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1.1. Autoreursion of In�nite ExpressionsOn the ontents of the leture. The leture presents a romanti style ofearly analytis. The motto of the leture ould be \in�nity, equality and no de�-nitions!". In�nity is the main personage we will play with today. We demonstratehow in�nite expressions (i.e., in�nite sums, produts, frations) arise in solutionsof simple equations, how it is possible to alulate them, and how the results ofsuh alulations apply to �nite mathematis. In partiular, we will dedue theEuler-Binet formula for Fibonai numbers, the �rst Euler's formula of the ourse.We beome aquainted with geometri series and the golden setion.Ahilles and the turtle. The anient Greek philosopher Zeno laimed thatAhilles pursuing a turtle ould never pass it by, in spite of the fat that his veloitywas muh greater than the veloity of the turtle. His arguments adopted to ourpurposes are the following.First Zeno proposed a pursuing algorithm for Ahilles:Initialization. Assign to the variable goal the original position of the turtle.Ation. Reah the goal.Corretion. If the urrent turtle's position is goal, then stop, else reassign tothe variable goal the urrent position of the turtle and go to Ation.Seondly, Zeno remarks that this algorithm never stops if the turtle onstantlymoves in one diretion.And �nally, he notes that Ahilles has to follow his algorithm if he want passthe turtle by. He may be not aware of this algorithm, but unonsiously he mustperform it. Beause he annot run the turtle down without reahing the originalposition of the turtle and then all positions of the turtle whih the variable goaltakes.Zeno's algorithm generates a sequene of times ftkg, where tk is the time ofexeution of the k-th ation of the algorithm. And the whole time of work of thealgorithm is the in�nite sum P1k=1 tk; and this sum expresses the time Ahillesneeds to run the turtle down. (The orretions take zero time, beause Ahillesreally does not think about them.) Let us name this sum the Zeno series.Assume that both Ahilles and the turtle run with onstant veloities v andw, respetively. Denote the initial distane between Ahilles and the turtle by d0.Then t1 = d0v . The turtle in this time moves by the distane d1 = t1w = wv d0. Byhis seond ation Ahilles overomes this distane in time t2 = d1v = wv t1, while theturtle moves away by the distane d2 = t2w = wv d1. So we see that the sequenes oftimes ftkg and distanes fdkg satisfy the following reurrene relations : tk = wv tk�1,dk = wv dk�1.Hene ftkg as well as fdkg are geometri progressions with ratio wv . And thetime t whih Ahilles needs to run the turtle down ist = t1 + t2 + t3 + � � � = t1 + wv t1 + w2v2 t1 + � � � = t1 �1 + wv + w2v2 + � � �� :In spite of Zeno, we know that Ahilles does ath up with the turtle. Andone easily gets the time t he needs to do it by the following argument: the distanebetween Ahilles and the turtle permanently dereases with the veloity v � w.Consequently it beomes 0 in the time t = d0v�w = t1 vv�w . Comparing the resultswe ome to the following onlusion(1.1.1) vv�w = 1 + wv + w2v2 + w3v3 + � � � :2



1.1 autoreursion of infinite expressions 3In�nite substitution. We see that some in�nite expressions represent �nitevalues. The fration in the left-hand side of (1.1.1) expands into the in�nite serieson the right-hand side. In�nite expressions play a key rôle in mathematis andphysis. Solutions of equations quite often are presented as in�nite expressions.For example let us onsider the following simple equation(1.1.2) t = 1 + qt:Substituting on the right-hand side 1 + qt instead of t, one gets a new equationt = 1 + q(1 + qt) = 1 + q + q2t. Any solution of the original equation satis�es thisone. Repeating this trik, one gets t = 1 + q(1 + q(1 + qt)) = 1 + q + q2 + q3t.Repeating this in�nitely many times, one eliminates t on the right hand side andgets a solution of (1.1.2) in an in�nite formt = 1 + q + q2 + q3 + � � � = 1Xk=0 qk:On the other hand, the equation (1.1.2) solved in the usual way gives t = 11�q . Asa result, we obtain the following formula(1.1.3) 11� q = 1 + q + q2 + q3 + q4 + � � � = 1Xk=0 qk:whih represents a speial ase of (1.1.1) for v = 1, w = q.Autoreursion. An in�nite expression of the form a1+a2+a3+ : : : is alled aseries and is onisely denoted byP1k=1 ak. Now we onsider a summation methodfor series whih is inverse to the above method of in�nite substitution. To �nd thesum of a series we shall onstrut an equation whih is satis�ed by its sum. Wename this method autoreursion. Reursion means \return to something known".Autoreursion is \return to oneself".The series a2+a3+ � � � =P1k=2 ak obtained fromP1k=1 ak by dropping its �rstterm is alled the shift of P1k=1 ak.We will all the following equality the shift formula:1Xk=1 ak = a1 + 1Xk=2 ak:Another basi formula we need is the following multipliation formula:� 1Xk=1 ak = 1Xk=1 �ak:These two formulas are all one needs to �nd the sum of geometri seriesP1k=0 qk. To be exat, the multipliation formula gives the equality P1k=1 qk =qP1k=0 qk. Hene the shift formula turns into equation x = 1 + qx, where x isP1k=0 qk. The solution of this equation gives us the formula (1.1.3) for the sum ofthe geometri series again.From this formula, one an dedue the formula for the sum of a �nite geometriprogression. By Pnk=0 ak is denoted the sum a0 + a1 + a2 + � � �+ an. One hasn�1Xk=0 qk = 1Xk=0 qk � 1Xk=n qk = 11� q � qn1� q = 1� qn1� q :



4 1.1 autoreursion of infinite expressionsThis is an important formula whih was traditionally studied in shool.The series P1k=0 kxk. To �nd the sum of P1k=1 kxk we have to apply addi-tionally the following addition formula,1Xk=1(ak + bk) = 1Xk=1 ak + 1Xk=1 bkwhih is the last general formula for series we introdue in the �rst leture.Reindexing the shift P1k=2 kxk we give it the form P1k=1(k + 1)xk+1. Furtherit splits into two partsx 1Xk=1(k + 1)xk = x 1Xk=1 kxk + x 1Xk=1 xk = x 1Xk=1 kxk + x x1� xby the addition formula. The �rst summand is the original sum multiplied byx. The seond is a geometri series. We already know its sum. Now the shiftformula for the sum s(x) of the original series turns into the equation s(x) =x+ x x1�x + xs(x). Its solution is s(x) = x(1�x)2 :Fibonai Numbers. Starting with �0 = 0, �1 = 1 and applying the reur-rene relation �n+1 = �n + �n�1;one onstruts an in�nite sequene of numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; : : : , alledFibonai numbers. We are going to get a formula for �n.To do this let us onsider the following funtion �(x) = P1k=0 �kxk, whihis alled the generating funtion for the sequene f�kg. Sine �0 = 0, the sum�(x) + x�(x) transforms in the following way:1Xk=1�kxk + 1Xk=1 �k�1xk = 1Xk=1 �k+1xk = �(x) � xx :Multiplying both sides of the above equation by x and olleting all terms ontaining�(x) on the right-hand side, one gets x = �(x) � x�(x) � x2�(x) = x. It leads to�(x) = x1� x� x2 :The roots of the equation 1� x � x2 = 0 are �1�p52 . More famous is the pairof their inverses 1�p52 . The number � = �1+p52 is the so-alled golden setion orgolden mean. It plays a signi�ant rôle in mathematis, arhiteture and biology.Its dual is �̂ = �1�p52 . Then ��̂ = �1, and � + �̂ = 1. Hene (1� x�)(1 � x�̂) =1� x� x2, whih in turn leads to the following deomposition:xx2 + x� 1 = 1p5 � 11� �x � 11� �̂x� :We expand both frations on the right hand side into geometri series:11� �x = 1Xk=0�kxk ; 11� �̂x = 1Xk=0 �̂kxk :



