk sin kxk .13. Expand into a power series ex osx.



3.4. Abel's TheoremOn the ontents of the leture. The expansion of the logarithm into powerseries will be extended to the omplex ase. We learn the very important Abel'stransformation of sum. This transformation is a disrete analogue of integrations byparts. Abel's theorem on the limit of power series will be applied to the evaluationof trigonometri series related to the logarithm. The onept of Abel's sum of adivergent series will be introdued.Prinipal branh of the Logarithm. Sine exp(x+ iy) = ex(os y+ i sin y),one gets the following formula for the logarithm: Log z = ln jzj + iArg z, whereArg z = arg z + 2�k. We see that the logarithm is a multi-valued funtion, that iswhy one usually hooses a branh of the logarithm to work. For our purposes it issuÆient to onsider the prinipal branh of the logarithm:ln z = ln jzj+ i arg z; �� < arg z � �:The prinipal branh of the logarithm is a di�erentiable funtion of a omplex vari-able with derivative 1z , inverse to exp z. This branh is not ontinuous at negativenumbers. However its restrition on the upper half-plane is ontinuous and evendi�erentiable at negative numbers.Lemma 3.4.1. For any nonnegative z one has R z1 1� d� = ln z.Proof. If Im z 6= 0, the segment [0; z℄ is ontained in the irle j� � z0j <jz0j for z0 = jzj2Im z . In this irle 1� expands into a power series, whih one anintegrate termwise. Sine for zk the result of integration depends only on the endsof path of integration, the same is true for power series. Hene, we an hangethe path of integration without hanging the result. Consider the following path:p(t) = os t + i sin t, t 2 [0; arg z℄. We know the integral Rp 1� d� = i arg z. Thispath terminates at zjzj . Continue this path by the linear path to z. The integralsatis�es R zz=jzj 1� d� = R jzj1 1z=jzjt dtz=jzj = R jzj1 1t dt = ln jzj. Therefore R z1 1� d� =Rp 1� d� + R zz=jzj 1� d� = i arg z + ln jzj. �Logarithmi series. In partiular for j1� zj < 1 termwise integration of theseries 1� =P1k=0 (1� �)k gives the omplex Merator series:(3.4.1) ln(1 + z) = 1Xk=1(�1)k+1 zkk :Substitute in this series �z for z and subtrat the obtained series from (3.4.1) toget the omplex Gregory series:12 ln 1 + z1� z = 1Xk=0(�1)k z2k+12k + 1 :In partiular for z = ix, one has ��� 1+ix1�ix ��� = 1 and arg 1+ix1�ix = 2artgx. Thereforeone gets artgx = 1Xk=0(�1)k x2k+12k + 1 :79



80 3.4 abel's theoremSine arg(1 + ei�) = artg sin�1+os � = artg tan(�=2) = �2 , the substitution ofexp(i�) for z in the Merator series ln(1 + ei�) = P1k=1(�1)k+1 eik�k gives for theimaginary parts:(3.4.2) 1Xk=0(�1)k+1 sin k�k = �2 :However the last substitution is not orret, beause jei�j = 1 and (3.4.1) is provedonly for jzj < 1. To justify it we will prove a general theorem, due to Abel.Summation by parts. Consider two sequenes fakgnk=1, fbkgnk=1. The dif-ferene of their produt Æakbk = ak+1bk+1 � akbk an be presented asÆ(akbk) = ak+1Æbk + bkÆak:Summation of these equalities givesanbn � a1b1 = n�1Xk=1 ak+1Æbk + n�1Xk=1 bkÆak:A permutation of the latter equality gives the so-alled Abel's transformation ofsums n�1Xk=1 bk�ak = anbn � a1b1 � n�1Xk=1 ak+1�bk:Abel's theorem. One writes x ! a � 0 instead of x ! a and x < a, andx! a+ 0 means x > a and x! a.Theorem 3.4.2 (Abel).If 1Xk=0 ak onverges, then limx!1�0 1Xk=0 akxk = 1Xk=0 ak:Proof. P1k=0 akxk onverges absolutely for jxj < 1, beause of the bounded-ness of fakg.Suppose " > 0. Set A(n;m) =Pmk=n ak, A(n;m)(x) =Pmk=n akxk. Choose Nso large that(3.4.3) jA(0; n)�A(0;1)j < "9 ; 8n > N:Applying the Abel transformation for any m > n one getsA(n;m)�A(n;m)(x) = mXk=n ak(1� xk)= (1� x) mXk=n ÆA(n� 1; k � 1) k�1Xj=0 xj= (1� x)hA(n� 1;m) mXj=0 xj �A(n� 1; n) nXj=0 xj � mXk=nA(n� 1; k)xki:By (3.4.3) for n > N , one gets jA(n � 1;m)j = j(A(0;m) � A) + (A � A(0; n))j �"=9+ "=9 = 2"=9. Hene, we an estimate from above by 2"=31�x the absolute value of



