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2.1. Natural LogarithmOn the ontents of the leture.In the beginning of Calulus was the Word, and the Word waswith Arithmeti, and the Word was Logarithm1Logarithmi tables. Multipliation is muh more diÆult than addition. Alogarithm redues multipliation to addition. The invention of logarithms was oneof the great ahievements of our ivilization.In early times, when logarithms were unknown instead of them one used trigono-metri funtions. The following identity2 osx os y = os(x+ y) + os(x� y)an be applied to alulate produts via tables of osines. To multiply numbers xand y, one represents them as osines x = osa, y = os b using the osine table.Then evaluate (a + b) and (a � b) and �nd their osines in the table. Finally, theresults are summed and divided by 2. That is all. A single multipliation requiresfour searhes in the table of osines, two additions, one subtration and one divisionby 2.A logarithmi funtion l(x) is a funtion suh that l(xy) = l(x) + l(y) for anyx and y. If one has a logarithmi table, to evaluate the produt xy one has to �ndin the logarithmi table l(x) and l(y) then sum them and �nd the antilogarithm ofthe sum. This is muh easier.The idea of logarithms arose in 1544, when M. Stiefel ompared geometri andarithmeti progressions. The addition of exponents orresponds to the multiplia-tion of powers. Hene onsider a number lose to 1, say, 1:000001. Calulate thesequene of its powers and plae them in the left olumn. Plae in the right ol-umn the orresponding values of exponents, whih are just the line numbers. Thelogarithmi table is ready.Now to multiply two numbers x and y, �nd them (or their approximations) inthe left olumn of the logarithmi table, and read their logarithms from the rightolumn. Sum the logarithms and �nd the value of the sum in the right olumn.Next to this sum in the left olumn the produt xy stands. The �rst tables of suhlogarithms were omposed by John Napier in 1614.Area of a urvilinear trapezium. Reall that a sequene is said to be mono-tone, if it is either inreasing or dereasing. The minimal interval whih ontainsall elements of a given sequene of points will be alled supporting interval of thesequene. And a sequene is alled exhausting for an interval I if I is the supportinginterval of the sequene.Let f be a non-negative funtion de�ned on [a; b℄. The set f(x; y) j x 2[a; b℄ and 0 � y � f(x)g is alled a urvilinear trapezium under the graph of fover the interval [a; b℄.To estimate the area of a urvilinear trapezium under the graph of f over [a; b℄,hoose an exhausting sequene fxigni=0 for [a; b℄ and onsider the following sums:(2.1.1) n�1Xk=0 f(xk)jÆxkj; n�1Xk=0 f(xk+1)jÆxkj (where Æxk = xk+1 � xk):1�oo& is Greek for \word", �%���o& means \number".34



2.1 natural logarithm 35

a bFigure 2.1.1. A urvilinear trapeziumWe will all the �rst of them the reeding sum, and the seond the advaning sum, ofthe sequene fxkg for the funtion f . If the funtion f is monotone the area of theurvilinear trapezium is ontained between these two sums. To see this, onsider thefollowing step-�gures: Sn�1k=0 [xk; xk+1℄�[0; f(xk)℄ and Sn�1k=0 [xk; xk+1℄�[0; f(xk+1)℄.If f and fxkg both inrease or both derease the �rst step-�gure is ontained inthe urvilinear trapezium and the seond step-�gure ontains the trapezium withpossible exeption of a vertial segment [a � [0; f(a)℄ or [b � [0; f(b)℄. If one of fand fxkg inreases and the other dereases, then the step-�gures swith the roles.The rededing sum equals the area of the �rst step-�gure, and the advaning sumequals the area of the seond one. Thus we have proved the following lemma.Lemma 2.1.1. Let f be a monotone funtion and let S be the area of theurvilinear trapezium under the graph of f over [a; b℄. Then for any sequenefxkgnk=0 exhausting [a; b℄ the area S is ontained between Pn�1k=0 f(xk)jÆxk j andPn�1k=0 f(xk+1)jÆxkj.Fermat's quadratures of parabolas. In 1636 Pierre Fermat proposed aningenious trik to determine the area below the urve y = xa.

Figure 2.1.2. Fermat's quadratures of parabolas



36 2.1 natural logarithmIf a > �1 then onsider any interval of the form [0; B℄. Choose a positiveq < 1. Then the in�nite geometri progression B;Bq;Bq2; Bq3; : : : exhausts [0; B℄and the values of the funtion for this sequene also form a geometri progressionBa; qaBa; q2aBa; q3aBa; : : : . Then both the reeding and advaning sums turn intogeometri progressions:1Xk=0Baqka(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 qk(a+1)= Ba+1(1� q)1� qa+1 ;1Xk=0Baq(k+1)a(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(1� q)qa1� qa+1 :For a natural a, one has 1�q1�qa+1 = 11+q+q2+���+qa . As q tends to 1 both sumsonverge to Ba+1a+1 . This is the area of the urvilinear trapezium. Let us remark thatfor a < 0 this trapezium is unbounded, nevertheless it has �nite area if a > �1.If a < �1, then onsider an interval in the form [B;1℄. Choose a positiveq > 1. Then the in�nite geometri progression B;Bq;Bq2; Bq3; : : : exhausts [B;1℄and the values of the funtion for this sequene also form a geometri progressionBa; qaBa; q2aBa; q3aBa; : : : . The reeding and advaning sums are1Xk=0Baqka(qk+1B � qkB) = Ba+1(q � 1) 1Xk=0 qk(a+1)= Ba+1(q � 1)1� qa+1 ;1Xk=0Baq(k+1)a(qk+1B � qkB) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(q � 1)qa1� qa+1 :If a is an integer set p = q�1. Then q�11�qa+1 = q 1�p1�pjaj�1 = q 11+p+p2+���+pn�2 .As q tends to 1 both sums onverge to Ba+1jaj�1 . This is the area of the urvilineartrapezium.For a > �1 the area of the urvilinear trapezium under the graph of xa over[A;B℄ is equal to the di�erene between the areas of trapezia over [0; B℄ and [0; A℄.Hene this area is Ba+1�Aa+1a+1 .For a < �1 one an evaluate the area of the urvilinear trapezium under thegraph of xa over [A;B℄ as the di�erene between the areas of trapezia over [A;1℄and [B;1℄. The result is expressed by the same formula Ba+1�Aa+1a+1 .Theorem 2.1.2 (Fermat). The area below the urve y = xa over the interval[A;B℄ is equal to Ba+1�Aa+1a+1 for a 6= 1.We have proved this theorem for integer a, but Fermat proved it for all reala 6= �1.



2.1 natural logarithm 37The Natural Logarithm. In the ase a = �1 the geometri progression forareas of step-�gures turns into an arithmeti progression. This means that the areabelow a hyperbola is a logarithm! This disovery was made by Gregory in 1647.
1 xFigure 2.1.3. The hyperboli trapezium over [1; x℄The �gure bounded from above by the graph of hyperbola y = 1=x, from belowby segment [a; b℄ of the axis of absissas, and on eah side by vertial lines passingthrough the end points of the interval, is alled a hyperboli trapezium over [a; b℄.The area of hyperboli trapezium over [1; x℄ with x > 1 is alled the naturallogarithm of x, and it is denoted by lnx. For a positive number x < 1 its logarithmis de�ned as the negative number whose absolute value oinides with the area ofhyperboli trapezium over [x; 1℄. At last, ln 1 is de�ned as 0.Theorem 2.1.3 (on logarithm). The natural logarithm is an inreasing funtionde�ned for all positive numbers. For eah pair of positive numbers x, ylnxy = lnx+ ln y:Proof. Consider the ase x; y > 1. The di�erene lnxy � ln y is the area ofthe hyperboli trapezium over [y; xy℄. And we have to prove that it is equal tolnx, the area of trapezium over [1; x℄. Choose a large number n. Let q = x1=n.Then qn = x. The �nite geometri progression fqkgnk=0 exhausts [1; x℄. Then thereeding and advaning sums aren�1Xk=0 q�k(qk+1 � qk) = n(q � 1) n�1Xk=0 q�k�1(qk+1 � qk) = n(q � 1)q :(2.1.2)Now onsider the sequene fxqkgnk=0 exhausting [x; xy℄. Its reeding sumn�1Xk=0 x�1q�k(xqk+1 � xqk) = n(q � 1)just oinides with the reeding sum (2.1.2) for lnx. The same is true for theadvaning sum. As a result we obtain for any natural n the following inequalities:n(q � 1) � lnx � n(q � 1)q n(q � 1) � lnxy � ln y � n(q � 1)qThis implies that j lnxy� lnx� ln yj does not exeed the di�erene between the thereeding and advaning sums. The statement of Theorem 2.1.3 in the ase x; y > 1will be proved when we will prove that this di�erene an be made arbitrarily smallby a hoie of n. This will be dedued from the following general lemma.