1.1 autoreursion of infinite expressions 5This gives the following representation for the generating funtion�(x) = 1p5 1Xk=0(�k � �̂k)xk:On the other hand the oeÆient at xk in the original presentation of �(x) is �k .Hene(1.1.4) �k = 1p5(�k � �̂k) = (p5 + 1)k + (�1)k(p5� 1)k2kp5 :This is alled the Euler-Binet formula. It is possible to hek it for small k andthen prove it by indution using Fibonai reurrene.Continued frations. The appliation of the method of in�nite substitutionto the solution of quadrati equation leads us to a new type of in�nite expressions,the so-alled ontinued frations. Let us onsider the golden mean equation x2 �x � 1 = 0. Rewrite it as x = 1 + 1x . Substituting 1 + 1x instead of x on the right-hand side we get x = 1 + 11+ 1x . Repeating the substitution in�nitely many timeswe obtain a solution in the form of the ontinued fration:(1.1.5) 1 + 11 + 11 + 11+:::As this fration seems to represent a positive number and the golden mean is theunique positive root of the golden mean equation, it is natural to onlude that thisfration is equal to � = 1+p52 . This is true and this representation allows one toalulate the golden mean and p5 e�etively with great preision.To be preise, onsider the sequene(1.1.6) 1; 1 + 11 ; 1 + 11 + 11 ; 1 + 11 + 11 + 11 ; : : :of so-alled onvergents of the ontinued fration (1.1.5). Let us remark that allodd onvergents are less than � and all even onvergents are greater than �. Tosee this, ompare the n-th onvergent with the orresponding term of the followingsequene of frations:(1.1.7) 1 + 1x ; 1 + 11 + 1x ; 1 + 11 + 11 + 1x ; : : : :We know that for x = � all terms of the above sequene are equal to �. Heneall we need is to observe how the removal of 1x a�ets the value of the onsideredfration. The value of the �rst fration of the sequene dereases, the value of theseond fration inreases. If we denote the value of n-th fration by fn, then thevalue of the next fration is given by the following reurrene relation:(1.1.8) fn+1 = 1 + 1fn :Hene inreasing fn dereases fn+1 and dereasing fn inreases fn+1. Consequentlyin general all odd frations of the sequene (1.1.7) are less than the orresponding



6 1.1 autoreursion of infinite expressionsonvergent, and all even are greater. The reurrene relation (1.1.8) is valid for thegolden mean onvergent. By this reurrene relation one an quikly alulate the�rst ten onvergents 1; 2; 32 ; 53 ; 85 ; 138 ; 2113 ; 3421 ; 5534 ; 8955 . The golden mean lies betweenlast two frations, whih have the di�erene 134�55 . This allows us to determine the�rst four deimal digits after the deimal point of it and of p5.Problems.1. Evaluate P1k=0 22k33k .2. Evaluate 1� 1 + 1� 1 + � � � .3. Evaluate 1 + 1� 1� 1 + 1 + 1� 1� 1 + � � � .4. Evaluate P1k=1 k3k .5. Evaluate P1k=1 k22k .6. Deompose the fration 1a+x into a power series.7. Find the generating funtion for the sequene f2kg.8. Find sum the P1k=1 �k3�k.9. Prove by indution the Euler-Binet formula.�10. Evaluate 1� 2 + 1 + 1� 2 + 1 + � � � .11. Approximate p2 by a rational with preision 0:0001.12. Find the value of 1 + 12 + 11 + 12 + � � �.13. Find the value of q2 +p2 +p2 + � � �:14. By in�nite substitution, solve the equation x2 � 2x� 1 = 0, and represent p2by a ontinued fration.15. Find the value of the in�nite produt 2 � 2 12 � 2 14 � 2 18 � � � � .16. Find a formula for n-th term of the reurrent sequene xn+1 = 2xn + xn�1,x0 = x1 = 1.17. Find the sum of the Fibonai numbers P1k=1 �k.18. Find sum 1 + 0� 1 + 1 + 0� 1 + � � � .19. Deompose into the sum of partial frations 1x2�3x+2 .



1.2. Positive SeriesOn the ontents of the leture. In�nity is pregnant with paradoxes. Para-doxes throw us down from the heavens to the earth. We leave the poetry for prose,and rationalize the in�nity and equality by working with �niteness and inequality.We shall lay a solid foundation for a summation theory for positive series. And thereader will �nd out what P1k=1 1k2 = �26 preisely means.Divergent series paradox. Let us onsider the series P1k=0 2k. This is ageometri series. We know how to sum it up by autoreursion. The autoreursionequation is s = 1 + 2s. The only number satisfying this equation is �1. The sumof positive numbers turns to be negative!? Something is wrong!A way to save the situation is to admit in�nity as a feasible solution. In�nityis an obvious solution of s = 1+2s. The sum of any geometri seriesP1k=0 qk withdenominator q � 1 is obviously in�nite, isn't it?Indeed, this sum is greater than 1 + 1 + 1+ 1+ : : : , whih symbolizes in�nity.(The autoreursion equation for 1 + 1 + 1 + : : : is s = s+ 1. In�nity is the uniquesolution of this equation.)The series P1k=0 2k represents Zeno's series in the ase of the Mighty Turtle,whih is faster than Ahilles. To be preise, this series arises if v = d0 = 1 andw = 2. As the veloity of the turtle is greater than the veloity of Ahilles henever reahes it. So the in�nity is right answer for this problem. But the negativesolution �1 also makes sense. One ould interpret it as an event in the past. Justthe point in time when the turtle passed Ahilles.Osillating series paradoxes. The philosopher Gvido Grandy in 1703 at-trated publi attention to the series 1 � 1 + 1 � 1 + : : : . He laimed this seriessymbolized the Creation of Universe from Nothing. Namely, insertion of braketsin one way gives Nothing (that is 0), in another way, gives 1.(1� 1) + (1� 1) + (1� 1) + � � � = 0 + 0 + 0 + � � � = 0;1� (1� 1)� (1� 1)� (1� 1)� � � � = 1� 0� 0� 0� � � � = 1:On the other hand, this series 1 � 1 + 1 � 1 + 1 � 1 + : : : is geometri withnegative ratio q = �1. Its autoreursion equation s = 1� s has the unique solutions = 12 . Neither +1 nor �1 satisfy it. So 12 seems to be its true sum.Hene we see the Assoiativity Law dethroned by 1� 1+1� 1+ : : : . The nextvitim is the Commutativity Law. The sum �1 + 1 � 1 + 1 � 1 + : : : is equal to� 12 . But the last series is obtained from 1� 1+1� 1+ : : : by transposition of oddand even terms.And the third amazing thing: diluting it by zeroes hanges its sum. The sum1+0� 1+1+0� 1+1+0�1+ : : : by no means is 12 . It is 23 . Indeed, if we denotethis sum by s then by shift formulas one getss = 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + : : : ;s� 1 = 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + : : : ;s� 1� 0 = �1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0 + : : : :7



8 1.2 positive seriesSumming the numbers olumn-wise (i.e., by the Termwise Addition Formula), weget s+ (s� 1) + (s� 1� 0) = (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0)+ (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0) + : : : :The left-hand side is 3s � 2. The right-hand side is the zero series. That is whys = 23 .The series 1 � 1 + 1 � 1 + : : : arises as Zeno's series in the ase of a blindAhilles direted by a ruel Zeno, who is interested, as always, only in proving hislaim, and a foolish, but meriful turtle. The blind Ahilles is not fast, his veloityequals the veloity of the turtle. At the �rst moment Zeno tells the blind Ahilleswhere the turtle is. Ahilles starts the rally. But the meriful turtle wishing to helphim goes towards him instead of running away. Ahilles meets the turtle half-way.But he misses it, being busy to perform the �rst step of the algorithm. Whenhe aomplishes this step, Zeno orders: \Turn about!" and surprises Ahilles bysaying that the turtle is on Ahilles' initial position. The turtle disovers thatAhilles turns about and does the same. The situation repeats ad in�nitum. Nowwe see that assigning the sum 12 to the series 1 � 1 + 1 � 1 + : : : makes sense. Itpredits aurately the time of the �rst meeting of Ahilles and turtle.Positivity. The paradoxes disussed above are disouraging. Our intuitionbased on handling �nite sums fails when we turn to in�nite ones. Observe that allparadoxes above involve negative numbers. And to eliminate the evil in its root,let us onsider only nonnegative numbers.We return to the anient Greeks. They simply did not know what a negativenumber is. But in ontrast to the Greeks, we will retain zero. A series withnonnegative terms will be alled a positive series. We will show that for positiveseries all familiar laws, inluding assoiativity and ommutativity, hold true andzero terms do not a�et the sum.De�nition of In�nite Sum. Let us onsider what Euler's equality ouldmean: 1Xk=1 1k2 = �26 :The natural answer is: the partial sums Pnk=1 1k2 , whih ontain more and morereiproal squares, approah loser and loser the value �26 . Consequently, all par-tial sums have to be less than �26 , its ultimate sum. Indeed, if some partial sumexeeds or oinides with �26 then all subsequent sums will move away from �26 .Furthermore, any number  whih is less than �26 has to be surpassed by partialsums eventually, when they approah �26 loser than by �26 � . Hene the ultimatesum majorizes all partial ones, and any lesser number does not. This means thatthe ultimate sum is the smallest number whih majorizes all partial sums.Geometri motivation. Imagine a sequene [ai�1; ai℄ of intervals of the realline. Denote by li the length of i-th interval. Let a0 = 0 be the left end point ofthe �rst interval. Let [0; A℄ be the smallest interval ontaining the whole sequene.Its length is naturally interpreted as the sum P1i=1 liThis motivates the following de�nition.