3.4 abel's theorem 81the expression in the brakets of the previous equation for A(n;m) � A(n;m)(x).As a result we get(3.4.4) jA(n;m)�A(n;m)(x)j � 2"3 ; 8m � n > N;8x:Sine limx!1�0A(0; N)(x) = A(0; N) one hooses Æ so small that for x > 1�Æ thefollowing inequality holds: jA(0; N)�A(0; N)(x)j < "3 :Summing up this inequality with (3.4.4) for n = N + 1 one gets:jA(0;m)�A(0;m)(x)j < "; 8m > N; j1� xj < Æ:Passing to limits as m tends to in�nity the latter inequality givesjA(0;1)�A(0;1)(x)j � "; for j1� xj < Æ: �Leibniz series. As the �rst appliation of the Abel Theorem we evaluate theLeibniz seriesP1k=0 (�1)k2k+1 . This series onverges by the Leibniz Theorem 2.4.3. Bythe Abel Theorem its sum islimx!1�0 1Xk=0 (�1)kxk2k + 1 = limx!1�0 artgx = artg 1 = �4 :We get the following remarkable equality:�4 = 1� 13 + 15 � 17 + 19 � : : : :Abel sum of a series. One de�nes the Abel sum of a series P1k=0 ak asthe limit limx!1�0P1k=0 akxk . The series whih have an Abel sum are alled Abelsummable. The Abel Theorem shows that all onvergent series have Abel sumsoiniding with their usual sums. However there are a lot of series, whih have anAbel sum, but do not onverge.Abel's inequality. Consider a seriesP1k=1 akbk, where the partial sums An =Pn�1k=1 ak are bounded by some onstantA and the sequene fbkg is monotone. ThenPn�1k=1 akbk = Pn�1k=1 bkÆAk = Anbn � A1b1 +Pn�1k=1 Ak+1Æbk. Sine Pn�1k=1 jÆbkj =jbn � b1j, one gets the following inequality:�����n�1Xk=1 akbk����� � 3Amaxfjbkjg:Convergene test.Theorem 3.4.3. Let the sequene of partial sums Pn�1k=1 ak be bounded, and letfbkg be non-inreasing and in�nitesimally small. Then P1k=1 akbk onverges to itsAbel sum, if the latter exists.Proof. The di�erene between a partial sum Pn�1k=1 akbk and the Abel sum isequal to limx!1�0 n�1Xk=1 akbk(1� xk) + limx!1�0 1Xk=n akbkxk :



82 3.4 abel's theoremThe �rst limit is zero, the seond limit an be estimated by Abel's inequality fromabove by 3Abn. It tends to 0 as n tends to in�nity. �Appliation. Now we are ready to prove the equality (3.4.2). The seriesP1k=1(�1)k+1 sin kxk has an Abel sum. Indeed,limq!1�0 1Xk=1(�1)k+1 qk sin kxk = Im limq!1�0 1Xk=1(�1)k+1 (qeix)kk= Im limq!1�0 ln(1 + qeix)= Im ln(1 + eix):The sums Pn�1k=1 sin kx = ImPn�1k=1 eikx = Im 1�einx1�eix are bounded. And 1k is de-reasing and in�nitesimally small. Hene we an apply Theorem 3.4.3.Problems.1. Evaluate 1 + 12 � 13 � 14 + 15 + 16 � 17 � 18 + : : : .2. Evaluate P1k=1 sin 2kk .3. P1k=1 os k�k = � ln j2 sin �2 j, (0 < j�j � �).4. P1k=1 sin k�k = ���2 , (0 < � < 2�).5. P1k=0 os(2k+1)�2k+1 = 12 ln j2 ot �2 j, (0 < j�j < �)6. P1k=0 sin(2k+1)�2k+1 = �4 , (0 < � < �)7. P1k=1(�1)k+1 os k�k = ln�2 os �2�, (�� < � < �)8. Find the Abel sum of 1� 1 + 1� 1 + : : : .9. Find the Abel sum of 1� 1 + 0 + 1� 1 + 0 + : : : .10. Prove: A periodi series, suh that the sum of the period is zero, has an Abelsum.11. Telesope P1k=1 k22k .12. Evaluate Pn�1k=0 k os kx.13. Estimate from above P1k=n sin kxk2 .�14. Prove: If P1k=0 ak, P1k=0 bk and their onvolution P1k=0 k onverge, thenP1k=0 k =P1k=0 akP1k=0 bk.