38 2.1 natural logarithmLemma 2.1.4. Let f be a monotone funtion over the interval [a; b℄ and letfxkgnk=0 be a sequene that exhausts [a; b℄. Then�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� � jf(b)� f(a)jmaxk<n jÆxk jProof of lemma. The proof of the lemma is a straightforward alulation.To shorten the notation, set Æf(xk) = f(xk+1)� f(xk).�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� = �����n�1Xk=0 Æf(xk)Æxk������ n�1Xk=0 jÆf(xk)jmax jÆxkj= max jÆxk j n�1Xk=0 jÆf(xk)j= max jÆxk j �����n�1Xk=0 Æf(xk)�����= max jÆxk jjf(b)� f(a)j:The equality ���Pn�1k=0 Æf(xk)��� =Pn�1k=0 jÆf(xk)j holds, as Æf(xk) have the same signsdue to the monotoniity of f . �The value max jÆxk j is alled maximal step of the sequene fxkg. For thesequene fqkg of [1; x℄ its maximal step is equal to qn � qn�1 = qn(1 � q�1) =x(1 � q)=q. It tends to 0 as q tends to 1. In our ase jf(b) � f(a)j = 1 � 1x < 1.By Lemma 2.1.4 the di�erene between the reeding and advaning sums ould bemade arbitrarily small. This ompletes the proof in the ase x; y > 1.Consider the ase xy = 1, x > 1. We need to prove the following(inversion rule) ln 1=x = � lnx:As above, put qn = x > 1. The sequene fq�kgnk=0 exhausts [1=x; 1℄. The orre-sponding reeding sumPn�1k=0 qk+1(q�k�q�k�1) =Pn�1k=0 (q�1) = n(q�1) oinideswith its ounterpart for lnx. The same is true for the advaning one. The samearguments as above prove j ln 1=xj = lnx. The sign of ln 1=x is de�ned as minusbeause 1=x < 1. This proves the inversion rule.Now onsider the ase x < 1, y < 1. Then 1=x > 1 and 1=y > 1 and by the�rst ase ln 1=xy = (ln 1=x+ln1=y). Replaing all terms of this equation aordingto the inversion rule, one gets � lnxy = � lnx� ln y and �nally lnxy = lnx+ ln y.The next ase is x > 1, y < 1, xy < 1. Sine both 1=x and xy are less then 1,then by the previous ase lnxy + ln 1=x = ln xyx = ln y. Replaing ln 1=x by � lnxone gets lnxy � lnx = ln y and �nally lnxy = lnx+ ln y.The last ase, x > 1, y < 1, xy > 1 is proved by lnxy + ln 1=y = lnx andreplaing ln 1=y by � ln y. �Base of a logarithm. Natural or hyperboli logarithms are not the only loga-rithmi funtions. Other popular logarithms are deimal ones. In omputer sieneone prefers binary logarithms. Di�erent logarithmi funtions are distinguished by



2.1 natural logarithm 39their bases. The base of a logarithmi funtion l(x) is de�ned as the number bfor whih l(b) = 1. Logarithms with the base b are denoted by logb x. What isthe base of the natural logarithm? This is the seond most important onstant inmathematis (after �). It is an irrational number denoted by e whih is equal to2:71828182845905 : : : . It was Euler who introdued this number and this notation.Well, e is the number suh that the area of hyperboli trapezium over [1; e℄is 1. Consider the geometri progression qn for q = 1 + 1n . All summands in theorresponding hyperboli reeding sum for this progression are equal to qk+1�qkqk =q � 1 = 1n . Hene the reeding sum for the interval [1; qn℄ is equal to 1 and it isgreater than ln qn. Consequently e > qn. The summands of the advaning sumin this ase are equal to qk+1�qkqk+1 = 1 � 1q = 1n+1 . Hene the advaning sum forthe interval [1; qn+1℄ is equal to 1. It is less than the orresponding logarithm.Consequently, e < qn+1. Thus we have proved the following estimates for e:�1 + 1n�n < e < �1 + 1n�n+1We see that �1 + 1n�n rapidly tends to e as n tends to in�nity.Problems.1. Prove that lnx=y = lnx� ln y.2. Prove that ln 2 < 1.3. Prove that ln 3 > 1.4. Prove that x > y implies lnx > ln y.5. Is lnx bounded?6. Prove that 1n+1 < ln(1 + 1=n) < 1n .7. Prove that x1+x < ln(1 + x) < x.8. Prove the Theorem 2.1.2 (Fermat) for a = 1=2; 1=3; 2=3.9. Prove the unboundedness of nlnn .10. Compare �1 + 1n�n and (1 + 1n+1 )n+1.11. Prove the monotoniity of nlnn .12. Prove that Pn�1k=2 1k < lnn <Pn�1k=1 1k .13. Prove that ln(1 + x) > x� x22 .14. Estimate integral part of ln 1000000.15. Prove that ln x+y2 � lnx+ln y2 .16. Prove the onvergene of P1k=1( 1k � ln(1 + 1k )).17. Prove that (n+ 12 )�1 � ln(1 + 1n ) < 12 ( 1n + 1n+1 ).�18. Prove that 11�2 + 13�4 + 15�6 + � � � = ln 2.



2.2. De�nite IntegralOn the ontents of the leture. Areas of urvilinear trapezia play an extra-ordinary important role in mathematis. They generate a key onept of Calulus| the onept of the integral.Three basi rules. For a nonnegative funtion f its integral R ba f(x) dx alongthe interval [a; b℄ is de�ned just as the area of the urvilinear trapezium below thegraph of f over [a; b℄. We allow a funtion to take in�nite values. Let us remarkthat hanging of the value of funtion in one point does not a�et the integral,beause the area of the line is zero. That is why we allow the funtions underonsideration to be unde�ned in a �nite number of points of the interval.Immediately from the de�nition one gets the following three basi rules ofintegration:Rule of onstant R ba f(x) dx = (b� a); if f(x) =  for x 2 (a; b),Rule of inequality R ba f(x) dx � R ba g(x) dx; if f(x) � g(x) for x 2 (a; b),Rule of partition R a f(x) dx = R ba f(x) dx+ R b f(x) dx for b 2 (a; ).Partition. Let jJ j denote the length of an interval J . Let us say that a se-quene fJkgnk=1 of disjoint open subintervals of an interval I is a partition of I ,if Pnk=1 jIkj = jI j. The boundary of a partition P = fJkgnk=1 is de�ned as thedi�erene I nSnk=1 Jk and is denoted �P .For any �nite subset S of an interval I , whih ontains the ends of I , thereis a unique partition of I whih has this set as the boundary. Suh a partition isalled generated by S. For a monotone sequene fxkgnk=0 the generated partitionis f(xk�1; xk)gnk=1.Pieewise onstant funtions. A funtion f(x) is alled partially onstanton a partition fJkgnk=1 of [a; b℄ if it is onstant on eah Jk. The Rules of Constantand Partition immediately imply:(2.2.1) Z ba f(x) dx = nXk=1 f(Jk)jJk j:Proof. Indeed, the integral splits into a sum of integrals over Jk = [xk�1; xk ℄,and the funtion takes the value f(Jk) in (xk�1; xk). �A funtion is alled pieewise onstant over an interval if it is partially onstantwith respet to some �nite partition of the interval.Lemma 2.2.1. Let f and g be pieewise onstant funtions over [a; b℄. ThenR ba (f(x)� g(x)) dx = R ba f(x) dx� R ba g(x) dx.Proof. First, suppose f(x) =  is onstant on the interval (a; b). Let g take thevalue gk over the interval (xk ; xk+1) for an exhausting fxkgnk=0. Then f(x) + g(x)takes values (+gk) over (xk; xk+1). Hene R ba (f(x)+g(x)) dx =Pn�1k=0 (+gk)jÆxk jdue to (2.2.1). Splitting this sum and applying (2.2.1) to both summands, one getsPn�1k=0 jÆxkj +Pn�1k=0 gkjÆxkj = R ba f(x) dx + R ba g(x) dx. This proves the ase of aonstant f . 40