1.2 positive series 9Definition. If the partial sums of the positive seriesP1k=1 ak inrease withoutbound, its sum is de�ned to be 1 and the series is alled divergent. In the oppositease the series alled onvergent, and its sum is de�ned as the smallest number Asuh that A �Pnk=1 ak for all n.This De�nition is equivalent to the following ouple of priniples. The �rstpriniple limits the ultimate sum from below:Priniple (One-for-All). The ultimate sum of a positive series majorizes allpartial sums.And the seond priniple limits the ultimate sum from above:Priniple (All-for-One). If all partial sums of a positive series do not exeeda number, then the ultimate sum also does not exeed it.Theorem 1.2.1 (Termwise Addition Formula).1Xk=1 ak + 1Xk=1 bk = 1Xk=1(ak + bk):Proof. The inequality P1k=1 ak +P1k=1 bk �P1k=1(ak + bk) is equivalent toP1k=1 ak �P1k=1(ak + bk)�P1k=1 bk. By All-for-One, the last is equivalent to thesystem of inequalitiesNXk=1 ak � 1Xk=1(ak + bk)� 1Xk=1 bk N = 1; 2; : : : :This system is equivalent to the following system1Xk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak N = 1; 2; : : : :Eah inequality of the last system, in its turn, is equivalent to the system of in-equalities MXk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak M = 1; 2; : : : :But these inequalities are true for all N and M , as the following omputationsshow. MXk=1 bk + NXk=1 ak � M+NXk=1 bk +M+NXk=1 ak = M+NXk=1 (ak + bk) � 1Xk=1(ak + bk):In the opposite diretion, we see that any partial sum on the right-hand sidePnk=1(ak + bk) splits into Pnk=1 ak +Pnk=1 bk. And by virtue of the One-for-Allpriniple, this does not exeedP1k=1 ak +P1k=1 bk. Now, the All-for-One prinipleprovides the inequality in the opposite diretion. �Theorem 1.2.2 (Shift Formula).1Xk=0 ak = a0 + 1Xk=1 ak:



10 1.2 positive seriesProof. The Shift Formula immediately follows from the Termwise Additionformula. To be preise, immediately from the de�nition, one gets the following:a0 +0+ 0+ 0+ 0+ � � � = a0 and that 0 + a1 + a2 + a3 + � � � =P1k=1 ak. TermwiseAddition of these series givesa0 + 1Xk=1 ak = (a0 + 0) + (0 + a1) + (0 + a2) + (0 + a3) + � � � = 1Xk=0 ak: �Theorem 1.2.3 (Termwise Multipliation Formula).� 1Xk=1 ak = 1Xk=1 �ak:Proof. For any partial sum from the right-hand side one hasnXk=1 �ak = � nXk=1 ak � � 1Xk=1 akby the Distributivity Law for �nite sums and One-for-All. This implies the inequal-ity �P1k=1 ak � P1k=1 �ak by All-for-One. The opposite inequality is equivalentto P1k=1 ak � 1�P1k=1 �ak. As any partial sum Pnk=1 ak is equal to 1�Pnk=1 �ak ,whih does not exeed 1�P1k=1 �ak, one gets the opposite inequality. �Geometri series. We have to return to the geometri series, beause theautoreursion equation produed by shift and multipliation formulas says nothingabout onvergene. So we have to prove onvergene for P1k=0 qk with positiveq < 1. It is suÆient to prove the following inequality for all n1 + q + q2 + q3 + � � �+ qn < 11�q :Multiplying both sides by 1� q one gets on the left-hand side(1� q) + (q � q2) + (q2 � q3) + � � �+ (qn�1 � qn) + (qn � qn+1)= 1� q + q � q2 + q2 � q3 + q3 � � � � � qn + qn � qn+1= 1� qn+1and 1 on the right-hand side. The inequality 1�qn+1 < 1 is obvious. Hene we haveproved the onvergene. Now the autoreursion equation x = 1 + qx for P1k=0 qkis onstruted in usual way by the shift formula and termwise multipliation. Itleaves only two possibilities for P1k=0 qk, either 1q�1 or 1. For q < 1 we haveproved onvergene, and for q � 1 in�nity is the true answer.Let us pay speial attention to the ase q = 0. We adopt a ommon onvention:00 = 1:This means that the seriesP1k=0 0k satis�es the ommon formula for a onvergentgeometri series P1k=0 0k = 11�0 = 1. Finally we state the theorem, whih isessentially due to Eudoxus, who proved the onvergene of the geometri serieswith ratio q < 1.



1.2 positive series 11Theorem 1.2.4 (Eudoxus). For every nonnegative q one has1Xk=0 qk = 11� q for q < 1, and 1Xk=0 qk =1 for q � 1:Comparison of series. Quite often exat summation of series is too diÆult,and for pratial purposes it is enough to know the sum approximatively. In thisase one usually ompares the series with another one whose sum is known. Suha omparison is based on the following Termwise Comparison Priniple, whihimmediately follows from the de�nition of a sum.Priniple (Termwise Comparison). If ak � bk for k, then1Xk=1 ak � 1Xk=1 bk:The only series we have so far to ompare with are the geometri ones. Thefollowing lemma is very useful for this purposes.Lemma 1.2.5 (Ratio Test). If ak+1 � qak for k holds for some q < 1 then1Xk=0 ak � a01� q :Proof. By indution one proves the inequality ak � a0qk. Now by TermwiseComparison one estimatesP1k=0 ak from above by the geometri seriesP1k=0 a0qk =a01�q �If the series under onsideration satis�es an autoreursion equation, to proveits onvergene usually means to evaluate it exatly. For proving onvergene, theTermwise Comparison Priniple an be strengthened. Let us say that the seriesP1k=1 ak is eventually majorized by the series P1k=1 bk, if the inequality bk � akholds for eah k starting from k = n for some n. The following lemma is very usefulto prove onvergene.Priniple (Eventual Comparison). A seriesP1k=1 ak, whih is eventually ma-jorized by a onvergent series P1k=1 bk, is onvergent.Proof. Consider a tail P1k=n bk, whih termwise majorizesP1k=n ak. Then1Xk=1 ak = n�1Xk=1 ak + 1Xk=n ak� n�1Xk=1 ak + 1Xk=n bk� n�1Xk=1 ak + 1Xk=1 bk<1: �Consider the series P1k=1 k2�k. The ratio of two suessive terms ak+1ak of theseries is k+12k . This ratio is less or equal to 23 starting with k = 3. Hene this series



12 1.2 positive seriesis eventually majorizes by the geometri series P1k=0 a3 2k3k , (a3 = 23 ). This provesits onvergene. And now by autoreursion equation one gets its sum.Harmoni series paradox. Now we have a solid bakground to evaluatepositive series. Nevertheless, we must be areful about in�nity! Consider thefollowing alulation:1Xk=1 12k(2k � 1) = 1Xk=1 12k � 1 � 1Xk=1 12k= 1Xk=1 12k � 1 � 12 1Xk=1 1k= 1Xk=1 12k � 1 � 12  1Xk=1 12k � 1 + 1Xk=1 12k!=  1Xk=1 12k � 1 � 12 1Xk=1 12k � 1!� 12 1Xk=1 12k= 12  1Xk=1 12k � 1!� 12 1Xk=1 12k= 12 1Xk=1 12k(2k � 1) :We get that the sumP1k=1 1(2k�1)2k satis�es the equation s = s2 . This equation hastwo roots 0 and 1. But s satis�es the inequalities 12 < s < �26 . What is wrong?Problems.1. ProveP1k=1 0 = 0.2. ProveP1k=1 0k = 1.3. ProveP1k=0 ak =P1k=0 a2k +P1k=0 a2k+1.4. ProveP1k=1(ak � bk) =P1k=1 ak �P1k=1 bk for onvergent series.5. Evaluate P1k=1 1k(k+1) .6. Prove (1� 12 ) + ( 13 � 14 ) + ( 15 � 16 ) + � � � = 1� [( 12 � 13 ) + ( 14 � 15 ) + � � � .7. Prove the onvergene of P1k=0 2kk! .8. Prove the onvergene of P1k=1 1000kk! .9. Prove the onvergene of P1k=1 k10002k .10. Prove that qn < 1n(1�q) for 0 < q < 1.11. Prove that for any positive q < 1 there is an n that qn < 12 .12. ProveP1k=1 1k! � 2.13. Evaluate P1k=1 1k(k+2) .14. Prove the onvergene of the Euler series P1k=1 1k2 .�15. Prove that P1i=1P1j=1 aij =P1j=1P1i=1 aij for aij � 0.