3.5. Residue TheoryOn the ontents of the leture. At last, the reader learns something, whihEuler did not know, and whih he would highly appreiate. Residue theory allowsone to evaluate a lot of integrals whih were not aessible by the Newton-Leibnizformula.Monotone urve. A monotone urve � is de�ned as a subset of the omplexplane whih is the image of a monotone path. Nonempty intersetions of vertialand horizontal lines with a monotone urve are either points or losed intervals.The points of the monotone urve whih have an extremal sum of real andimaginary parts are alled its endpoints, the other points of the urve are alled itsinterior points.A ontinuous injetive monotone path p whose image oinides with � is alleda parametrization of �.Lemma 3.5.1. Let p1 : [a; b℄! C and p2 : [; d℄! C be two parametrizations ofthe same monotone urve �. Then p�11 p2 : [; d℄ ! [a; b℄ is a ontinuous monotonebijetion.Proof. Set Pi(t) = Re pi(t) + Im pi(t). Then P1 and P2 are ontinuous andstritly monotone. And p1(t) = p2(�) if and only if P1(t) = P2(�). Hene p�11 p2 =P�11 P2. Sine P�11 and P2 are monotone ontinuous, the omposition P�11 P2 ismonotone ontinuous. �Orientation. One says that two parametrizations p1 and p2 of a monotoneurve � have the same orientation, if p�11 p2 is inreasing, and one says that theyhave opposite orientations, if p�11 p2 is dereasing.Orientation divides all parametrizations of a urve into two lasses. All elementsof one orientation lass have the same orientation and all elements of the other lasshave the opposite orientation.An oriented urve is a urve with �xed irulation diretion. A hoie of orien-tation means distinguishing one of the orientation lasses as positive, orrespondingto the oriented urve. For a monotone urve, to speify its orientation, it is suÆ-ient to indiate whih of its endpoints is its beginning and whih is the end. Thenall positively oriented parametrizations start with its beginning and �nish at itsend, and negatively oriented parametrizations do the opposite.If an oriented urve is denoted by �, then its body, the urve without orientation,is denoted j�j and the urve with the same body but with opposite orientation isdenoted ��.If �0 is a monotone urve whih is ontained in an oriented urve �, then onede�nes the indued orientation on �0 by � as the orientation of a parametrizationof �0 whih extends to a positive parametrization of �.Line integral. One de�nes the integral R� f(z) dg(z) along a oriented mono-tone urve � as the integral Rp f(z) dg(z), where p is a positively oriented parametr-ization of �. This de�nition does not depend on the hoie of p, beause di�erentparametrizations are obtained from eah other by an inreasing hange of variable(Lemma 3.5.1).One de�nes a partition of a urve � by a point x as a pair of monotone urves�1, �2, suh that � = �1[�2 and �1\�2 = x. And we write in this ase � = �1+�2.83



84 3.5 residue theoryThe Partition Rule for the line integral is(3.5.1) Z�1+�2 f(z) dg(z) = Z�1 f(z) dg(z) + Z�2 f(z) dg(z);where the orientations on �i are indued by an orientation of �. To prove thePartition Rule onsider a positive parametrization p : [a; b℄! �. Then the restri-tions of p over [a; p�1(x)℄ and [p�1(x); b℄ give positive parametrizations of �1 and�2. Hene the equality (3.5.1) follows from R p�1(x)a f(z) dg(z)+R bp�1(x) f(z) dg(z) =R ba f(z) dg(z).A sequene of oriented monotone urves f�kgnk=1 with disjoint interiors is alleda hain of monotone urves and denoted by Pnk=1 �k. The body of a hain C =Pnk=1 �k is de�ned as Snk=1 j�kj and denoted by jCj. The interior of the hain isde�ned as the union of interiors of its elements.The integral of a form f dg along the hain is de�ned as RPnk=1 �k f dg =Pnk=1 R�k f dg.One says that two hains Pnk=1 �k and Pmk=1 �0k have the same orientation, ifthe orientations indued by �k and �0j on �k \�0j oinide in the ase when �k \�0jhas a nonempty interior. Two hains with the same body and orientation are alledequivalent.Lemma 3.5.2. If two hains C = Pnk=1 �k and C 0 = Pmk=1 �0k are equivalentthen the integrals along these hains oinide for any form fdg.Proof. For any interior point x of the hain C, one de�nes the subdivisionof C by x as �+j + ��j +Pnk=1 �k[k 6= j℄, where �j is the urve ontaining x and�+j + ��j is the partition of � by x. The subdivision does not hange the integralalong the hain due to the Partition Rule.Hene we an subdivide C step by step by endpoints of C 0 to onstrut a hainQ whose endpoints inlude all endpoints of P 0. And the integral along Q is thesame as along P . Another possibility to onstrut Q is to subdivide C 0 by endpointsof C. This onstrution shows that the integral along Q oinides with the integralalong C 0. Hene the integrals along C and C 0 oinide. �Due to this lemma, one an introdue the integral of a di�erential form alongany oriented pieewise monotone urve �. To do this one onsiders a monotonepartition of � into a sequene f�kgnk=1 of monotone urves with disjoint interiorsand equip all �k with the indued orientation. One gets a hain and the integralalong this hain does not depend on the partition.Contour integral. A domain D is de�ned as a onneted bounded part ofthe plane with pieewise monotone boundary. The boundary of D denoted �D isthe union of �nitely many monotone urves. And we suppose that �D � D, thatis we onsider a losed domain.For a monotone urve �, whih is ontained in the boundary of a domainD, onede�nes the indued orientation of � by D as the orientation of a parametrizationwhih leaves D on the left during the movement along � around D.One introdues the integral H�D f(z)dg(z) as the integral along any hain whosebody oinides with �D and whose orientations of urves are indued by D.Due to Lemma 3.5.2 the hoie of hain does not a�et the integral.