2.2 definite integral 41Now let f be partially onstant on the partition generated by fxkgnk=0. Then, bythe partition rule, R ba (f(x)+g(x)) dx =Pnk=1 R xkxk�1(f(x)+g(x)) dx. As f is onstanton any (xk�1; xk), for any k one gets R xkxk�1(f(x) + g(x)) dx = R xkxk�1 f(x) dx +R xkxk�1 g(x) dx. Summing up these equalities one ompletes the proof of Lemma2.2.1 for the sum.The statement about di�erenes follows from the addition formula applied tog(x) and f(x)� g(x). �Lemma 2.2.2. For any monotone nonnegative funtion f on the interval [a; b℄and for any " > 0 there is suh pieewise onstant funtion f" suh that f" � f(x) �f"(x) + ".Proof. f"(x) =P1k=0 k"[k" � f(x) < (k + 1)"℄. �Theorem 2.2.3 (Addition Theorem). Let f and g be nonnegative monotonefuntions de�ned on [a; b℄. ThenZ ba (f(x) + g(x)) dx = Z ba f(x) dx + Z ba g(x) dx:Proof. Let f" and g" be "-approximations of f and g respetively providedby Lemma 2.2.2. Set f"(x) = f"(x) + " and g"(x) = g"(x) + ". Then f"(x) �f(x) � f"(x) and g"(x) � g(x) � g"(x) for x 2 (a; b). Summing and integratingthese inequalities in di�erent order givesZ ba (f"(x) + g"(x)) dx � Z ba (f(x) + g(x)) dx � Z ba (f"(x) + g"(x)) dxZ ba f"(x) dx + Z ba g"(x) dx � Z ba f(x) dx + Z ba g(x) dx � Z ba f"(x) dx + Z ba g"(x) dx:Due to Lemma 2.2.1, the left-hand sides of these inequalities oinide, as well as theright-hand sides. Hene the di�erene between the entral parts does not exeedZ ba (f"(x) � f"(x)) dx + Z ba (g"(x) � g"(x)) dx � 2"(b� a):Hene, for any positive "�����Z ba (f(x) + g(x)) dx � Z ba f(x) dx� Z ba g(x) dx����� < 2"(b� a):This implies that the left-hand side vanishes. �Term by term integration of a funtional series.Lemma 2.2.4. Let ffng1n=1 be a sequene of nonnegative nondereasing fun-tions and let p be a pieewise onstant funtion. If P1k=1 fk(x) � p(x) for allx 2 [a; b℄ then P1k=1 R ba fk(x) dx � R ba p(x) dx.Proof. Let p be a pieewise onstant funtion with respet to fxigni=0. Chooseany positive ". SineP1k=1 fk(xi) � p(), eventually one hasPmk=1 fk(xi) > p(xi)�". Fixm suh that this inequality holds simultaneously for all fxigni=0. Let [xi; xi+1℄be an interval where p(x) is onstant. Then for any x 2 [xi; xi+1℄ one has theseinequalities: Pmk=1 fk(x) � Pmk=1 fk(xk) > p(xk) � " = p(x) � ". Consequently



42 2.2 definite integralfor all x 2 [a; b℄ one has the inequality Pmk=1 fk(x) > p(x) � ". Taking integralsgives R ba Pmk=1 fk(x) dx � R ba (p(x)� ") dx = R ba p(x) dx� "(b� a). By the AdditionTheorem R ba Pmk=1 fk(x) dx = Pmk=1 R ba fk(x) dx � P1k=1 R ba fk(x) dx. ThereforeP1k=1 R ba fk(x) dx � R ba p(x) dx � "(b � a) for any positive ". This implies theinequality P1k=1 R ba fk(x) dx � R ba p(x) dx. �Theorem 2.2.5. For any sequene ffng1n=1 of nonnegative nondereasing fun-tions on an interval [a; b℄Z ba 1Xk=1 fk(x) dx = 1Xk=1 Z ba fk(x) dx:Proof. Sine Pnk=1 fk(x) �P1k=1 fk(x) for all x, by integrating one getsZ ba nXk=1 fk(x) dx � Z ba 1Xk=1 fk(x) dx:By the the Addition Theorem the left-hand side is equal toPnk=1 R ba fk(x) dx, whihis a partial sum of P1k=1 R ba fk(x) dx. Then by All-for-One one gets the inequalityP1k=1 R ba fk(x) dx � R ba P1k=1 fk(x) dx.To prove the opposite inequality for any positive ", we apply Lemma 2.2.2to �nd a pieewise onstant funtion F", suh that F"(x) � P1k=1 fk(x)dx andR ba P1k=1(fk(x)� F"(x)) dx < ". On the other hand, by Lemma 2.2.4 one gets1Xk=1 Z ba fk(x) dx � Z ba F"(x) dx:Together these inequalities implyP1k=1 R ba fk(x) dx+" � R ba P1k=1 fk(x) dx. As thelast inequality holds for all " > 0, it holds also for " = 0 �Theorem 2.2.6 (Merator,1668). For any x 2 (�1; 1℄ one has(2.2.2) ln(1 + x) = 1Xk=1 (�1)k+1xkkProof. Consider x 2 [0; 1). Sine R x0 tk dt = tk+1k+1 due to the Fermat Theorem2.1.2, termwise integration of the geometri series P1k=0 tk over the interval [0; x℄for x < 1 gives R x0 11�t dt =P1k=0 R x0 tk dt =P1k=0 xk+1k+1 .Lemma 2.2.7. R x0 11�t dt = ln(1� x).Proof of Lemma. Construt a translation of the plane whih transforms theurvilinear trapezium below 11�t over [0; x℄ into the trapezium for ln(1�x). Indeed,the reetion of the plane ((x; y)! (2� x; y)) along the line x = 1 transforms thistrapezium to the urvilinear trapezium under 1x�1 over [2 � x; 2℄. The paralleltranslation by 1 to the left of the latter trapezium (x; y)! (x� 1; y) transforms itjust in to the ogarithmi trapezium for ln(1� x). �The Lemma proves the Merator Theorem for negative x. To prove it forpositive x, set fk(x) = x2k�1 � x2k . All funtions fk are nonnegative on [0; 1℄ and



2.2 definite integral 43P1k=1 fk(x) = 11+x . Termwise integration of this equality over [0; x℄ gives (2.2.2),modulo the equality R x0 11+t dt = R x1 1t dt. The latter is proved by parallel translationof the plane. Let us remark, that in the ase x = 1 the seriesP1k=1 (�1)k+1xkk is notabsolutely onvergent, and under its sum we meanP1k=1 12k(2k�1) =P1k=1( 12k�1 �12k ). And the above proof proves just this fat. �The arithmeti mean of Merator's series evaluated at x and �x givesGregory'sSeries(2.2.3) 12 ln 1 + x1� x = x+ x33 + x55 + x77 + : : : :Gregory's series onverges muh faster than Merator's one. For example, puttingx = 13 in (2.2.3) one getsln 2 = 23 + 23 � 33 + 25 � 35 + 27 � 37 + : : : :Problems.1. Prove that ���R ba f(x) dx��� � R ba jf(x)j dx.2. Prove the following formulas via pieewise onstant approximations:Z ba �f(x) dx = � Z ba f(x) dx(multipliation formula) Z ba f(x) dx = Z b+a+ f(x� ) dx(shift formula) Z a0 f(x) dx = Z 0�a f(�x) dx(reetion formula) Z a0 f(x) dx = 1k Z ka0 f �xk� dx(ompression formula)3. Evaluate R 2�0 (sinx+ 1) dx.4. Prove the inequality R 2�2(2 + x32x) dx > 8.5. Prove R 2�0 x(sin x+ 1) dx < 2�.6. Prove R 200�100� x+sin(x)x dx � 100� + 150�.7. Denote by sn the area of f(x; y) j 0 � x � 1; (1 � x) ln n + x ln(n + 1) � y �ln(1 + x)g. Prove that P1k=1 sk <1.8. Prove that P2nk=1(�1)k+1 xkk < ln(1 + x) <P2n+1k=1 (�1)k+1 xkk for x > 0.9. Compute the logarithms of the primes 2; 3; 5; 7 with auray 0:01.10. Evaluate R 10 px dx.�11. Evaluate R �0 sinx dx.



2.3. Stieltjes IntegralOn the ontents of the leture. The Stieltjes relativization of the integralmakes the integral exible. We learn the main transformations of integrals. Theyallow us to evaluate a lot of integrals.Basi rules. A parametri urve is a mapping of an interval into the plane.In artesian oordinates a parametri urve an be presented as a pair of funtionsx(t); y(t). The �rst funtion x(t) represents the value of absises at the moment t,and the seond y(t) is the ordinate at the same moment. We de�ne the integralR ba f(t) dg(t) for a nonnegative funtion f , alled the integrand, and with respet toa nondereasing ontinuous funtion g, alled the di�erand, as the area below theurve f(t); g(t) j t 2 [a; b℄.A monotone funtion f is alled ontinuous over the interval [a; b℄ if it takes allintermediate values, that is, the image f [a; b℄ of [a; b℄ oinides with [f(a); f(b)℄. Ifit is not ontinuous for some y 2 [f(a); f(b)℄ n f [a; b℄, there is a point x(y) 2 [a; b℄with the following property: f(x) < y if x < x(y) and f(x) > y if x > x(y). Let usde�ne a generalized preimage f [�1℄(y) of a point y 2 [f(a); f(b)℄ either as its usualpreimage f�1(y) if it is not empty, or as x(y) in the opposite ase.Now the urvilinear trapezium below the urve f(t); g(t) over [a; b℄ is de�nedas f(x; y) j 0 � y � g(f [�1℄(x))g.The basi rules for relative integrals transform into:Rule of onstant R ba f(t) dg(t) = (g(b)� g(a)); if f(t) =  for t 2 (a; b),Rule of inequality R ba f1(t) dg(t) � R ba f2(t) dg(t); if f1(t) � f2(t) for t 2 (a; b),Rule of partition R a f(t) dg(t) = R ba f(t) dg(t) + R b f(t) dg(t) for b 2 (a; ).Addition theorem. The proofs of other properties of the integral are basedon pieewise onstant funtions. For any number x, let us de�ne its "-integral partas "[x="℄. Immediately from the de�nition one gets:Lemma 2.3.1. For any monotone nonnegative funtion f on the interval [a; b℄and for any " > 0, the funtion [f ℄" is pieewise onstant suh that [f(x)℄" � f(x) �[f(x)℄" + " for all x.Theorem 2.3.2 (on multipliation). For any nonnegative monotone f , andany ontinuous nondereasing g and any positive onstant  one has(2.3.1) Z ba f(x) dg(x) =  Z ba f(x) dg(x) = Z ba f(x) dg(x):Proof. For the pieewise onstant f" = [f ℄", the proof is by a diret alula-tion. Hene(2.3.2) Z ba f"(x) dg(x) =  Z ba f"(x) dg(x) = Z ba f"(x) dg(x) = I":Now let us estimate the di�erenes between integrals from (2.3.1) and their approx-imations from (2.3.2). For example, for the right-hand side integrals one has:(2.3.3) Z ba f dg � Z ba f" dg = Z ba (f � f") dg � Z ba " dg = "(g(b)� g(a)):44