1.3. Unordered SumsOn the ontents of the leture. Our summation theory ulminates in theSum Partition Theorem. This leture will ontribute towards evaluation of theEuler series in two ways: we prove its onvergene, and even estimate its sum by 2.On the other hand, we will realize that evaluation of the Euler series with Euler'sauray (10�18) seems to be beyond a human being's strength.Consider a family faigi2I of nonnegative numbers indexed by elements of anarbitrary set I . An important speial ase of I is the set of pairs of natural numbersN � N. Families indexed by N � N are alled double series. They arise when onemultiplies one series by another one.Any sum of the typePi2K ai, where K is a �nite subset of I is alled a subsumof faigi2I over K.Definition. The least number majorizing all subsums of faigi2I over �nitesubsets is alled its (ultimate) sum and denoted by Pi2I aiThe One-for-All and All-for-One priniples for non-ordered sums are obtainedfrom the orresponding priniples for ordered sums by replaing \partial sums" by\�nite subsums".Commutativity. In ase I = N we have a de�nition whih apparently is new.But fortunately this de�nition is equivalent to the old one. Indeed, as any �nitesubsum of positive series does not exeed its ultimate (ordered) sum, the non-ordered sum also does not exeed it. On the other hand, any partial sum of theseries is a �nite subsum. This implies the opposite inequality. Therefore we haveestablished the equality. 1Xk=1 ak =Xk2N akThis means that positive series obey the Commutativity Law. Beause the non-ordered sum obviously does not depend on the order of summands.Partitions. A family of subsets fIkgk2K of a set I is alled a partition of Iand is written Fk2K Ik if I = Sk2K Ik and Ik \ Ij = ? for all k 6= j.Theorem 1.3.1 (Sum Partition Theorem). For any partition I = Fj2J Ij ofthe indexing set and any family faigi2I of nonnegative numbers,(1.3.1) Xi2I ai =Xj2JXi2Ij ai:Iverson notation. We will apply the following notation: a statement inludedinto [ ℄ takes value 1, if the statement is true, and 0, if it is false. Prove the followingsimple lemmas to adjust to this notation. In both lemmas one has K � I .Lemma 1.3.2. Pi2K ai =Pi2I ai[i 2 K℄.In partiular, for K = I , Lemma 1.3.2 turns intoLemma 1.3.3. Pi2I ai =Pi2I ai[i 2 I ℄.Lemma 1.3.4. Pk2K [i 2 Ik ℄ = [i 2 IK ℄ for all i 2 I i� IK = Fk2K Ik.13



14 1.3 unordered sumsProof of Sum Partition Theorem. At �rst we prove the following SumTransposition formula for �nite J ,(1.3.2) Xi2I Xj2J aij =Xj2JXi2I aij :Indeed, if J ontains just two elements, this formula turns into the Termwise Ad-dition formula. The proof of this formula is the same as for series. Suppose theformula is proved for any set whih ontains fewer elements than J does. Deom-pose J into a union of two nonempty subsets J1tJ2. Then applying only TermwiseAddition and Lemmas 1.3.2, 1.3.3, 1.3.4, we getXi2I Xj2J aij =Xi2I Xj2J aij [j 2 J ℄=Xi2I Xj2J(aij [j 2 J1℄ + aij [j 2 J2℄)=Xi2I Xj2J aij [j 2 J1℄ +Xi2I Xj2J aij [j 2 J2℄=Xi2I Xj2J1 aij +Xi2I Xj2J2 aij :But the last two sums an be transposed by the indution hypothesis. After suha transposition one getsXj2J1Xi2I aij + Xj2J2Xi2I aij =Xj2J [j 2 J1℄Xi2I aij +Xj2J [j 2 J2℄Xi2I aij=Xj2J([j 2 J1℄ + [j 2 J2℄)Xi2I aij=Xj2J [j 2 J ℄Xi2I aij=Xj2JXi2I aijand the Sum Transposition formula for �nite J is proved. Consider the general ase.To prove � in (1.3.2), onsider a �nite K � I . By the �nite Sum Transpositionformula the subsum Pi2KPj2J aij is equal to Pj2JPi2K aij . But this sum istermwise majorized by the right-hand side sum in (1.3.2). Therefore the left-handside does not exeed the right-hand side by All-for-One priniple.To derive the Sum Partition Theorem from the Sum Transposition formula,pose aij = ai[i 2 Ij ℄. Then ai = Pj2J aij and (1.3.1) turns into (1.3.2). Thisompletes the proof of the Sum Partition Theorem.Bloking. For a given a seriesP1k=0 ak and an inreasing sequene of naturalnumbers fnkg1k=0 starting with n0 = 0 one de�nes a new series P1k=0 Ak by therule Ak =Pnk+1�1i=nk ai. The series P1k=0 Ak is alled bloking of P1k=0 ak by fnkg.The Sum Partition Theorem implies that the sums of bloked and unblokedseries oinide. Bloking formalizes putting of brakets. Therefore the Sum Parti-tion Theorem implies the Sequential Assoiativity Law : Plaing brakets does nothange the sum of series.



1.3 unordered sums 15Estimation of the Euler series. Let us ompare the Euler series with theseries P1k=0 12k , bloked by f2ng to P1k=1 ak. The sum P2n+1�1k=2n 1k2 onsists of 2nsummands, all of whih are less then the �rst one, whih is 122n . As 2n 122n = 12n , itfollows that an � 12n for eah n. Summing these inequalities, one getsP1k=1 ak � 2.Now let us estimate how many terms of Euler's series one needs to take intoaount to �nd its sum up to the eighteenth digit. To do this, we need to estimateits tail. The arguments above give P1k=2n 1k2 � 12n�1 . To obtain a lower estimate,let us remark that all terms of sum P2n+1�1k=2n 1k2 exeed 122(n+1) . As the numberof summands is 2n, one gets an � 14�2n . Hene P1k=2n 1k2 � 12n+1 . Sine 210 =1024 ' 103, one gets 260 ' 1018. So, to provide an auray of 10�18 one needsto sum approximately 1018 terms. This task is inaessible even for a modernomputer. How did Euler manage to do this? He invented a summation formula(Euler-MaLaurin formula) and transformed this slowly onvergent series into non-positive divergent (!) one, whose partial sum ontaining as few as ten terms gaveeighteen digit auray. The whole alulation took him an evening. To introduethis formula, one needs to know integrals and derivatives. We will do this later.Problems.1. Find P1k=1 1(2k)2 and P1k=1 1(2k�1)2 , assuming P1k=1 1k2 = �2=6.2. Prove the onvergene of P1k=1 1kpk .3. Estimate how many terms of the series P1n=1 1n3 are neessary for alulationof its sum with preision 10�3.4. Estimate the value of P1k=1 12k 1k .5. Prove the equality P1k=0 akP1k=0 bk =Pj;k2N ajbk.6. Estimate how many terms of the Harmoni series give the sum surpassing 1000.7. Prove the Dirihlet formula Pnk=1Pki=1 aki =Pni=1Pnk=i aki.8. Evaluate Pi;j2N 12i3j .9. Evaluate Pi;j2N i+j2i3j .10. Represent an unordered sum Pi+j<n aij as a double sum.11. Evaluate Pi;j2N ij2i3j .12. Change the summation order in P1i=0P2ij=0 aij .13. De�ne by Iverson notation the following funtions:� [x℄ (integral part),� jxj (module),� sgnx (signum),� n! (fatorial).14. De�ne only by formulas the expression [p is prime℄.



1.4. In�nite ProdutsOn the ontents of the leture. In this leture we beome aquainted within�nite produts. The famous Euler Identity will be proved. We will �nd out that�(2) is another name for the Euler series. And we will see how Euler's deompositionof the sine funtion into a produt works to sum up the Euler Series.Definition. The produt of an in�nite sequene of numbers fakg, suh thatak � 1 for all k, is de�ned as the least number majorizing all partial produtsQnk=1 ak = a1a2 : : : an.A sequene of natural numbers is alled essentially �nite if all but �nitelymany of its elements are equal to zero. Denote by N1 the set of all essentially�nite sequenes of natural numbers.Theorem 1.4.1. For any given sequene of positive seriesP1k=0 ajk, j = 1; 2; : : :suh that aj0 = 1 for all j one has(1.4.1) 1Yj=1 1Xk=0 ajk = Xfkjg2N1 1Yj=1 ajkj :The summands on the right-hand side of (1.4.1) usually ontain fators whihare less than one. But eah of the summands ontains only �nitely many fatorsdi�erent from 1. So the summands are in fat �nite produts.Proof. For a sequene fkjg 2 N1 de�ne its length as maximal j for whihkj 6= 0 and its maximum as the value of its maximal term. The length of the zerosequene is de�ned as 0.Consider a �nite subset S � N1 . Consider the partial sumXfkjg2S 1Yk=1 ajkj :To estimate it, denote by L the maximal length of elements of S and denote by Mthe greatest of maxima of fkjg 2 S. In this aseXfkjg2S 1Yj=1 ajkj = Xfkjg2S LYj=1 ajkj � Xfkjg2NLM LYj=1 ajkj = LYj=1 MXk=0 ajk � 1Yj=1 1Xk=0 ajk;where NLM denotes the set of all �nite sequenes fk1; k2; : : : ; kLg of natural numberssuh that ki � M . By All-for-One this implies one of the required inequalities,namely, �.To prove the opposite inequality, we prove that for any natural L one has(1.4.2) LYj=1 1Xk=0 ajk = Xfkjg2NL LYj=1 ajkj ;where NL denotes the set of all �nite sequenes fk1; : : : kLg of natural numbers.The proof is by indution on L. 16