3.5 residue theory 85
D

Figure 3.5.1. Contour integralLemma 3.5.3. Let D be a domain and l be either a vertial or a horizontal line,whih bisets D into two parts: D0 and D00 lying on the di�erent sides of l. ThenH�D f(z)dz = H�D0 f(z)dz + H�D00 f(z)dz.Proof. The line l intersets the boundary of D in a �nite sequene of pointsand intervals fJkgmk=1.Set �0D = �D \ �D0 and �00D = �D \ �D00. The intersetion �0D \ �00Donsists of �nitely many points. Indeed, the interior points of Jk do not belong tothis intersetion, beause their small neighborhoods have points of D only from oneside of l. Hene Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz:The boundary of D0 onsists of �0D and some number of intervals. And theboundary of D00 onsists of �00D and the same intervals, but with opposite orien-tation. Therefore L = Zl\�D0 f(z) dz = � Zl\�D00 f(z) dz:On the other handI�D0 f(z)dz = Z�0D f(z) dz + L andI�D00 f(z)dz = Z�00D f(z) dz � L;heneI�D0 f(z)dz + I�D00 f(z)dz = Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz: �Lemma 3.5.4 (Estimation). If jf(z)j � B for any z from a body of a hainC =Pnk=1 �k, then ��RC f(z) dz�� � 4Bn diam jCj.Proof. By Lemma 3.3.6 for any k one has ���R�k f(z) dz��� � 4BjAk � Bkj �4B diam jCj where Ak and Bk are endpoints of �k. The summation of these in-equalities proves the lemma. �Theorem 3.5.5 (Cauhy). If a funtion f is omplex di�erentiable in a domainD then H�D f(z)dz = 0.



86 3.5 residue theoryProof. Fix a retangle R with sides parallel to the oordinate axis whihontains D and denote by jRj its area and by P its perimeter.The proof is by ontradition. Suppose ��H�D f(z) dz�� 6= 0. Denote by  the ratioof ��H�D f(z) dz��=jRj. We will onstrut a nested sequene of retangles fRkg1k=0suh that� R0 = R, Rk+1 � Rk;� R2k is similar to R;� j H�(Rk\D) f(z) dzj � jRkj, where jRkj is the area of Rk.The indution step: Suppose Rk is already onstruted. Divide Rk in two equalretanges R0k and R00k by drawing either a vertial, if k is even, or a horizontal, if kis odd, interval joining the middles of the opposite sides of Rk. Set Dk = D \ Rk,D0 = D\R0k, D00 = D\R00k . We state that at least one of the following inequalitiesholds:(3.5.2) ����I�D0 f(z)dz���� � jR0kj; ����I�D00 f(z)dz���� � jR00k j:Indeed, in the opposite ase one gets����I�D0 f(z)dz + I�D00 f(z)dz���� < jR0kj+ jR0kj = jRkj:Sine H�D0 f(z)dz + H�D00 f(z)dz = H�Dk f(z)dz by Lemma 3.5.3 we get a ontra-dition with the hypothesis j Rpk f(z) dzj � jRkj. Hene, one of the inequalities(3.5.2) holds. If the �rst inequality holds we set Rk+1 = R0k else we set Rk+1 = R00k .After onstruting the sequene fRkg, onsider a point z0 belonging toT1k=1 Rk.This point belongs to D, beause all its neighborhoods ontain points of D. Con-sider the linearization f(z) = f(z0)+f 0(z0)(z�z0)+o(z)(z�z0). Sine H�Dk (f(z0)+f 0(z0)(z � z0))dz = 0 one gets(3.5.3) ����I�Dk o(z)(z � z0)dz���� = ����I�Dk f(z)dz���� � jRkj:The boundary of Dk is ontained in the union �Rk [ Rk \ �D. Consider amonotone partition �D =Pnk=1 �k. Sine the intersetion of Rk with a monotoneurve is a monotone urve, one onludes that �D \ Rk is a union of at most nmonotone urves. As �Rk onsists of 4 monotone urves we get that �Dk is as abody of a hain with at most 4 + n monotone urves.Denote by Pk the perimeter of Rk. And suppose that o(x) is bounded in Rkby a onstant ok. Then jo(x)(z � z0)j � Pkok for all z 2 Rk.Sine diam �Dk � Pk2 by the Estimation Lemma 3.5.4, we get the followinginequality:(3.5.4) ����I�Dk o(z)(z � z0)dz���� � 4(4 + n)Pkok Pk2 = 2(4 + n)okP 2k :The ratio P 2k =jRkj is onstant for even k. Therefore the inequalities (3.5.3) and(3.5.4) ontradit eah other for ok < jRkj2(4+n)P 2k = jRj2(4+n)P 2 . However the inequalityjo(x)j < jRj2(4+n)P 2 holds for some neighborhood V of z0 as o(x) is in�nitesimallysmall at z0. This is a ontradition, beause V ontains some R2k. �



3.5 residue theory 87Residues. By H rz0 f(z) dz we denote the integral along the boundary of thedisk fjz � z0j � rg.Lemma 3.5.6. Suppose a funtion f(z) is omplex di�erentiable in the domainD with the exeption of a �nite set of points fzkgnk=1. ThenI�D f(z)dz = nXk=1 I rzk f(z) dz;where r is so small that all disks jz � zkj < r are ontained in D and disjoint.Proof. Denote by D0 the omplement of the union of the disks in D. Then�D0 is the union of �D and the boundary irles of the disks. By the CauhyTheorem 3.5.5, H�D0 f(z)dz = 0. On the other hand this integral is equal to thesum H�D f(z)dz and the sum of integrals along boundaries of the irles. Theorientation indued by D0 onto the boundaries of these irles is opposite to theorientation indued from the irles. Hene0 = I�D0 f(z)dz = I�D f(z)dz � nXk=1 I rzk f(z) dz: �A singular point of a omplex funtion is de�ned as a point where either thefuntion or its derivative are not de�ned. A singular point is alled isolated, if ithas a neighborhood, where it is the only singular point. A point is alled a regularpoint if it not a singular point.One de�nes the residue of f at a point z0 and denotes it as resz0 f as thelimit limr!0 12�i H rz0 f(z)dz. The above lemma shows that this limit exists for anyisolated singular point and moreover, that all integrals along suÆiently small ir-umferenes in this ase are the same.Sine in all regular points the residues are 0 the onlusion of Lemma 3.5.6 fora funtion with �nitely many singular points an be presented in the form:(3.5.5) I�D f(z)dz = 2�iXz2D resz f:An isolated singular point z0 is alled a simple pole of a funtion f(z) if thereexists a nonzero limit limz!z0 f(z)(z � z0).Lemma 3.5.7. If z0 is a simple pole of f(z) then resz0 f = limz!z0(z�z0)f(z).Proof. Set L = limz!z0(z � z0)f(z). Then f(z) = L+ o(z)(z�z0) , where o(z) isin�nitesimally small at z0. Hene(3.5.6) I rz0 o(z) dzz � z0 = I rz0 f(z) dz � I rz0 Lz � z0 dz:Sine the seond integral from the right-hand side of (3.5.6) is equal to 2L�i andthe other one is equal to 2�i resz0 f for suÆiently small r, we onlude that theintegral from the left-hand side also is onstant for suÆiently small r. To prove thatL = resz0 f we have to prove that this onstant  = limr!0 H rz0 o(z)z�z0 dz is 0. Indeed,assume that jj > 0. Then there is a neighborhood U of z0 suh that jo(z)j � jj32



88 3.5 residue theoryfor all z 2 U . Then one gets a ontradition by estimation of ���H rz0 o(z) dzz�z0 ��� (whih isequal to jj for suÆiently small r) from above by jjp2 for r less than the radius ofU . Indeed, the integrand is bounded by jj32r and the path of integration (the irle)an be divided into four monotone urves of diameter rp2: quarters of the irle.Hene by the Estimation Lemma 3.5.4 one gets ���H rz0 o(z) dzz�z0 ��� � 16p2 jj32 = jjp2 . �Remark 3.5.8. Denote by �(r; �; z0) an ar of the irle jz � z0j = r, whoseangle measure is �. Under the hypothesis of Lemma 3.5.7 the same arguments provethe following limr!0 Z�(�;r;0z) f(z) dz = i� limz!z0 f(z)(z � z0):Problems.1. Evaluate H 11 dz1+z4 .2. Evaluate H 10 dzsin z .3. Evaluate H 10 dzez�1 .4. Evaluate H 10 dzz2 .5. Evaluate H 10 sin 1z dz.6. Evaluate H 10 ze 1z dz.7. Evaluate H 5=20 z2 ot�z dz.8. Evaluate H 122 z dz(z�1)(z�2)2 .9. Evaluate R +��� d�5+3 os� .10. Evaluate R +��� d�(1+os2 �)2 .11. Evaluate R 2�0 d�(1+os�)2 .12. Evaluate R +1�1 dx1+x4 .13. Evaluate R +10 dx(1+x2)(4+x2) .14. Evaluate R +1�1 1+x21+x4 .15. Evaluate R +1�1 x31+x6 dx.