2.3 stieltjes integral 45Hene R ba f dg = I" + "1, where "1 � "(g(b) � g(a)). The same argument proves R ba f dg = I" + "2 and R ba f dg = I" + "3, where "2; "3 � "(g(b)� g(a)). Then thepairwise di�erenes between the integrals of (2.3.1) do not exeed 2"(g(b)� g(a)).Consequently they are less than any positive number, that is, they are zero. �Theorem 2.3.3 (Addition Theorem). Let f1, f2 be nonnegative monotone fun-tions and g1, g2 be nondereasing ontinuous funtions over [a; b℄, thenZ ba (f1(t) + f2(t)) dg1(t) = Z ba f1(t) dg1(t) + Z ba f2(t) dg1(t);(2.3.4) Z ba f1(t) d(g1(t) + g2(t)) = Z ba f1(t) dg1(t) + Z ba f1(t) dg2(t):(2.3.5)Proof. For pieewise onstant integrands both the equalities follow from theRule of Constant and the Rule of Partition. To prove (2.3.4) replae f1 and f2 inboth parts by [f1℄" and [f2℄". We get equality and denote by I" the ommon valueof both sides of this equality. Then by (2.3.3) both integrals on the right-hand sidedi�er from they approximation at most by "(g1(b)�g1(a)), therefore the right-handside of (2.3.4) di�ers from I" at most by 2"(g1(b)� g1(a)). The same is true for theleft-hand side of (2.3.4). This follows immediately from (2.3.3) in ase f = f1+ f2,f" = [f1℄" + [f2℄" and g = g1. Consequently, the di�erene between left-hand andright-hand sides of (2.3.4) does not exeed 4"(g1(b) � g1(a)). As " an be hosenarbitrarily small this di�erene has to be zero.The proof of (2.3.5) is even simpler. Denote by I" the ommon value of bothparts of (2.3.5) where f1 is hanged by [f1℄". By (2.3.3) one an estimate thedi�erenes between the integrals of (2.3.5) and their approximations as being �"(g1(b)+ g2(b)� g1(a)� g2(a)) for the left-hand side, and as � "(g1(b)� g1(a)) and� "(g2(b)� g2(a)) for the orresponding integrals of the right-hand side of (2.3.5).So both sides di�er from I" by at most � "(g1(b) � g1(a) + g2(b) � g2(a)). Henethe di�erene vanishes. �Di�erential forms. An expression of the type f1dg1 + f2dg2 + � � � + fndgnis alled a di�erential form. One an add di�erential forms and multiply them byfuntions. The integral of a di�erential form R ba (f1 dg1 + f2dg2 + � � � + fndgn) isde�ned as the sum of the integralsPnk=1 R ba fk dgk. Two di�erential forms are alledequivalent on the interval [a; b℄ if their integrals are equal for all subintervals of [a; b℄.For the sake of brevity we denote the di�erential form f1dg1 + f2dg2 + � � �+ fndgnby FdG, where F = ff1; : : : ; fng is a olletion of integrands and G = fg1; : : : ; gngis a olletion of di�erands.Theorem 2.3.4 (on multipliation). Let FdG and F 0dG0 be two di�erentialforms, with positive inreasing integrands and ontinuous inreasing di�erands,whih are equivalent on [a; b℄. Then their produts by any inreasing funtion fon [a; b℄ are equivalent on [a; b℄ too.Proof. If f is onstant then the statement follows from the multipliationformula. If f is pieewise onstant, then divide [a; b℄ into intervals where it is on-stant and prove the equality for parts and after ollet the results by the PartitionRule. In the general ase, 0 � R ba fF dG � R ba [f ℄"F dG � R ba "F dG = " R ba F dG.Sine R ba [f ℄"F 0 dG0 = R ba [f ℄"F dG, one onludes that ���R ba fF 0 dG0 � R ba fF dG��� �



46 2.3 stieltjes integral" R ba F dG + " R ba F 0 dG0. The right-hand side of this inequality an be made arbi-trarily small. Hene the left-hand side is 0. �Integration by parts.Theorem 2.3.5. If f and g are ontinuous nondereasing nonnegative funtionson [a; b℄ then d(fg) is equivalent to fdg + gdf .Proof. Consider [; d℄ � [a; b℄. The integral R d f dg represents the area belowthe urve (f(t); g(t))t2[;d℄. And the integral R d g df represents the area on the leftof the same urve. Its union is equal to [0; f(d)℄� [0; g(d)℄ n [0; f()℄� [0; g()℄. Thearea of this union is equal to (f(d)g(d)�f()g() = R d dfg. On the other hand thearea of this union is the sum of the areas of urvilinear trapezia representing theintegrals R d f dg and R d g df . �Change of variable. Consider a Stieltjes integral R ba f(�) dg(�) and supposethere is a ontinuous nondereasing mapping � : [t0; t1℄! [a; b℄, suh that �(t0) = aand �(t1) = b. The omposition g(�(t)) is a ontinuous nondereasing funtion andthe urve f(f(�(t); g(�(t))) j t 2 [t0; t1℄g just oinides with the urve f(f(�); g(�)) j� 2 [a; b℄. Hene, the following equality holds; it is known as the Change of Variableformula: Z t1t0 f(�(t)) dg(�(t)) = Z �(t1)�(t0) f(�) dg(�):For di�erentials this means that the equality F (x)dG(x) = F 0(x)dG0(x) onservesif one substitutes instead of an independent variable x a funtion.Di�erential Transformations.Case dxn. Integration by parts for f(t) = g(t) = t gives dt2 = tdt+ tdt. Henetdt = d t22 . If we already know that dxn = ndxn�1, then dxn+1 = d(xxn) =xdxn+xndx = nxxn�1dx+xndx = (n+1)xndx. This proves the Fermat Theoremfor natural n.Case d npx. To evaluate d npx substitute x = yn into the equality dyn =nyn�1dy. One gets dx = nxnpxd npx, hene d npx = npxnx dx.Case lnxdx. We know d lnx = 1xdx. Integration by parts gives lnxdx =d(x ln x)� xd lnx = d(x lnx) � dx = d(x ln x� x).Problems.1. Evaluate dx2=3.2. Evaluate dx�1.3. Evaluate x lnx dx.4. Evaluate d ln2 x.5. Evaluate ln2 x dx.6. Evaluate dex.7. Investigate the onvergene of P1k=2 1k lnk .



2.4. Asymptotis of SumsOn the ontents of the leture. We beome at last aquainted with thefundamental onept of a limit. We extend the notion of the sum of a series anddisover that a hange of order of summands an a�et the ultimate sum. Finallywe derive the famous Stirling formula for n!.Asymptoti formulas. The Merator series shows how useful series an befor evaluating integrals. In this leture we will use integrals to evaluate both partialand ultimate sums of series. Rarely one has an expliit formula for partial sumsof a series. There are lots of important ases where suh a formula does not exist.For example, it is known that partial sums of the Euler series annot be expressedas a �nite ombination of elementary funtions. When an expliit formula is notavailable, one tries to �nd a so-alled asymptoti formula. An asymptoti formulafor a partial sum Sn of a series is a formula of the type Sn = f(n)+R(n) where f isa known funtion alled the prinipal part and R(n) is a remainder, whih is small,in some sense, with respet to the prinipal part. Today we will get an asymptotiformula for partial sums of the harmoni series.In�nitesimally small sequenes. The simplest asymptoti formula has aonstant as its prinipal part and an in�nitesimally small remainder. One says thata sequene fzkg is in�nitesimally small and writes lim zk = 0, if zk tends to 0 as ntends to in�nity. That is for any positive " eventually (i.e., beginning with some n)jzkj < ". With Iverson notation, this de�nition an be expressed in the followinglear form:[fzkg1k=1 is in�nitesimally small℄ = 1Ym=1 2 ����� 1Xn=1(�1)n 1Yk=1 [m[k > n℄jzkj < 1℄����� :Three basi properties of in�nitesimally small sequenes immediately followfrom the de�nition:� if lim ak = lim bk = 0 then lim(ak + bk) = 0;� if lim ak = 0 then lim akbk = 0 for any bounded sequene fbkg;� if ak � bk � k for all k and lim ak = lim k = 0, then lim bk = 0.The third property is alled the squeeze rule.Today we need just one property of in�nitesimally small sequenes:Theorem 2.4.1 (Addition theorem). If the sequenes fakg and fbkg are in-�nitesimally small, than their sum and their di�erene are in�nitesimally smalltoo.Proof. Let " be a positive number. Then "=2 also is positive number. Andby de�nition of in�nitesimally small, the inequalities jakj < "=2 and jbkj < "=2 holdeventually beginning with some n. Then for k > n one has jak � bkj � jakj+ jbkj �"=2 + "=2 = ". �Limit of sequene.Definition. A sequene fzkg of (omplex) numbers onverges to a number zif lim z�zk = 0. The number z is alled the limit of the sequene fzkg and denotedby lim zk. 47