1.4 infinite produts 17Lemma 1.4.2. For any families faigi2I , fbjgj2J of nonnegative numbers, onehas Xi2I aiXj2J bj = X(i;j)2I�J aibj :Proof of Lemma 1.4.2. Sine I � J = Fi2Ifig � J by the Sum PartitionTheorem one gets: X(i;j)2I�J aibj =Xi2I X(i;j)2fig�J aibj=Xi2I Xj2J aibj=Xi2I aiXj2J bj=Xj2J bjXi2I ai: �Case L = 2 follows from Lemma 1.4.2, beause N2 = N � N. The indutionstep is done as follows L+1Yj=1 1Xk=0 ajk = 1Xk=0 aL+1k LYj=1 1Xk=0 ajk=Xk2NaL+1k Xfkjg2NL LYj=1 ajkj= Xfkjg2NL+1 L+1Yj=1 ajkj :The left-hand side of (1.4.2) is a partial produt for the left-hand side of (1.4.1)and the right-hand side of (1.4.2) is a subsum of the right-hand side of (1.4.1).Consequently, all partial produts of the right-hand side in (1.4.1) do not exeedits left-hand side. This proves the inequality �. �Euler's Identity. Our next goal is to prove the Euler Identity.1Xk=1 1k� = 1Yp=1�1� 1p���[p is prime℄Here � is any rational (or even irrational) positive number.The produt on the right-hand side is alled the Euler Produt. The series onthe left-hand side is alled the Dirihlet series. Eah fator of the Euler Produtexpands into the geometri seriesP1k=0 1pk� . By Theorem 1.4.1, the produt of thesegeometri series is equal to the sum of produts of the type p�k1�1 p�k2�2 : : : p�kn�n= N��. Here fpig are di�erent prime numbers, fkig are positive natural numbersand pk11 pk22 : : : pknn = N . But eah produt pk11 pk22 : : : pknn = N is a natural number,di�erent produts represent di�erent numbers and any natural number has a uniquerepresentation of this sort. This is exatly what is alled Prinipal Theorem of



18 1.4 infinite produtsArithmeti. That is, the above deomposition of the Euler produt expands in theDirihlet series.Convergene of the Dirihlet series.Theorem 1.4.3. The Dirihlet series P1n=1 1ns onverges if and only if s > 1.Proof. Consider a f2kg paking of the series. Then the n-th term of thepaked series one estimates from above as2n+1�1Xk=2n 1ks � 2n+1�1Xk=2n 1(2n)s = 2n 12ns = 2n�ns = (21�s)n:If s > 1 then 21�s < 1 and the paked series is termwise majorized by a onvergentgeometri progression. Hene it onverges. In the ase of the Harmoni series(s = 1) the n-th term of its paking one estimates from below as2n+1�1Xk=2n 1k � 2n+1�1Xk=2n 12n+1 = 2n 12n+1 = 12 :That is why the harmoni series diverges. A Dirihlet series for s < 1 termwisemajorizes the Harmoni series and so diverges. �The Riemann �-funtion. The funtion�(s) = 1Xn=1 1nsis alled the Riemann �-funtion. It is of great importane in number theory.The simplest appliation of Euler's Identity represents Euler's proof of thein�nity of the set of primes. The divergene of the harmoni series P1k=1 1k impliesthe Euler Produt has to ontain in�nitely many fators to diverge.Euler proved an essentially more exat result: the series of reiproal primesdivergesP 1p =1.Summing via multipliation. Multipliation of series gives rise to a newapproah to evaluating their sums. Consider the geometri series P1k=0 xk . Then 1Xk=0 xk!2 = Xj;k2N2 xjxk = 1Xm=0 Xj+k=m xjxk = 1Xm=0(m+ 1)xm:As P1k=0 xk = 11�x one gets P1k=0(k + 1)xk = 1(1�x)2 .Sine-produt. Now we are ready to understand how two formulassinxx = 1Yk=1�1� x2k2�2� ; sinx = 1Xk=0(�1)k x2k+1(2k + 1)!(1.4.3)whih appeared in the Legends, yield an evaluation of the Euler Series. Sine atthe moment we do not know how to multiply in�nite sequenes of numbers whihare less than one, we invert the produt in the �rst formula. We get(1.4.4) xsinx = 1Yk=1�1� x2k2�2��1 = 1Yk=1 1Xj=0 x2jk2j�2j :



1.4 infinite produts 19To avoid negative numbers, we interpret the series1Xk=0(�1)k x2k+1(2k + 1)!in the seond formula of (1.4.3) as the di�erene1Xk=0 x4k+1(4k + 1)! � 1Xk=0 x4k+3(4k + 3)! :Substituting this expression for sinx in xsinx and anelling out x, we getxsinx = 11� 1Pk=1(�1)k+1 x2k(2k+1)! = 1Xj=0 1Xk=1(�1)k+1 x2k(2k + 1)!!j :All terms on the right-hand side starting with j = 2 are divisible by x4. Conse-quently the only summand with x2 on the right-hand side is x26 . On the other handin (1.4.4) after an expansion into a sum by Theorem 1.4.1, the terms with x2 givethe seriesP1k=1 x2k2�2 . Comparing these results, one gets P1k=1 1k2 = �26 .Problems.1. Prove Q1n=1 1:1 =1.2. Prove the identity Q1n=1 a2n = (Q1n=1 an)2 (an � 1).3. Does Q1n=1(1 + 1n ) onverge?4. Evaluate Q1n=2 n2n2�1 .5. Prove the divergene of Q11 (1 + 1k )[k is prime℄.6. Evaluate Q1n=3 n(n+1)(n�2)(n+3) .7. Evaluate Q1n=3 n2�1n2�4 .8. Evaluate Q1n=1(1 + 1n(n+2) ).9. Evaluate Q1n=1 (2n+1)(2n+7)(2n+3)(2n+5) .10. Evaluate Q1n=2 n3+1n3�1 .11. Prove the inequality Q1k=2(1 + 1k2 ) �P1k=2 1k2 .12. Prove the onvergene of the Wallis produt Q 4k24k2�1 .13. Evaluate P1k=1 1k4 by applying (1.4.3).14. Prove Q1n=2 n2+1n2 <1.15. Multiply a geometri series by itself and get a power series expansion for (1�x)�2.16. De�ne �(n) as the number of divisors of n. Prove �2(x) =P1n=1 �(n)nx .17. De�ne �(n) as the number of numbers whih are less than n are relatively primeto n. Prove �(x�1)�(x) =P1n=1 �(n)nx .18. De�ne �(n) (M�obius funtion) as follows: �(1) = 1, �(n) = 0, if n is divisible bythe square of a prime number, �(n) = (�1)k, if n is the produt of k di�erentprime numbers. Prove 1�(x) =P1k=1 �(n)nx .�19. ProveP1k=1 [k is prime℄k =1.�20. Prove the identity Q1n=0(1 + x2n) = 11�x .



1.5. Telesopi SumsOn the ontent of this leture. In this leture we learn the main seret ofelementary summation theory. We will evaluate series via their partial sums. Weintrodue fatorial powers, whih are easy to sum. Following Stirling we expand11+x2 into a series of negative fatorial powers and apply this expansion to evaluatethe Euler series with Stirling's auray of 10�8.The series P1k=1 1k(k+1) . In the �rst leture we alulated in�nite sums di-retly without invoking partial sums. Now we present a dual approah to summingseries. Aording to this approah, at �rst one �nds a formula for the n-th par-tial sum and then substitutes in this formula in�nity instead of n. The seriesP1k=1 1k(k+1) gives a simple example for this method. The key to sum it up is thefollowing identity 1k(k + 1) = 1k � 1k + 1 :Beause of this identity P1k=1 1k(k+1) turns into the sum of di�erenes(1.5.1) �1� 12�+�12 � 13�+�13 � 14�+ � � �+� 1n � 1n+ 1�+ : : : :Its n-th partial sum is equal to 1� 1n+1 . Substituting in this formula n = +1, onegets 1 as its ultimate sum.Telesopi sums. The sum (1.5.1) represents a telesopi sum. This name isused for sums of the form Pnk=0(ak � ak+1). The value of suh a telesopi sumis determined by the values of the �rst and the last of ak, similarly to a telesope,whose thikness is determined by the radii of the external and internal rings. Indeed,nXk=0(ak � ak+1) = nXk=0 ak � nXk=0 ak+1 = a0 + nXk=1 ak � n�1Xk=0 ak+1 � an+1 = a0 � an+1:The same arguments for in�nite telesopi sums give(1.5.2) 1Xk=0(ak � ak+1) = a0:But this proof works only if P1k=0 ak <1. This is untrue for P1k=1 1k(k+1) , owingto the divergene of the Harmoni series. But the equality (1.5.2) holds also ifak tends to 0 as k tends to in�nity. Indeed, in this ase a0 is the least numbermajorizing all a0 � an, the n-th partial sums of P1k=0 ak.Di�erenes. For a given sequene fakg one denotes by f�akg the sequeneof di�erenes �ak = ak+1 � ak and alls the latter sequene the di�erene of fakg.This is the main formula of elementary summation theory.n�1Xk=0�ak = an � a0To telesope a seriesP1k=0 ak it is suÆient to �nd a sequene fAkg suh that�Ak = ak. On the other hand the sequene of sums An =Pn�1k=0 ak has di�erene�An = an. Therefore, we see that to telesope a sum is equivalent to �nd a formula20