3.6. Analyti FuntionsOn the ontents of the leture. This leture introdues the reader intothe phantastially beautiful world of analyti funtions. Integral Cauhy formula,Taylor series, Fundamental Theorem of Algebra. The reader will see all of thesetreasures in a single leture.Theorem 3.6.1 (Integral Cauhy Formula). If funtion f is omplex di�eren-tiable in the domain D, then for any interior point z 2 D one has:f(z) = 12�i I�D f(�) dz� � zProof. The funtion f(z)z�z0 has its only singular point inside the irle. Thisis z0, whih is a simple pole. The residue of f(z)z�z0 by Lemma 3.5.7 is equal tolimz!z0(z � z0) f(z)z�z0 = limz!z0 f(z) = f(z0). And by the formula (3.5.5) theintegral is equal to 2�if(z0). �Lemma 3.6.2. LetP1k=1 fk be a series of virtually monotone omplex funtions,whih is termwise majorized by a onvergent positive series P1k=1 k on a monotoneurve � (that is jfk(z)j � k for natural k and z 2 �) and suh that F (z) =P1k=1 fk(z) is virtually monotone. Then(3.6.1) 1Xk=1 Z� fk(z) dz = Z� 1Xk=1 fk(z) dz:Proof. By the Estimation Lemma 3.5.4 one has the following inequalities:(3.6.2) ����Z� fk(z) dz���� � 4k diam�; �����Z� 1Xk=n fk(z) dz����� � 4 diam� 1Xk=n k:Set Fn(z) = Pn�1k=1 fk(z). By the left inequality of (3.6.2), the module of dif-ferene between R� Fn(z) dz = Pn�1k=1 R� fk(z) dz and the left-hand side of (3.6.1)does not exeed 4 diam�P1k=n k. Hene this module is in�nitesimally small asn tends to in�nity. On the other hand, by the right inequality of (3.6.2) one gets��R� Fn(z) dz � R� F (z) dz�� � 4 diam�P1k=n k. This implies that the di�erene be-tween the left-hand and right-hand sides of (3.6.1) is in�nitesimally small as n tendsto in�nity. But this di�erene does not depend on n. Hene it is zero. �Lemma 3.6.3. If a real funtion f de�ned over an interval [a; b℄ is loallybounded, then it is bounded.Proof. The proof is by ontradition. Suppose that f is unbounded. Dividethe interval [a; b℄ in half. Then the funtion has to be unbounded at least on oneof the halves. Consider this half and divide it in half. Choose the half wherethe funtion is unbounded. So we onstrut a nested in�nite sequene of intervalsonverging to a point, whih oinides with the intersetion of all the intervals. Andf is obviously not loally bounded at this point. �Corollary 3.6.4. A omplex funtion f(z) ontinuous on the boundary of adomain D is bounded on �D. 89



90 3.6 analyti funtionsProof. Consider a path p : [a; b℄! �D. Then jf(p(t))j is ontinuous on [a; b℄,hene it is loally bounded, hene it is bounded. Sine �D an be overed by imagesof �nitely many paths this implies boundedness of f over �D. �Theorem 3.6.5. If a funtion f(z) is omplex di�erentiable in the disk jz�z0j �R, then for jz � z0j < Rf(z) = 1Xk=0(z � z0)k I Rz0 f(�)(� � z0)k+1 d�;where the series on the right-hand side absolutely onverges for jz � z0j < R.Proof. Fix a point z suh that jz� z0j < R and onsider � as a variable. Forj� � z0j > jz � z0j one has(3.6.3) 1� � z = 1(� � z0)� (z � z0) = 1� � z0 11� z�z0��z0 = 1Xk=0 (z � z0)k(� � z0)k+1 :On the irle j� � z0j = R the series on the right-hand side is majorized by theonvergent series P1k=0 jz�z0jkRk+1 for r > jz � z0j. The funtion f(�) is bounded onj� � z0j = R by Corollary 3.6.4. Therefore after multipliation of (3.6.3) by f(�)all the onditions of Lemma 3.6.2 are satis�ed. Termwise integration gives:f(z) = I Rz0 f(�)� � z d� = 1Xk=0(z � z0)k I Rz0 f(�) d�(� � z0)k+1 : �Analyti funtions. A funtion f(z) of omplex variable is alled an analytifuntion in a point z0 if there is a positive " suh that f(z) = P1k=0 ak(z � z0)kfor all z from a disk jz� z0j � " and the series absolutely onverges. Sine one andi�erentiate power series termwise (Theorem 3.3.9), any funtion whih is analytiat z is also omplex di�erentiable at z. Theorem 3.6.5 gives a onverse. Thus, weget the following:Corollary 3.6.6. A funtion f(z) is analyti at z if and only if it is omplexdi�erentiable in some neighborhood of z.Theorem 3.6.7. If f is analyti at z then f 0 is analyti at z. If f and g areanalyti at z then f + g, f � g, fg are analyti at z. If f is analyti at z and g isanalyti at f(z) then g(f(z)) is analyti at z.Proof. Termwise di�erentiation of the power series representing f in a neigh-borhood of z gives the power series for its derivative. Hene f 0 is analyti. Thedi�erentiability of f � g, fg and g(f(z)) follow from orresponding di�erentiationrules. �Lemma 3.6.8 (Isolated Zeroes). If f(z) is analyti and is not identially equalto 0 in some neighborhood of z0, then f(z) 6= 0 for all z 6= z0 suÆiently lose toz0. Proof. Let f(z) = P1k=0 k(z � z0)k in a neighborhood U of z0. Let mbe the �rst nonzero oeÆient. Then P1k=m k(z � z0)k�m onverges in U to adi�erentiable funtion g(z) by Theorem 3.3.9. Sine g(z0) = m 6= 0 and g(z) is