48 2.4 asymptotis of sumsAn in�nite sum represents a partiular ase of a limit as demonstrated by thefollowing.Theorem 2.4.2. The partial sums of an absolutely onvergent series P1k=1 zkonverge to its sum.Proof. jPn�1k=1 zk �P1k=1 zkj = jP1k=n zkj � P1k=n jzkj. Sine P1k=1 jzkj >P1k=1 jzkj � ", there is a partial sum suh that Pn�1k=1 jzkj > P1k=1 jzkj � ". Thenfor all m � n one has P1k=m jzkj �P1k=n jzkj < ". �Conditional onvergene. The onept of the limit of sequene leads to anotion of onvergene generalizing absolute onvergene.A seriesP1k=1 ak is alled (onditionally) onvergent if limPnk=1 ak = A+�n,where lim�n = 0. The number A is alled its ultimate sum.The following theorem gives a lot of examples of onditionally onvergent serieswhih are not absolutely onvergent. By [[n℄℄ we denote the even part of the numbern, i.e., [[n℄℄ = 2[n=2℄.Theorem 2.4.3 (Leibniz). For any of positive dereasing in�nitesimally smallsequene fang, the series P1k=1(�1)k+1ak onverges.Proof. Denote the di�erene ak � ak+1 by Æak. The series P1k=1 Æa2k�1 andP1k=1 Æa2k are positive and onvergent, beause their termwise sum isP1k=1 Æak =a1. Hene S =P1k=1 Æa2k�1 � a1. Denote by Sn the partial sumPn�1k=1 (�1)k+1ak.Then S2n = Pn�1k=1 Æa2n�1 = S + �n, where lim�n = 0. Then Sn = S[[n℄℄ +an[n is odd℄+�[[n℄℄. As an[n is odd℄+�[[n℄℄ is in�nitesimally small, this implies thetheorem. �Lemma 2.4.4. Let f be a non-inreasing nonnegative funtion. Then the seriesP1k=1 (f(k)� R k+1k f(x) dx) is positive and onvergent and has sum f � f(1).Proof. Integration of the inequalities f(k) � f(x) � f(k + 1) over [k; k + 1℄gives f(k) � R k+1k f(x) dx � f(n+ 1). This proves the positivity of the series andallows us to majorize it by the telesopi seriesP1k=1(f(k)� f(k+1)) = f(1). �Theorem 2.4.5 (Integral Test on Convergene). If a nonnegative funtionf(x) dereases monotonially on [1;+1), then P1k=1 f(k) onverges if and onlyif R11 f(x) dx <1.Proof. Sine R11 f(x) dx = P1k=1 R k+1k f(x) dx, one has P1k=1 f(k) = f +R11 f(x) dx. �Euler onstant. The sumP1k=1 � 1k � ln(1 + 1k )�, whih is f for f(x) = 1x , isalled Euler's onstant and denoted by . Its �rst ten digits are 0:5772156649 : : : .Harmoni numbers. The sum Pnk=1 1k is denoted Hn and is alled the n-thharmoni number.Theorem 2.4.6. Hn = lnn+  + on where lim on = 0.Proof. Sine ln n = Pn�1k=1 (ln(k + 1) � ln k) = Pn�1k=1 ln(1 + 1k ), one haslnn+Pn�1k=1 � 1k � ln(1 + 1k )� = Hn�1. But Pn�1k=1 � 1k � ln(1 + 1k )� =  + �n, wherelim�n = 0. Therefore Hn = lnn+  + ( 1n + �n). �



2.4 asymptotis of sums 49Alternating harmoni series. The alternating harmoni seriesP1k=1(�1)k+1kis a onditionally onvergent series due to the Leibniz Theorem 2.4.3, and it is notabsolutely onvergent. To �nd its sum we apply our Theorem 2.4.6 on asymptotisof harmoni numbers.Denote by Sn = Pnk=1 (�1)k+1k the partial sum. Then Sn = H 0n � H 00n , whereH 0n = Pnk=1 1k [k is odd℄ and H 00n = Pnk=1 1k [k is even℄. Sine H 002n = 12Hn andH 02n = H2n �H 002n = H2n � 12Hn one getsS2n = H2n � 12Hn � 12Hn= H2n �Hn= ln 2n+  + o2n � lnn�  � on= ln 2 + (o2n � on):Consequently Sn = ln 2+(o[[n℄℄�o[n=2℄+ (�1)n+1n [n is odd℄). As the sum in braketsis in�nitesimally small, one gets1Xk=1 (�1)k+1k = ln 2:The same arguments for a permutated alternating harmoni series give(2.4.1) 1 + 13 � 12 + 15 + 17 � 14 + 19 + 111 � 16 + � � � = 32 ln 2:Indeed, in this ase its 3n-th partial sum isS3n = H 04n �H 002n= H4n � 12H2n � 12Hn= ln 4n+  + o4n � 12 (ln 2n+  + o2n + lnn+  + on)= ln 4� 12 ln 2 + o0n= 32 ln 2 + o0n;where lim o0n = 0. Sine the di�erene between Sn and S3m where m = [n=3℄ isin�nitesimally small, this proves (2.4.1).Stirling's Formula. We will try to estimate lnn!. Integration of the inequal-ities ln[x℄ � lnx � ln[x+ 1℄ over [1; n℄ gives ln(n� 1)! � R n1 lnx dx � lnn!. Let usestimate the di�erene D between R n1 lnx dx and 12 (lnn! + ln(n� 1)!).D = Z n1 (lnx� 12 (ln[x℄ + ln[x+ 1℄)) dx= n�1Xk=1 Z 10 �ln(k + x)� lnpk(k + 1)� dx:(2.4.2)To prove that all summands on the left-hand side are nonnegative, we apply thefollowing general lemma.Lemma 2.4.7. R 10 f(x) dx = R 10 f(1� x) dx for any funtion.Proof. The reetion of the plane aross the line y = 12 transforms the urvi-linear trapezium of f(x) over [0; 1℄ into urvilinear trapezium of f(1 � x) over[0; 1℄. �



50 2.4 asymptotis of sumsLemma 2.4.8. R 10 ln(k + x) dx � lnpk(k + 1).Proof. Due to Lemma 2.4.7 one hasZ 10 ln(k + x) dx = Z 10 ln(k + 1� x) dx= Z 10 12 (ln(k + x) + ln(k + 1� x)) dx= Z 10 lnp(k + x)(k + 1� x) dx= Z 10 lnpk(k + 1) + x� x2 dx� Z 10 lnpk(k + 1) dx= lnpk(k + 1): �Integration of the inequality ln(1 + x=k) � x=k over [0; 1℄ givesZ 10 ln(1 + x=k) dx � Z 10 xk dx = 12k :This estimate together with the inequality ln(1 + 1=k) � 1=(k + 1) allows us toestimate the summands from the right-hand side of (2.4.2) in the following way:Z 10 ln(k + x)� lnpk(k + 1) dx = Z 10 ln(k + x)� ln k � 12 (ln(k + 1)� ln k) dx= Z 10 ln �1 + xk �� 12 ln �1 + 1k � dx� 12k � 12(k+1) :We see that Dn � P1k=1 12k � 12(k+1) = 12 for all n. Denote by D1 the sum(2.4.2) for in�nite n. Then Rn = D1 �Dn = �2n for some nonnegative � < 1, andwe get D1 � �2n = Z n1 lnx dx� 12 (lnn! + ln(n� 1)!)= Z n1 lnx dx� lnn! + 12 lnn:(2.4.3)Substituting in (2.4.3) the value of the integral R n1 ln x dx = R n1 d(x ln x � x) =(n lnn� n)� (1 ln 1� 1) = n lnn� n+ 1, one getslnn! = n lnn� n+ 12 lnn+ (1�D1) + �2n :Now we know that 1 � (1 �D1) � 12 , but it is possible to evaluate the value ofD1 with more auray. Later we will prove that 1�D1 = p2�.