1.5 telesopi sums 21for partial sums. This lead to onept of a telesopi funtion. For a funtion f(x)we introdue its di�erene �f(x) as f(x + 1) � f(x). A funtion f(x) telesopesPak if �f(k) = ak for all k.Often the sequene fakg that we would like to telesope has the form ak = f(k)for some funtion. Then we are searhing for a telesopi funtion F (x) for f(x),i.e., a funtion suh that �F (x) = f(x).To evaluate the di�erene of a funtion is usually muh easier than to telesopeit. For this reason one has evaluated the di�erenes of all basi funtions andorganized a table of di�erenes. In order to telesope a given funtion, look in thistable to �nd a table funtion whose di�erene oinides with or is lose to givenfuntion.For example, the di�erenes of xn for n � 3 are �x = 1, �x2 = 2x + 1,�x3 = 3x2 + 3x + 1. To telesope P1k=1 k2 we hoose in this table x3. Then�x33 �x2 = x+ 13 = �x22 ��x6 . Therefore, x2 = ��x33 � x22 + x6�. This immediatelyimplies the following formula for sums of squares:(1.5.3) n�1Xk=1 k2 = 2n3 � 3n2 + n6 :Fatorial powers. The usual powers xn have ompliated di�erenes. Theso-alled fatorial powers xk have simpler di�erenes. For any number x and anynatural number k, let xk denote x(x � 1)(x � 2) : : : (x � k + 1), and by x�k wedenote 1(x+1)(x+2):::(x+k) . At last we de�ne x0 = 1. The fatorial power satis�es thefollowing addition law. xk+m = xk(x� k)mWe leave to the reader to hek this rule for all integers m, k. The power nn fora natural n oinides with the fatorial n! = 1 � 2 � 3 � � �n. The main property offatorial powers is given by: �xn = nxn�1The proof is straightforward:(x + 1)k � xk = (x+ 1)1+(k�1) � x(k�1)+1= (x+ 1)xk�1 � xk�1(x� k + 1)= kxk�1:Applying this formula one an easily telesope any fatorial polynomial, i.e., anexpression of the forma0 + a1x1 + a2x2 + a3x3 + � � �+ anxn:Indeed, the expliit formula for the telesoping funtion isa0x1 + a12 x2 + a23 x3 + a34 x4 + � � �+ ann+1xn+1:Therefore, another strategy to telesope xk is to represent it as a fatorial polyno-mial.For example, to represent x2 as fatorial polynomial, onsider a+ bx+ x2, ageneral fatorial polynomial of degree 2. We are looking for x2 = a + bx + x2.Substituting x = 0 in this equality one gets a = 0. Substituting x = 1, one gets



22 1.5 telesopi sums1 = b, and �nally for x = 2 one has 4 = 2+2. Hene  = 1. As result x2 = x+x2.And the telesoping funtion is given by12x2 + 13x3 = 12 (x2 � x) + 13 (x(x2 � 3x+ 2)) = 16 (2x3 � 3x2 + x):And we have one again proved the formula (1.5.3).Stirling Estimation of the Euler series. We will expand 1(1+x)2 into a seriesof negative fatorial powers in order to telesope it. A natural �rst approximationto 1(1+x2) is x�2 = 1(x+1)(x+2) . We represent 1(1+x)2 as x�2 +R1(x), whereR1(x) = 1(1 + x)2 � x�2 = 1(x+ 1)2(x + 2) :The remainder R1(x) is in a natural way approximated by x�3. If R1(x) = x�3 +R2(x) then R2(x) = 2(x+1)2(x+2)(x+3) . Further, R2(x) = 2x�4 +R3(x), whereR3(x) = 2 � 3(x+ 1)2(x+ 2)(x+ 3)(x+ 4) = 3!x+ 1x�4:The above alulations lead to the onjeture(1.5.4) 1(1 + x)2 = n�1Xk=0 k!x�k�2 + n!x+ 1x�n�1:This onjeture is easily proved by indution. The remainder Rn(x) = n!x+1x�n�1represents the di�erene 1(1+x)2 �Pn�1k=0 k!x�2�k. Owing to the inequality x�1�n� 1(n+1)! , whih is valid for all x � 0, the remainder dereases to 0 as n inreasesto in�nity. This impliesTheorem 1.5.1. For all x � 0 one has1(1 + x)2 = 1Xk=0 k!x�2�k :To alulateP1k=p 1(1+k)2 , replae all summands by the expressions (1.5.4). Wewill get 1Xk=p n�1Xm=0m!k�2�m + n!k + 1k�1�n! :Changing the order of summation we haven�1Xm=0m! 1Xk=p k�2�m + 1Xk=p n!k + 1k�1�n:Sine 11+mx�1�m telesopes the sequene fk�2�mg, P1k=p k�2�m = 11+mp�1�m,Denote the sum of remainders P1k=p n!k+1k�1�n by R(n; p). Then for all natural pand n one has 1Xk=p 1(1 + k)2 = n�1Xm=0 m!1 +mp�1�m +R(n; p)



1.5 telesopi sums 23For p = 0 and n = +1, the right-hand side turns into the Euler series, and oneould get a false impression that we get nothing new. But k�2�n � 1k+1k�1�n �(k � 1)�2�n, henen!1 + np�1�n = 1Xk=pn!k�2�n � R(n; p) � 1Xk=p n!(k � 1)�2�n = n!1 + n (p� 1)�1�n:Sine (p� 1)�1�n � p�1�n = (1 + n)(p� 1)�2�n, there is a � 2 (0; 1) suh thatR(n; p) = n!1 + np�1�n + �n!(p� 1)�2�n:Finally we get:1Xk=1 1k2 = p�1Xk=0 1(1 + k)2 + n�1Xk=0 k!1 + k p�1�k + �n!(p� 1)�2�n:For p = n = 3 this formula turns into1Xk=1 1k2 = 1 + 14 + 19 + 14 + 140 + 1180 + �420 :For p = n = 10 one gets R(10; 10) � 10!9�12. After anellations one has12�11�12�13�14�15�17�19 . This is approximately 2 � 10�8. Therefore10�1Xk=0 1(k + 1)2 + 10�1Xk=0 k!1 + k10�1�kis less than the sum of the Euler series by only 2 � 10�8. In suh a way one an inone hour alulate eight digits of P1k=1 1k2 after the deimal point. It is not a badresult, but it is still far from Euler's eighteen digits. For p = 10, to provide eighteendigits one has to sum essentially more than one hundred terms of the series. Thisis a bit too muh for a person, but is possible for a omputer.Problems.1. Telesope P k3.2. Represent x4 as a fatorial polynomial.3. Evaluate P1k=1 1k(k+2) .4. Evaluate P1k=1 1k(k+1)(k+2)(k+3) .5. Prove: If �ak � �bk for all k and a1 � b1 then ak � bk for all k.6. �(x + a)n = n(x+ a)n�1.7. Prove Arhimedes's inequality n33 �Pn�1k=1 k2 � (n+1)33 .8. Telesope P1k=1 k2k .9. Prove the inequalities 1n �P1k=n+1 1k2 � 1n+1 .10. Prove that the degree of �P (x) is less than the degree of P (x) for any polyno-mial P (x).11. Relying on �2n = 2n, prove that P (n) < 2n eventually for any polynomialP (x).12. ProveP1k=0 k!(x� 1)�1�k = 1x .