3.6 analyti funtions 91ontinuous at z0, the inequality g(z) 6= 0 holds for all z suÆiently lose to z0. Asf(z) = g(z)(z � z0)m, the same is true for f(z). �Theorem 3.6.9 (Uniqueness Theorem). If two power series P1k=0 ak(z � z0)kand P1k=0 bk(z� z0)k onverge in a neighborhood of z0 and their sums oinide forsome in�nite sequene fzkg1k=1 suh that zk 6= z0 for all k and limk!1 zk = z0,then ak = bk for all k.Proof. Set k = ak � bk. Then f(z) = P1k=0 k(z � z0)k has a non-isolatedzero at z0. Hene f(z) = 0 in a neighborhood of z0. We get a ontraditionby onsidering the funtion g(z) = P1k=m k(z � z0)k�m, whih is nonzero for allz suÆiently lose to z0 (f. the proof of the Isolated Zeroes Lemma 3.6.8), andsatis�es the equation f(z) = g(z)(z � z0)m. �Taylor series. Set f (0) = f and by indution de�ne the (k + 1)-th derivativef (k+1) of f as the derivative of its k-th derivative f (k). For the �rst and the seondderivatives one prefers the notation f 0 and f 00. For example, the k-th derivative ofzn is nkzn�k. (Reall that nk = n(n� 1) : : : (n� k + 1).)The following series is alled the Taylor series of a funtion f at point z0:1Xk=0 f (k)(z0)k! (z � z0)k:The Taylor series is de�ned for any analyti funtion, beause an analyti fun-tion has derivative of any order due to Theorem 3.6.7.Theorem 3.6.10. If a funtion f is analyti in the disk jz � z0j < r thenf(z) =P1k=0 f (k)(z0)k! (z � z0)k for any z from the disk.Proof. By Theorem 3.6.5, f(z) is presented in the disk by a onvergent powerseries P1k=0 ak(z � z0)k . To prove our theorem we prove that(3.6.4) ak = I Rz0 f(�)(� � z0)k+1 d� = f (k)(z0)k! :Indeed, a0 = f(z0) and termwise di�erentiatiion of P1k=0 ak(z � z0)k applied ntimes gives f (n)(z) = P1k=n knak(z � z0)k. Putting z = z0, one gets f (n)(z0) =nnan = ann!. �Theorem 3.6.11 (Liouville). If a funtion f is analyti and bounded on thewhole omplex plane, then f is onstant.Proof. If f is analyti on the whole plane then f(z) =P1k=0 akzk, where akis de�ned by (3.6.4). If jf(z)j � B by the Estimation Lemma 3.5.4 one gets(3.6.5) jakj = �����I R0 f(�)zk+1 d������ � 4 � 4 BRk+1 Rp2 = CRk :Consequently ak for k > 0 is in�nitesimally small as R tends to in�nity. But akdoes not depend on R, hene it is 0. Therefore f(z) = a0. �Theorem 3.6.12 (Fundamental Theorem of Algebra). Any nononstant poly-nomial P (z) has a omplex root.



92 3.6 analyti funtionsProof. If P (z) has no roots the funtion f(z) = 1P (z) is analyti on the wholeplane. Sine limz!1 f(z) = 0 the inequality jf(z)j < 1 holds for jzj = R if R issuÆiently large. Therefore the estimation (3.6.5) for the k-th oeÆient of f holdswith B = 1 for suÆiently large R. Hene the same arguments as in proof of theLiouville Theorem 3.6.11 show that f(z) is onstant. This is a ontradition. �
.
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singular points
A

Figure 3.6.1. Analyti ontinuationAnalyti ontinuation.Lemma 3.6.13. If an analyti funtion f(z) has �nitely many singular pointsin a domain D and a non isolated zero at a point z0 2 D then f(z) = 0 for allregular z 2 D.Proof. For any nonsingular point z 2 D, we onstrut a sequene of suÆ-iently small disks D0; D1; D2; : : : ; Dn without singular points with the followingproperties: 1) z0 2 D0 � U ; 2) z 2 Dn; 3) zk, the enter of Dk, belongs to Dk�1for all k > 0. Then by indution we prove that f(Dk) = 0. First step: if z0 is anon-isolated zero of f , then the Taylor series of f vanishes at z0 by the UniquenessTheorem 3.6.9. But this series represents f(z) on D0 due to Theorem 3.6.10, sineD0 does not ontain singular points. Hene, f(D0) = 0. Suppose we have provedalready that f(Dk) = 0. Then zk+1 is a non-isolated zero of f by the third propertyof the sequene fDkgnk=0. Consequently, the same arguments as above for k = 0prove that f(Dk+1) = 0. And �nally we get f(z) = 0. �Consider any formula whih you know from shool about trigonometri fun-tions. For example, tan(x + y) = tanx+tany1�tanx tan y . The above lemma implies thatthis formula remains true for omplex x and y. Indeed, onsider the funtionT (x; y) = tan(x + y) � tanx+tan y1�tanx tan y . For a �xed x the funtion T (x; y) is analytiand has �nitely many singular points in any disk. This funtion has non-isolatedzeroes in all real points, hene this funtion is zero in any disk interseting the realline. This implies that T (x; y) is zero for all y. The same arguments applied toT (x; y) with �xed y and variable x prove that T (x; y) is zero for all omplex x; y.The same arguments prove the following theorem.