2.4 asymptotis of sums 51Problems.1. Does P1k=1 sin k onverge?2. Does P1k=1 sin k2 onverge?3. Evaluate 1 + 12 � 23 + 14 + 15 � 26 + � � � � 23n + 13n+1 + 13n+2 � : : : .4. Prove: If lim an+1an < 1, then P1k=1 ak onverge.5. Prove: If P1k=1 jak � ak�1j <1, then fakg onverges.6. Prove the onvergene of P1k=1 (�1)[pk℄k .7. Prove the onvergene of P1k=2 1ln3 k .8. Prove the onvergene of P1k=2 1k ln kpln lnk .9. Prove the onvergene of P1k=2 1k ln k(ln ln k)2 .10. Prove the onvergene of P1k=2 1k ln k and �nd its asymptoti formula.11. Prove the onvergene of P1k=2 1k ln2 k .12. Whih partial sum of the above series is 0:01 lose to its ultimate sum?13. Evaluate P1k=2 1k ln2 k with preision 0:01.14. Evaluate R 31 lnx d[x℄.15. Express the Stirling onstant via the Wallis produt �2 =Q1n=1 2n2n�1 2n2n+1 .



2.5. Quadrature of CirleOn the ontents of the leture. We extend the onept of the integralto omplex funtions. We evaluate a very important integral H 1zdz by applyingArhimedes' theorem on the area of irular setor. As a onsequene, we evaluatethe Wallis produt and the Stirling onstant.De�nition of a omplex integral. To speify an integral of a omplex fun-tion one has to indiate not only its limits, but also the path of integration. Apath of integration is a mapping p : [a; b℄ ! C , of an interval [a; b℄ of the real lineinto omplex plane. The integral of a omplex di�erential form fdg (here f and gare omplex funtions of omplex variable) along the path p is de�ned via separateintegration of di�erent ombinations of real and imaginary parts in the followingway:Z ba Re f(p(t)) dRe g(p(t))� Z ba Im f(p(t)) d Im g(p(t))+ i Z ba Re f(p(t)) d Im g(p(t)) + i Z ba Im f(p(t)) dRe g(p(t))Two omplex di�erential forms are alled equal if their integrals oinide for allpaths. So, the de�nition above an be written shortly as fdg = Re fdRe g �Im fd Im g + iRe fd Im g + i Im fdRe g.The integral R 1z dz. The Integral is the prinipal onept of Calulus andR 1zdz is the prinipal integral. Let us evaluate it along the path p(t) = os t+i sin t,t 2 [0; �℄, whih goes along the ar of the irle of the length � � �=2. Sine1os t+i sin t = os t� i sin t, one hasZp 1z dz = Z �0 os t d os t+ Z �0 sin t d sin t� i Z �0 sin t d os t+ i Z �0 os t d sin t:(2.5.1)Its real part transforms into R �0 12 d os2 t + R �0 12 d sin2 t = R �0 12 d(os2 t + sin2 t) =R �0 12 d1 = 0. An attentive reader has to objet: integrals were de�ned only fordi�erential forms with non-dereasing di�erands, while os t dereases.Sign rule. Let us de�ne the integral for any di�erential form fdg with anyontinuous monotone di�erand g and any integrand f of a onstant sign (i.e, non-positive or non-negative). The de�nition relies on the following Sign Rule.(2.5.2) Z ba �f dg = � Z ba f dg = Z ba f d(�g)If f is of onstant sign, and g is monotone, then among the forms fdg, �fdg, fd(�g)and �fd(�g) there is just one with non-negative integrand and non-dereasingdi�erand. For this form, the integral was de�ned earlier, for the other ases it isde�ned by the Sign Rule.Thus the integral of a negative funtion against an inreasing di�erand and theintegral of a positive funtion against a dereasing di�erand are negative. And theintegral of a negative funtion against a dereasing di�erand is positive.52



2.5 quadrature of irle 53The Sign Rule agrees with the Constant Rule: the formula R ba  dg = (g(b) �g(a)) remains true either for negative  or dereasing g.The Partition Rule also is not a�eted by this extension of the integral.The Inequality Rule takes the following form: if f1(x) � f2(x) for all x 2 [a; b℄then R ba f1(x) dg(x) � R ba f2(x) dg(x) for non-dereasing g and R ba f1(x) dg(x) �R ba f2(x) dg(x) for non-inreasing g.Change of variable. Now all integrals in (2.5.1) are de�ned. The next obje-tion onerns transformation os td os t = 12d os2 t. This transformation is basedon a dereasing hange of variable x = os t in dx2=2 = xdx. But what happenswith an integral when one applies a dereasing hange of variable? The urvilineartrapezium, whih represents the integral, does not hange at all under any hangeof variable, even for a non-monotone one. Hene the only thing that may happenis a hange of sign. And the sign hanges by the Sign Rule, simultaneously on bothsides of equality dx2=2 = xdx. If the integrals of xdx and dx2 are positive, bothintegrals of os td os t and os2 t are negative and have the same absolute value.These arguments work in the general ase:A dereasing hange of variable reverses the sign of the integral.Addition Formula. The next question onerns the legitimay of addition ofdi�erentials, whih appeared in the alulation d os2 t+d sin2 t = d(os2 t+sin2 t) =0, where di�erands are not omonotone: os t dereases, while sin t inreases. Theaddition formula in its full generality will be proved in the next leture, but thisspeial ase is not diÆult to prove. Our equality is equivalent to d sin2 t = �d os2 t.By the Sign Rule �d os2 t = d(� os2 t), but � os2 t is inreasing. And by theAddition Theorem d(� os2 t+1) = d(� os2 t)+d1 = d(� os2 t). But � os2 t+1 =sin2 t. Hene our evaluation of the real part of (2.5.1) is justi�ed.Trigonometri integrals. We proeed to the evaluation of the imaginary partof (2.5.1), whih is os t d sin t� sin t d os t. This is a simple geometri problem.The integral of sin t d os t is negative as os t is dereasing on [0; �2 ℄, and its ab-solute value is equal to the area of the urvilinear triangle A0BA, whih is obtainedfrom the irular setor OBA with area �=2 by deletion of the triangle OA0B, whihhas area 12 os� sin�. Thus R �0 sin t d os t is �=2� 12 os� sin�.The integral of os t d sin t is equal to the area of urvilinear trapezium OB0BA.The latter onsists of a irular setor OBA with area �=2 and a triangle OB0Bwith area 12 os� sin�. Thus R �0 os t d sin t = �=2 + 12 os� sin�.As a result we get Rp 1z dz = i�. This result has a lot of onsequenes. Buttoday we restrit our attention to the integrals of sin t and os t.Multipliation of di�erentials. We have proved(2.5.3) os t d sin t� sin t d os t = dt:Multiplying this equality by os t, one getsos2 t d sin t� sin t os t d os t = os t dt:Replaing os2 t by (1�sin2 t) and moving os t into the di�erential, one transformsthe left-hand side asd sin t� sin2 t d sin t� 12 sin t d os2 t = d sin t� 12 sin t d sin2 t� 12 sin t d os2 t:
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φFigure 2.5.1. Trigonometri integralsWe already know that d sin2 t+ d os2 t is zero. Now we have to prove the same forthe produt of this form by 12 sin t. The arguments are the same: we multiply by12 sin t the equivalent equality d sin2 t = d(� os2 t) whose di�erands are inreasing.This is a general way to extend the theorem on multipliation of di�erentials tothe ase of any monotone funtions. We will do it later. Now we get just d sin t =os t dt.Further, multipliation of the left-hand side of (2.5.3) by sin t givessin t os t d sin t� sin2 t d os t = 12 os t d sin2 t� d os t+ 12 os t d os2 t = �d os t:So we get d os t = � sin tdt.Theorem 2.5.1. d sin t = os t dt and d os t = � sin t dt.We have proved this equality only for [0; �=2℄. But due to well-known symme-tries this suÆes.Appliation of trigonometri integrals.Lemma 2.5.2. For any onvergent in�nite produt of fators � 1 one has(2.5.4) lim nYk=1 pk = 1Yk=1 pk:Proof. Let " be a positive number. ThenQ1k=1 pk >Q1k=1 pk�", and by All-for-One there is n suh thatQnk=1 pk >Q1k=1 pk�". Then for anym > n one has theinequalities Q1k=1 pk � Qmk=1 pk >Q1k=1 pk � ". Therefore jQmk=1 pk �Q1k=1 pkj <". �Wallis produt. Set In = R �0 sinn x dx. Then I0 = R �0 1 dx = � and I1 =R �0 sinx dx = � os� + os 0 = 2. For n � 2, let us replae the integrand sinn x by