1.6. Complex SeriesOn the ontents of the leture. Complex numbers hide the key to the EulerSeries. The summation theory developed for positive series now extends to omplexseries. We will see that omplex series an help to sum real series.Cubi equation. Complex numbers arise in onnetion with the solution ofthe ubi equation. The substitution x = y� a3 redues the general ubi equationx3 + ax2 + bx+  = 0 to y3 + py + q = 0:The redued equation one solves by the following trik. One looks for a root in theform y = �+�. Then (�+�)3+p(�+�)+q = 0 or �3+�3+3��(�+�)+p(�+�)+q =0. The latter equality one redues to the system�3 + �3 = �q;3�� = �p:(1.6.1)Raising the seond equation into a ube one gets�3 + �3 = �q;27�3�3 = �p3:Now �3, �3 are roots of the quadrati equationx2 + qx� p327 ;alled the resolution of the original ubi equation. Sometimes the resolution hasno roots, while the ubi equation always has a root. Nevertheless one an evaluatea root of the ubi equation with the help of its resolution. To do this one simplyignores that the numbers under the square roots are negative.For example onsider the following ubi equation(1.6.2) x3 � 32x� 12 = 0:Then (1.6.1) turns into �3 + �3 = 12 ;�3�3 = 18 ;The orresponding resolution is t2 � t2 + 18 = 0 and its roots aret1;2 = 14 �q 116 � 18 = 14 � 14p�1:Then the desired root of the ubi equation is given by(1.6.3) 3q 14 (1 +p�1) + 3q 14 (1�p�1) = 13p4 � 3p1 +p�1 + 3p1�p�1� :It turns out that the latter expression one uniquely interprets as a real number whihis a root of the equation (1.6.2). To evaluate it onsider the following expression(1.6.4) 3q(1 +p�1)2 � 3q(1 +p�1) 3q(1�p�1) + 3q(1�p�1)2:Sine (1 +p�1)2 = 12 + 2p�1 +p�12 = 1 + 2p�1� 1 = 2p�1;the left summand of (1.6.4) is equal to3q2p�1 = 3p2 3qp�1 = 3p2q 3p�1 = 3p2p�1:24



1.6 omplex series 25Similarly (1 � p�1)2 = �2p�1, and the right summand of (1.6.4) turns into� 3p2p�1. Finally (1 +p�1)(1�p�1) = 12 �p�12 = 2 and the entral one is� 3p2. As a result the whole expression (1.6.4) is evaluated as � 3p2.On the other hand one evaluates the produt of (1.6.3) and (1.6.4) by the usualformula as the sum of ubes13p4 ((1 +p�1) + (1�p�1)) = 13p4 ((1 + 1) + (p�1)�p�1)) = 13p4 (2 + 0) = 3p2:Consequently (1.6.3) is equal to 3p2� 3p2 = �1. And �1 is a true root of (1.6.2).Arithmeti of omplex numbers. In the sequel we use i instead of p�1.There are two basi ways to represent a omplex number. The representationz = a + ib, where a and b are real numbers we all the Cartesian form of z. Thenumbers a and b are alled respetively the real and the imaginary parts of z and aredenoted by Re z and by Im z respetively. Addition and multipliation of omplexnumbers are de�ned via their real and imaginary parts as followsRe(z1 + z2) = Re z1 +Re z2;Im(z1 + z2) = Im z1 + Im z2;Re(z1z2) = Re z1Re z2 � Im z1 Im z2;Im(z1z2) = Re z1 Im z2 + Im z1Re z2:The trigonometri form of a omplex number is z = �(os� + i sin�), where� � 0 is alled the module or the absolute value of a omplex number z and isdenoted jzj, and � is alled its argument. The argument of a omplex number isde�ned modulo 2�. We denote by Arg z the set of all arguments of z, and by arg zthe element of Arg z whih satis�es the inequalities �� < arg z � �. So arg z isuniquely de�ned for all omplex numbers. arg z is alled the prinipal argument ofz. The number a � bi is alled the onjugate to z = a + bi and denoted z. Onehas zz = jzj2. This allows us to express z�1 as zjzj2 .
arg z

Re z

Im z

 O

Z

Figure 1.6.1. The representation of a omplex numberIf z = a+ib then jzj = pa2 + b2 and arg z = artg ba . One represents a omplexnumber z = a+bi as a point Z of the plane with oordinates (a; b). Then jzj is equal



26 1.6 omplex seriesto the distane from Z to the origin O. And arg z represents the angle betweenthe axis of absises and the ray �!OZ. Addition of omplex numbers orrespondsto usual vetor addition. And the usual triangle inequality turns into the moduleinequality : jz + �j � jzj+ j�j:The multipliation formula for omplex numbers in the trigonometri form is espe-ially simple: r(os�+ i sin�)r0(os + i sin )= rr0(os(�+  ) + i sin(�+  )):(1.6.5)Indeed, the left-hand side and the right-hand side of (1.6.5) transform torr0(os� os � sin� sin ) + irr0(sin� os + sin os�):That is, the module of the produt is equal to the produt of modules and theargument of produt is equal to the sum of arguments:Arg z1z2 = Arg z1 �Arg z2:Any omplex number is uniquely de�ned by its module and argument.The multipliation formula allows us to prove by indution the following:(Moivre Formula) (os�+ i sin�)n = (osn�+ i sinn�):Sum of a omplex series. Now is the time to extend our summation theoryto series made of omplex numbers. We extend the whole theory without anylosses to so-alled absolutely onvergent series. The series P1k=1 zk with arbitraryomplex terms is alled absolutely onvergent, if the series P1k=1 jzkj of absolutevalues onverges.For any real number x one de�nes two nonnegative numbers: its positive x+ andnegative x� parts as x+ = x[x � 0℄ and x� = �x[x < 0℄. The following identitiesharaterize the positive and negative parts of xx+ + x� = jxj; x+ � x� = x:Now the sum of an absolutely onvergent series of real numbers is de�ned as follows:(1.6.6) 1Xk=1 ak = 1Xk=1 a+k � 1Xk=1 a�k :That is, from the sum of all positive summands one subtrats the sum of modulesof all negative summands. The two series on the right-hand side onverge, beausea+k � jakj, a�k � jakj and P1k=1 jakj <1.For an absolutely onvergent omplex series P1k=1 zk we de�ne the real andimaginary parts of its sum separately by the formulasRe 1Xk=1 zk = 1Xk=1Re zk; Im 1Xk=1 zk = 1Xk=1 Im zk:(1.6.7)The series in the right-hand sides of these formulas are absolutely onvergent, sinejRe zkj � jzkj and j Im zkj � jzkj.



1.6 omplex series 27Theorem 1.6.1. For any pair of absolutely onvergent series P1k=1 ak andP1k=1 bk its termwise sum P1k=1(ak + bk) absolutely onverges and(1.6.8) 1Xk=1(ak + bk) = 1Xk=1 ak + 1Xk=1 bk:Proof. First, remark that the absolute onvergene of the series on the left-hand side follows from the Module Inequality jak+bkj � jakj+ jbkj and the absoluteonvergene of the series on the right-hand side.Now onsider the ase of real numbers. Representing all sums in (1.6.8) asdi�erenes of their positive and negative parts and separating positive and negativeterms in di�erent sides one transforms (1.6.8) into1Xk=1 a+k + 1Xk=1 b+k + 1Xk=1(ak + bk)� = 1Xk=1 a�k + 1Xk=1 b�k + 1Xk=1(ak + bk)+:But this equality is true due to termwise addition for positive series and the follow-ing identity, x� + y� + (x+ y)+ = x+ + y+ + (x+ y)�:Moving terms around turns this identity into(x+ y)+ � (x+ y)� = (x+ � x�) + (y+ � y�);whih is true due to the identity x+ �+x� = x.In the omplex ase the equality (1.6.8) splits into two equalities, one for realparts and another for imaginary parts. As for real series the termwise addition isalready proved, we an write the following hain of equalities,Re (P1k=1 ak +P1k=1 bk) = ReP1k=1 ak +ReP1k=1 bk=P1k=1Re ak +P1k=1 Re bk=P1k=1(Re ak +Re bk)=P1k=1Re(ak + bk)= ReP1k=1(ak + bk);whih proves the equality of real parts in (1.6.8). The same proof works for theimaginary parts. �Sum Partition Theorem. An unordered sum of a family of omplex numbersis de�ned by the same formulas (1.6.6) and (1.6.7). Sine for positive series non-ordered sums oinide with the ordered sums, we get the same oinidene for allabsolutely onvergent series. Hene the ommutativity law holds for all absolutelyonvergene series.Theorem 1.6.2. If I = Fj2J Ij andP1k=1 jakj <1 thenPj2J ���Pi2Ij ai��� <1and Pj2JPi2Ij ai =Pi2I ai.Proof. At �rst onsider the ase of real summands. By de�nition Pi2I ai =Pi2I a+i �Pi2I a�i . By Sum Partition Theorem positive series one transforms theoriginal sum into Pj2JPi2Ij a+i �Pj2JPi2Ij a�i :



28 1.6 omplex seriesNow by the Termwise Addition applied at �rst to external and after to internalsums one getsPj2J �Pi2Ij a+i �Pi2Ij a�i � =Pj2JPi2Ij (a+i � a�i ) =Pj2JPi2Ij ai:So the Sum Partition Theorem is proved for all absolutely onvergent real series.And it immediately extends to absolutely onvergent omplex series by its splittinginto real and imaginary parts. �Theorem 1.6.3 (Termwise Multipliation). If P1k=1 jzkj < 1 then for any(omplex) , P1k=1 jzkj <1 and P1k=1 zk = P1k=1 zk.Proof. Termwise Multipliation for positive numbers gives the �rst statementof the theorem P1k=1 jzkj = P1k=1 jjjzkj = jjP1k=1 jzkj. The further proof isdivided into �ve ases.At �rst suppose  is positive and zk real. Then z+k = z+k and by virtue ofTermwise Multipliation for positive series we getP1k=1 zk =P1k=1 z+k �P1k=1 z�k= P1k=1 z+k � P1k=1 z�k=  �P1k=1 z+k �P1k=1 z�k �= P1k=1 zk:The seond ase. Let  = �1 and zk be real. In this aseP1k=1�zk =P1k=1(�zk)+ �P1k=1(�zk)� =P1k=1 z�k �P1k=1 z+k = �P1k=1 zk:The third ase. Let  be real and zk omplex. In this ase Re zk = Re zk andthe two ases above imply the Termwise Multipliation for any real . HeneReP1k=1 zk =P1k=1 Re zk=P1k=1 Re zk= P1k=1Re zk= ReP1k=1 zk= Re P1k=1 zk:The same is true for imaginary parts.The fourth ase. Let  = i and zk be omplex. Then Re izk = � Im zk andIm izk = Re zk. So one gets for real partsReP1k=1 izk =P1k=1 Re(izk)=P1k=1� Im zk= �P1k=1 Im zk= � ImP1k=1 zk= Re iP1k=1 zk:



1.6 omplex series 29The general ase. Let  = a+ bi with real a, b. ThenP1k=1 zk = aP1k=1 zk + ibP1k=1 zk=P1k=1 azk +P1k=1 ibzk=P1k=1(azk + ibzk)=P1k=1 zk: �Multipliation of Series. For two given series P1k=0 ak and P1k=0 bk, onede�nes their onvolution as a seriesP1n=0 n, where n =Pnk=0 akbn�k.Theorem 1.6.4 (Cauhy). For any pair of absolutely onvergent seriesP1k=0 akand P1k=0 bk their onvolution P1k=0 k absolutely onverges andP1k=0 k =P1k=0 akP1k=0 bk:Proof. Consider the double seriesPi;j aibj . Then by the Sum Partition The-orem its sum is equal toP1j=0 (P1i=0 aibj) =P1j=0 bj (P1i=0 ai) = (P1i=0 ai)(P1j=0 bj):On the other hand,Pi;j aibj =P1n=0Pn+1�1k=0 akbn�k. But the last sum is just theonvolution.This proof goes through for positive series. In the generalase we have to proveabsolute onvergene of the double series. But this follows from(P1k=0 jakj) (P1k=0 jbkj) =P1k=0 jkj: �Module Inequality.(1.6.9) ����� 1Xk=1 zk����� � 1Xk=1 jzkj:Let zk = xk + iyk. Summation of the inequalities �jxkj � xk � jxk j gives�P1k=1 jxkj � P1k=1 xk � P1k=1 jxk j, whih means jP1k=1 xkj � P1k=1 jxk j. Thesame inequality is true for yk. Consider z0k = jxk j + ijykj. Then jzkj = jz0kj andjP1k=1 zkj � jP1k=1 z0kj. Therefore it is suÆient to prove the inequality (1.6.9) forz0k, that is, for numbers with non-negative real and imaginary parts. Now supposingxk; yk to be nonnegative one gets the following hain of equivalent transformationsof (1.6.9):(P1k=1 xk)2 + (P1k=1 yk)2 � (P1k=1 jzkj)2P1k=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2Pnk=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2; 8n = 1; 2; : : :P1k=1 yk �q(P1k=1 jzkj)2 � (RePnk=1 xk)2; 8n = 1; 2; : : :Pmk=1 yk �q(P1k=1 jzkj)2 � (Pnk=1 xk)2; 8n;m = 1; 2; : : :(Pnk=1 xk)2 + (Pmk=1 yk)2 � (P1k=1 jzkj)2 ; 8m;n = 1; 2; : : :



30 1.6 omplex seriesr�PNk=1 xk�2 + �PNk=1 yk�2 �P1k=1 jzkj; 8N = 1; 2; : : :���PNk=1 zk��� �P1k=1 jzkj; 8N = 1; 2; : : :The inequalities of the last system hold beause ���PNk=1 zk��� � PNk=1 jzkj �P1k=1 jzkj.Complex geometri progressions. The sum of a geometri progression witha omplex ratio is given by the same formula(1.6.10) n�1Xk=0 zk = 1� zn1� z :And the proof is the same as in the ase of real numbers. But the meaning ofthis formula is di�erent. Any omplex formula is in fat a pair of formulas. Anyomplex equation is in fat a pair of equations.In partiular, for z = q(sin� + i os�) the real part of the left-hand side of(1.6.10) owing to the Moivre Formula turns intoPn�1k=0 qk sin k� and the right-handside turns into Pn�1k=0 qk os k�. So the formula for a geometri progression splitsinto two formulas whih allow us to telesope some trigonometri series.Espeially interesting is the ase with the ratio "n = os 2�n + i sin 2�n . In thisase the geometri progression ylially takes the same values, beause "nn = 1.The terms of this sequene are alled the roots of unity, beause they satisfy theequation zn � 1 = 0.Lemma 1.6.5. (zn � 1) =Qnk=1(z � "kn).Proof. Denote by P (z) the right-hand side produt. This polynomial hasdegree n, has major oeÆient 1 and has all "kn as its roots. Then the di�erene(zn � 1)� P (z) is a polynomial of degree < n whih has n di�erent roots. Suh apolynomial has to be 0 by virtue of the following general theorem. �Theorem 1.6.6. The number of roots of any nonzero omplex polynomial doesnot exeed its degree.Proof. The proof is by indution on the degree of P (z). A polynomial ofdegree 1 has the form az+b and the only root is � ba . Suppose our theorem is provedfor any polynomial of degree< n. Consider a polynomial P (z) = a0+a1z+� � �+anznof degree n, where the oeÆients are omplex numbers. Suppose it has at least nroots z1; : : : ; zn. Consider the polynomial P �(z) = anQnk=1(z� zk). The di�ereneP (z) � P �(z) has degree < n and has at least n roots (all zk). By the indutionhypothesis this di�erene is zero. Hene, P (z) = P �(z). But P �(z) has only nroots. Indeed, for any z di�erent from all zk one has jz � zkj > 0. ThereforejP �(z)j = janjQnk=1 jz � zkj > 0. �By bloking onjugated roots one gets a pure real formula:zn � 1 = (z � 1) (n�1)=2Yk=1 �z2 � 2z os 2k�n + 1� :



1.6 omplex series 31Complexi�ation of series. Complex numbers are e�etively applied tosum up so-alled trigonometri series, i.e., series of the type P1k=0 ak os kx andP1k=0 ak sin kx. For example, to sum the series P1k=1 qk sin k� one ouples it withits dualP1k=0 qk os k� to form a omplex seriesP1k=0 qk(os k�+i sin k�). The lastis a omplex geometri series. Its sum is 11�z , where z = os�+i sin�. Now the sumof the sine seriesP1k=1 qk sin k� is equal to Im 11�z , the imaginary part of the om-plex series, and the real part of the omplex series oinides with the osine series.In partiular, for q = 1, one has 11�z = 11+os�+i sin� . To evaluate the real and imag-inary parts one multiplies both numerator and denominator by 1 + os� � i sin�.Then one gets (1 � os�)2 + sin2 � = 1 � 2 os2 � + os2 � + sin2 � = 2 � 2 os�as the denominator. Hene 11�z = 1�os�+i sin�2�2 os� = 12 + 12 ot �2 . And we get tworemarkable formulas for the sum of the divergent series1Xk=0 os k� = 12 ; 1Xk=1 sin k� = 12 ot �2 :For � = 0 the left series turns into P1k=0(�1)k. The evaluation of the Euler seriesvia this osine series is remarkably short, it takes one line. But one has to knowintegrals and a something else to justify this evaluation.Problems.1. Find real and imaginary parts for 11�i , ( 1�i1+i )3, i5+2i19+1 , (1+i)5(1�i)3 .2. Find trigonometri form for �1, 1 + i, p3 + i.3. Prove that z1z2 = 0 implies either z1 = 0 or z2 = 0.4. Prove the distributivity law for omplex numbers.5. Analytially prove the inequality jz1 + z2j � jz1j+ jz2j.6. Evaluate Pn�1k=1 1zk(zk+1) , where zk = 1 + kz.7. Evaluate Pn�1k=1 z2k, where zk = 1 + kz.8. Evaluate Pn�1k=1 sin k2k .9. Solve z2 = i.10. Solve z2 = 3� 4i.11. Telesope P1k=1 sin 2k3k .12. Prove that the onjugated to a root of polynomial with real oeÆient is theroot of the polynomial.13. Prove that z1 + z2 = z1 + z2.14. Prove that z1z2 = z1 z2.�15. Solve 8x3 � 6x� 1 = 0.16. Evaluate P1k=1 sin k2k .17. Evaluate P1k=1 sin 2k3k .18. Prove absolute onvergene of P1k=0 zkk! for any z.19. For whih z the seriesP1k=1 zkk absolutely onverges?20. Multiply a geometri series onto itself several times applying Cauhy formula.21. Find series for p1 + x by method of inde�nite oeÆients.22. Does seriesP1k=1 sin kk absolutely onverge?23. Does seriesP1k=1 sin kk2 absolutely onverge?