3.6 analyti funtions 93Theorem 3.6.14. If some analyti relation between analyti funtions holds ona urve �, it holds for any z 2 C , whih an be onneted with � by a paths avoidingsingular points of the funtions.Lemma 3.6.15. sin t � 2t� for t 2 [0; �=2℄.Proof. Let f(t) = sin t� 2t� . Then f 0(x) = os t� 2� . Set y = aros 2� . Thenf 0(x) � 0 for x 2 [0; y℄. Therefore f is nondereasing on [0; y℄, and nonnegative,beause f(0) = 0. On the interval [y; �=2℄ the derivative of f is negative. Henef(x) is non-inreasing and nonnegative, beause its value on the end of the intervalis 0. �Lemma 3.6.16 (Jordan). Let f(z) be an analyti funtion in the upper half-plane suh that limz!1 f(z) = 0. Denote by �R the upper half of the irle jzj = R.Then for any natural m(3.6.6) limR!1 Z�R f(z) exp(miz) dz = 0:Proof. Consider the parametrization z(t) = R os t+Ri sin t, t 2 [0; �℄ of �R.Then the integral (3.6.6) turns into(3.6.7) Z �0 f(z) exp(iRm os t�Rm sin t) d(R os t+ Ri sin t)= Z �0 Rf(z) exp(iRm os t) exp(�Rm sin t)(� sin t+ i os t) dt:If jf(z)j � B on �R, then jf(z) exp(iRm os t)(� sin t + i os t)j � B on �R. Andthe module of the integral (3.6.7) an be estimated from above byBR Z �0 exp(�Rm sin t) dt:Sine sin(� � t) = sin t, the latter integral is equal to 2BR R �=20 exp(�Rm sin t) dt.Sine sin t � 2t� , the latter integral does not exeed2BR Z �=20 exp(�2Rmt=�) dt = 2BR1� exp(�Rm)2Rm � Bm:Sine B an be hosen arbitrarily small for suÆiently large R, this proves thelemma. �Evaluation of R +1�1 sinxx dx = limN!1 R N�N sinxx dx. Sine sinx = Im eix ourintegral is equal to Im R +1�1 eizz dz. Set �(r) = fz j jzj = r; Im z � 0g. This is asemiirle. Let us orient it ounter-lokwise, so that its initial point is r.Consider the domain D(R) bounded by the semiirles ��(r), �(R) and theintervals [�R;�r℄, [r; R℄, where r = 1R and R > 1. The funtion eizz has no singularpoints inside D(R). Hene H�D(R) eizz dz = 0. Hene for any R(3.6.8) Z �R�r eizz dz + Z Rr eizz dz = Z�(r) eizz dz � Z�(R) eizz dz:The seond integral on the right-hand side tends to 0 as R tends to in�nity due toJordan's Lemma 3.6.16. The funtion eizz has a simple pole at 0, hene the �rst
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r

R
−r

−R Figure 3.6.2. The domain D(R)integral on the right-hand side of (3.6.8) tends to �i res eizz = �i due to Remark3.5.8. As a result, the right-hand side of (3.6.8) tends to �i as R tends to in�nity.Consequently the left-hand side of (3.6.8) also tends to �i as R !1. The imagi-nary part of left-hand side of (3.6.8) is equal to R R�R sinxx dx� R r�r sinxx dx. The lastintegral tends to 0 as r ! 0, beause j sinxx j � 1. Hene R R�R sinxx dx tends to � asR!1. Finally R +1�1 sinxx dx = �.Problems.1. Prove that an even analyti funtion f , i.e., a funtion suh that f(z) = f(�z),has a Taylor series at 0 onsisting only of even powers.2. Prove that analyti funtion whih has a Taylor series only with even powersis an even funtion.3. Prove: If an analyti funtion f(z) takes real values on [0; 1℄, then f(x) is realfor any real x.4. Evaluate R +1�1 11+x4 dx.5. Evaluate R +��� d�5+3 os� .6. Evaluate R10 x2(x2+a2)2 dx (a > 0).7. Evaluate R +1�1 x sinxx2+4x+20 dx.8. Evaluate R10 os axx2+b2 dx (a; b > 0).