2.5 quadrature of irle 55sinn�2 x(1� os2 x) and obtainIn = Z �0 sinn�2 x(1� os2 x) dx= Z �0 sinn�2 x dx� Z �0 sinn�2 x osx d sinx= In�2 � 1n�1 Z �0 osx d sinn�1(x)= In�2 � Z �0 d(osx sinn�1 x) + Z �0 sinn�1 x d osx= In�2 � 1n�1In:We get the reurrene relation In = n�1n In�2, whih gives the formula(2.5.5) I2n = � (2n� 1)!!2n!! ; I2n�1 = 2(2n� 2)!!(2n� 1)!!where n!! denotes the produt n(n � 2)(n � 4) � � � (n mod 2 + 1). Sine sinn x �sinn�1 x for all x 2 [0; �℄, the sequene fIng dereases. Sine In � In�1 � In�2, onegets n�1n = InIn�2 � In�1In�2 � 1. Hene In�1In�2 di�ers from 1 less than 1n . Consequently,lim In�1In�2 = 1. In partiular, lim I2n+1I2n = 1. Substituting in this last formula theexpressions of In from (2.5.5) one getslim �2 (2n+ 1)!!(2n� 1)!!2n!!2n!! = 1:Therefore this is the famous Wallis Produt�2 = lim 2n!!2n!!(2n� 1)!!(2n+ 1)!! = 1Yn=1 4n24n2 � 1 :Stirling onstant. In Leture 2.4 we have proved that(2.5.6) lnn! = n lnn� n+ 12 lnn+ � + on;where on is in�nitesimally small and � is a onstant. Now we are ready to determinethis onstant. Consider the di�erene ln 2n!� 2 lnn!. By (2.5.6) it expands into(2n ln 2n� 2n+ 12 ln 2n+ � + o2n)� 2(n lnn� n+ 12 lnn+ � + on)= 2n ln 2 + 12 ln 2n� lnn� � + o0n;where o0n = o2n � 2on is in�nitesimally small. Then � an be presented as� = 2 lnn!� ln 2n! + 2n ln 2 + 12 lnn+ 12 ln 2� lnn+ o0n:Multiplying by 2 one gets2� = 4 lnn!� 2 ln 2n! + 2 ln 22n � lnn+ ln 2 + 2o0n:Hene 2� = lim(4 lnn!� 2 ln 2n! + 2 ln 22n � lnn+ ln 2). Swithing to produt andkeeping in mind the identities n! = n!!(n� 1)!! and n!2n = 2n!! one gets�2 = lim n!424n+1(2n!)2n = lim 2 � (2n!!)4(2n!!)2(2n� 1)!!2n lim 2 � (2n!!)2(2n+ 1)(2n� 1)!!(2n+ 1)!!n = 2�:



56 2.5 quadrature of irleProblems.1. Evaluate R p1� x2 dx.2. Evaluate R 1p1�x2 dx.3. Evaluate R p5� x2 dx.4. Evaluate R os2 x dx.5. Evaluate R tanx dx.6. Evaluate R sin4 x dx.7. Evaluate R sinx2 dx.8. Evaluate R tanx dx.9. Evaluate R x2 sinx dx.10. Evaluate d arsinx.11. Evaluate R arsinx dx.12. Evaluate R ex osx dx.



2.6. Virtually monotone funtionsMonotonization of the integrand. Let us say that a pair of funtions f1, f2monotonize a funtion f , if f1 is non-negative and non-dereasing, f2 is non-positiveand non-inreasing and f = f1 + f2.Lemma 2.6.1. Let f = f1 + f2 and f = f 01 + f 02 be two monotonizations of f .Then for any monotone h one has f1dh+ f2dh = f1dh+ f 02dh.Proof. Our equality is equivalent to f1dh � f 02dh = f 01dh � f2dh. By thesign rule this turns into f1dh + (�f 02)dh = f 01dh + (�f2)dh. Now all integrandsare nonnegative and for non-dereasing h we an apply the Addition Theorem andtransform the inequality into (f1 � f 02)dh = (f 01 � f2)dh. This is true beause(f1 � f 02) = (f 01 � f2).The ase of a non-inreasing di�erand is redued to the ase of a non-dereasingone by the transformation f1d(�h)+f2d(�h) = f 01d(�h)+f 02d(�h), whih is basedon the Sign Rule. �A funtion whih has a monotonization is alled virtually monotone.We de�ne the integral R ba f dg for any virtually monotone integrand f and anyontinuous monotone di�erand g via a monotonization f = f1 + f2 byZ ba f dg = Z ba f1 dg + Z ba f2 dg:Lemma 2.6.1 demonstrates that this de�nition does not depend on the hoieof a monotonization.Lemma 2.6.2. Let f and g be virtually monotone funtions; then f + g isvirtually monotone and fdh+ gdh = (f + g)dh for any ontinuous monotone h.Proof. Let h be nondereasing. Consider monotonizations f = f1 + f2 andg = g1 + g2. Then fdh + gdh = f1dh + f2dh + g1dh + g2dh by de�nition viamonotonization of the integrand. By virtue of the Addition Theorem 2.3.3 thisturns into (f1 + g1)dh + (f2 + g2)dh. But the pair of brakets monotonize f + g.Hene f+g is proved to be virtually monotone and the latter expression is (f+g)dhby de�nition, via monotonization of the integrand. The ase of non-inreasing h isredued to the previous ase via �fd(�h)� gd(�h) = �(f + g)d(�h). �Lemma on loally onstant funtions. Let us say that a funtion f(x) isloally onstant at a point x if f(y) = f(x) for all y suÆiently lose to x, i.e., forall y from an interval (x� "; x+ ").Lemma 2.6.3. A funtion f whih is loally onstant at eah point of an intervalis onstant.Proof. Suppose f(x) is not onstant on [a; b℄. We will onstrut by indutiona sequene of intervals Ik = [ak; bk℄, suh that I0 = [a; b℄, Ik+1 � Ik, jbk � akj �2jbk+1 � ak+1j and the funtion f is not onstant on eah Ik. First step: Let = (a + b)=2, as f is not onstant f(x) 6= f() for some x. Then hoose [x; ℄ or[; x℄ as for [a1; b1℄. On this interval f is not onstant. The same are all furthersteps. The intersetion of the sequene is a point suh that any of its neighborhoodsontains some interval of the sequene. Hene f is not loally onstant at thispoint. �57



58 2.6 virtually monotone funtionsLemma 2.6.4. If f(x) is a ontinuous monotone funtion and a < f(x) < bthen a < f(y) < b for all y suÆiently lose to x.Proof. If f takes values greater than b, then it takes value b and if f(x) takesvalues less than a then it takes value a due to ontinuity. Then [f�1(a); f�1(b)℄ isthe interval where inequalities hold. �Lemma 2.6.5. Let g1, g2 be ontinuous omonotone funtions. Then g1+ g2 isontinuous and monotone, and for any virtually monotone f one has(2.6.1) fdg1 + fdg2 = fd(g1 + g2):Proof. Suppose g1(x) + g2(x) < p, let " = p � g1(x) � g2(x). Then g1(y) <g1(y) + "=2 and g2(y) < g2(y) + "=2 for all y suÆiently lose to x. Hene g(y) +g2(y) < p for all y suÆiently lose to x. The same is true for the opposite inequality.Hene sgn(g1(x)+g2(x)�p) is loally onstant at all points where it is not 0. But itis not onstant if p is an intermediate value, hene it is not loally onstant, heneit takes value 0. At this point g1(x) + g2(x) = p and the ontinuity of g1 + g2 isproved.Consider a monotonization f = f1+f2. Let gi be nondereasing. By de�nitionvia monotonization of the integrand, the left-hand side of (2.6.1) turns into (f1dg1+f2dg1) + (f1dg2 + f2dg2) = (f1dg1 + f1dg2) + (f2dg1 + f2dg2). By the AdditionTheorem 2.3.3 f1dg1 + f1dg2 = f1d(g1 + g2). And the equality f2dg1 + f2dg2 =f2d(g1+ g2) follows from (�f2)dg1+(�f2)dg2 = (�f2)d(g1+ g2) by the Sign Rule.Hene the left-hand side is equal to f1d(g1 + g2) + f2d(g1 + g2), whih oinideswith the right-hand side of (2.6.1) by de�nition via monotonization of integrand.The ase of non-inreasing di�erands is taken are of via transformation of (2.6.1)by the Sign Rule into fd(�g1) + fd(�g2) = fd(�g1 � g2). �Lemma 2.6.6. Let g1 + g2 = g3 + g4 where all (�1)kgk are non-inreasingontinuous funtions. Then fdg1+ fdg2 = fdg3+ fdg4 for any virtually monotonef . Proof. Our equality is equivalent to fdg1 � fdg4 = fdg3 � fdg2. By theSign Rule it turns into fdg1 + fd(�g4) = fdg3 + fd(�g2). Now all di�erands arenondereasing and by Lemma 2.6.5 it transforms into fd(g1 � g4) = fd(g3 � g2).This is true beause g1 � g4 = g3 � g2. �Monotonization of the di�erand. A monotonization by ontinuous fun-tions is alled ontinuous. A virtually monotone funtion whih has a ontinuousmonotonization is alled ontinuous. The integral for any virtually monotone in-tegrand f against a virtually monotone ontinuous di�erand g is de�ned via aontinuous virtualization g = g1 + g2 of the di�erandZ ba f dg = Z ba f dg1 + Z ba f dg2:The integral is well-de�ned beause of Lemma 2.6.6.Theorem 2.6.7 (Addition Theorem). For any virtually monotone funtionsf; f 0 and any virtually monotone ontinuous g; g0, fdg + f 0dg = (f + f 0)dg andfdg + fdg0 = fd(g + g0)



2.6 virtually monotone funtions 59Proof. To prove fdg+ f 0dg = (f + f 0)dg, onsider a ontinuous monotoniza-tion g = g1+g2. Then by de�nition of the integral for virtually monotone di�erandsthis equality turns into (fdg1+fdg2)+(f 0dg1+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2. Af-ter rearranging it turns into (fdg1+f 0dg1)+(fdg2+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2.But this is true due to Lemma 2.6.2.To prove fdg + fdg0 = fd(g + g0), onsider monotonizations g = g1 + g2,g0 = g01 + g02. Then (g1+ g01) + (g2 + g02) is a monotonization for g+ g0. And by thede�nition of the integral for virtually monotone di�erands our equality turns intofdg1 + fdg2 + fdg01 + fdg02 �Change of variable.Lemma 2.6.8. If f is virtually monotone and g is monotone, then f(g(x)) isvirtually monotone.Proof. Let f1 + f2 be a monotonization of f . If h is non-dereasing thenf1(h(x)) + f2(h(x)) gives a monotonization of f(g(x)). If h is dereasing then themonotonization is given by (f2(h(x)) + ) + (f1(h(x)) � ) where  is a suÆientlylarge onstant to provide positivity of the �rst brakets and negativity of the seondone. �The following natural onvention is applied to de�ne an integral with reversedlimits: R ba f(x) dg(x) = � R ab f(x) dg(x).Theorem 2.6.9 (on hange of variable). If h : [a; b℄! [h(a); h(b)℄ is monotone,f(x) is virtually monotone and g(x) is virtually monotone ontinuous thenZ ba f(h(t)) dg(h(t)) = Z h(b)h(a) f(x) dg(x):Proof. Let f = f1+f2 and g = g1+g2 be a monotonization and a ontinuousmonotonization of f and g respetively. The R ba f(h(t)) dg(h(t)) splits into sumof four integrals: R ba fi(h(t)) dgj(h(t)) where fi are of onstant sign and gj aremonotone ontinuous. These integrals oinide with the orresponding integralsR h(b)h(a) fi(x) dgi(x). Indeed their absolute values are the areas of the same urvilineartrapezia. And their signs determined by the Sign Rule are the same. �Integration by parts. We have established the Integration by Parts formulafor non-negative and non-dereasing di�erential forms. Now we extend it to thease of ontinuous monotone forms. In the �rst ase f and g are non-dereasing.In this ase hoose a positive onstant  suÆiently large to provide positivity off +  and g+  on the interval of integration. Then d(f + )(g + ) = (f + )d(g +) + (g + )d(f + ). On the other hand d(f + )(g + ) = dfg + df + dg and(f + )d(g + ) + (g + )d(f + ) = fdg + dg + df . Compare these results to getdfg = fdg + gdf . Now if f is inreasing and g is dereasing then �g is inreasingand we get �dfg = df(�g) = fd(�g) + (�g)df = �fdg � gdf , whih leads todfg = fdg + gdf . The other ases: f dereasing, g inreasing and both dereasingare proved by the same arguments. The extension of the Integration by Partsformula to pieewise monotone forms immediately follows by the Partition Rule.Variation. De�ne the variation of a sequene of numbers fxkgnk=1 as the sumP1k=1 jxk+1 � xkj. De�ne the variation of a funtion f along a sequene fxkgnk=0



60 2.6 virtually monotone funtionsas the variation of sequene ff(xk)gnk=0. De�ne a hain on an interval [a; b℄ as anondereasing sequene fxkgnk=0 suh that x0 = a and xn = b. De�ne the partialvariation of f on an interval [a; b℄ as its variation along a hain on the interval.The least number surpassing all partial variations funtion f over [a; b℄ is alledthe (ultimate) variation of a funtion f(x) on an interval [a; b℄ and is denoted byvarf [a; b℄.Lemma 2.6.10. For any funtion f one has the inequality varf [a; b℄ � jf(b)�f(a)j. If f is a monotone funtion on [a; b℄, then varf [a; b℄ = jf(b)� f(a)j.Proof. The inequality varf [a; b℄ � jf(b)� f(a)j follows immediately from thede�nition beause fa; bg is a hain. For monotone f , all partial variations aretelesopi sums equal to jf(b)� f(a)j �Theorem 2.6.11 (additivity of variation). varf [a; b℄ + varf [b; ℄ = varf [a; ℄.Proof. Consider a hain fxkgnk=0 of [a; ℄, whih ontains b. In this ase thevariation of f along fxkgnk=0 splits into sums of partial variations of f along [a; b℄and along [b; ℄. As a partial variations does not exeed an ultimate, we get that inthis ase the variation of f along fxkgnk=0 does not exeed varf [a; b℄ + varf [b; ℄.If fxkgnk=0 does not ontain b, let us add b to the hain. Then in the sumexpressing the partial variation of f , the summand jf(xi+1)�f(xi)j hanges by thesum jf(b)� f(xi)j+ jf(xi+1 � f(b)j whih is greater or equal. Hene the variationdoes not derease after suh modi�ation. But the variation along the modi�edhain does not exeed varf [a; b℄ + varf [b; ℄ as was proved above. As all partialvariations of f over [a; ℄ do not exeed varf [a; b℄ + varf [b; ℄, the same is true forthe ultimate variation.To prove the opposite inequality we onsider a relaxed inequality varf [a; b℄ +varf [b; ℄ � varf [a; ℄ + " where " is an positive number. Choose hains fxkgnk=0on [a; b℄ and fykgmk=0 on [b; ℄ suh that orresponding partial variations of f are� varf [a; b℄ + "=2 and � varf [b; ℄ + "=2 respetively. As the union of these hainsis a hain on [a; ℄ the sum of these partial variations is a partial variation of f on[a; ℄. Consequently this sum is less or equal to varf [a; ℄. On the other hand it isgreater or equal to varf [a; b℄ + "=2+varf [b; ℄ + "=2. Comparing these results givesjust the relaxed inequality. As the relaxed inequality is proved for all " > 0 it alsoholds for " = 0. �Lemma 2.6.12. For any funtions f , g one has the inequality varf+g[a; b℄ �varf [a; b℄ + varg [a; b℄.Proof. Sine jf(xk+1) + g(xk+1) � f(xk) � g(xk)j � jf(xk+1) � f(xk)j +jg(xk+1) � g(xk)j, the variation of f + g along any sequene does not exeed thesum of the variations of f and g along the sequene. Hene all partial variations off + g do not exeed varf [a; b℄ + varg [a; b℄, and so the same is true for the ultimatevariation. �Lemma 2.6.13. For any funtion of �nite variation on [a; b℄, the funtionsvarf [a; x℄ and varf [a; x℄� f(x) are both nondereasing funtions of x.Proof. That varf [a; x℄ is nondereasing follows from nonnegativity and addi-tivity of variation. If x > y then the inequality varf [a; x℄� f(x) � varf [a; y℄� f(y)



2.6 virtually monotone funtions 61is equivalent to varf [a; x℄�varf [a; y℄ � f(x)�f(y). This is true beause varf [a; x℄�varf [a; y℄ = varf [x; y℄ � jf(x)� f(y)j. �Lemma 2.6.14. varf2 [a; b℄ � 2(jf(a)j+ varf [a; b℄) varf [a; b℄.Proof. For all x; y 2 [a; b℄ one hasjf(x) + f(y)j = j2f(a) + f(x)� f(a) + f(y)� f(a)j� 2jf(a)j+ varf [a; x℄ + varf [a; y℄� 2jf(a)j+ 2varf [a; b℄:HenePn�1k=0 jf2(xk+1)� f2(xk)j =Pn�1k=0 jf(xk+1)� f(xk)jjf(xk+1) + f(xk)j� 2(jf(a)j+ varf [a; b℄)Pn�1k=0 jf(xk+1)� f(xk)j� 2(jf(a)j+ varf [a; b℄) varf [a; b℄ �Lemma 2.6.15. If varf [a; b℄ <1 and varg[a; b℄ <1, then varfg[a; b℄ <1.Proof. 4fg = (f + g)2 � (f � g)2. �Theorem 2.6.16. The funtion f is virtually monotone on [a; b℄ if and only ifit has a �nite variation.Proof. Sine monotone funtions have �nite variation on �nite intervals, andthe variation of a sum does not exeed the sum of variations, one gets that allvirtually monotone funtions have �nite variation. On the other hand, if f has�nite variation then f = (varf [a; x℄ + ) + (f(x) � varf [a; x℄ � ), the funtionsin the brakets are monotone due to Lemma 2.6.13, and by hoosing a onstant suÆiently large, one obtains that the seond braket is negative. �Problems.1. Evaluate R i1 z2 dz.2. Prove that 1=f(x) has �nite variation if it is bounded.3. Prove R ba f(x) dg(x) � max[a;b℄ f varg[a; b℄.


