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In any mathematical text (article, monograph, textbook, etc.) one can trace common
elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas,
corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature,
acknowledgements, history remarks, expositions, authors’ opinions, and many other not
that essential details.

Rarely one reads a mathematical text from the very beginning to the very end and
understands everything at once. Usually a work with a mathematical text involves several
rounds (approaches, periods). Each round contributes to the overall understanding.

An experienced reader starts with determining the structure of the text and sorting out
its elements.

The second round is to focus on the primary parts of the text:
definitions and statements of theorems.

Next come examples and detailed reading of proofs.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
This implies that e and π are algebraic over R,
though they are not algebraic over Q as we will prove later.
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straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].

This implies that e and π are algebraic over R,
though they are not algebraic over Q as we will prove later.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
What is this?

This implies that e and π are algebraic over R,
though they are not algebraic over Q as we will prove later.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
What is this? This is a proof.

This implies that e and π are algebraic over R,
though they are not algebraic over Q as we will prove later.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
This implies that e and π are algebraic over R,

though they are not algebraic over Q as we will prove later.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
This implies that e and π are algebraic over R,
What is this?

though they are not algebraic over Q as we will prove later.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
This implies that e and π are algebraic over R,
What is this? Corollary, with a proof.

though they are not algebraic over Q as we
will prove later.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
This implies that e and π are algebraic over R,
though they are not algebraic over Q as we will prove later.
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
This implies that e and π are algebraic over R,
though they are not algebraic over Q as we will prove later.
What is this?
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Let’s try to read an excerpt from a math textbook. We do not intend to understand the

mathematics, nonetheless we should be able to analyze the structure of the text:

detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc.

in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F
because α is a zero of the polynomial f(x) = x − α ∈ F[x].
This implies that e and π are algebraic over R,
though they are not algebraic over Q as we will prove later.
What is this? This is a promise, planning.
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +√3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is
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having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.
What is this?

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.
What is this? Example.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero.

Try to prove that 1 +
√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero.
What is this?

Try to prove that 1 +
√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero.
What is this? Explanation, advice.

Try to prove that 1 +
√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
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2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
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n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

What is this?

It is useful to be able to recognize the definition of “algebraic over a field F” when it

appears in different guises: a number α ∈ C is algebraic over F ⊆ C if and only if there

is a positive integer n such that {1, α,α2, . . . , αn−1, αn} are linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial

f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx
n, whose coefficients a0, a1, . . . , an all belong to F, at least

one of these coefficients is nonzero, and f(α) = 0, that is
a0 + a1α + a2α

2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

What is this? Exercise.

It is useful to be able to recognize the definition of “algebraic over a field F” when it

appears in different guises: a number α ∈ C is algebraic over F ⊆ C if and only if there

is a positive integer n such that {1, α,α2, . . . , αn−1, αn} are linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial

f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx
n, whose coefficients a0, a1, . . . , an all belong to F, at least

one of these coefficients is nonzero, and f(α) = 0, that is
a0 + a1α + a2α

2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises:

a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises:
What is this?

a number α ∈ C is algebraic over F ⊆ C if and only if there is a
positive integer n such that {1, α, α2, . . . , αn−1, αn} are linearly dependent over
F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises:
What is this? Motivation

a number α ∈ C is algebraic over F ⊆ C if and only if
there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are linearly
dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.
What is this?

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.
What is this? Theorem, test for algebraicity.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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The number
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2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if
and only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are
linearly dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx

n, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2
⋅ ⋅ ⋅ + an−1α

n−1
+ anα

n = 0. (∗)
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What is this?



MAT 250
Lecture 8
Proof techniquesLet us read!

5 / 31

The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.
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Since F is a subfield of C, we can regard C as a vector space over F.
The numbers 1, α, α2, . . . , αn−1, αn are all elements in C, and hence can be
regarded as vectors in the vector space C over F.

The coefficients a0, a1, a2, . . . , an−1, an, on the other hand, are all in F so we can
regard them as scalars. Thus, the equality (∗) can be interpreted as a linear
dependence of vectors 1, α, α2, . . . , αn−1, αn in C.

You will often meet the terms “algebraic number” and “transcendental number”
where no field is specified.
In such cases the field is taken to be Q.
We formalize this as follows.

A complex number is said to be an algebraic number if it is algebraic over Q;
a transcendental number if it is not algebraic over Q.
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Since F is a subfield of C, we can regard C as a vector space over F.
The numbers 1, α, α2, . . . , αn−1, αn are all elements in C, and hence can be
regarded as vectors in the vector space C over F.

The coefficients a0, a1, a2, . . . , an−1, an, on the other hand, are all in F so we can
regard them as scalars. Thus, the equality (∗) can be interpreted as a linear
dependence of vectors 1, α, α2, . . . , αn−1, αn in C.

You will often meet the terms “algebraic number” and “transcendental number”
where no field is specified.
In such cases the field is taken to be Q.
Motivation and informal definition.

We formalize this as follows.

A complex number is said to be an algebraic number if it is algebraic over Q;
a transcendental number if it is not algebraic over Q.
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Since F is a subfield of C, we can regard C as a vector space over F.
The numbers 1, α, α2, . . . , αn−1, αn are all elements in C, and hence can be
regarded as vectors in the vector space C over F.

The coefficients a0, a1, a2, . . . , an−1, an, on the other hand, are all in F so we can
regard them as scalars. Thus, the equality (∗) can be interpreted as a linear
dependence of vectors 1, α, α2, . . . , αn−1, αn in C.

You will often meet the terms “algebraic number” and “transcendental number”
where no field is specified.
In such cases the field is taken to be Q.
We formalize this as follows.

A complex number is said to be an algebraic number if it is algebraic over Q;
a transcendental number if it is not algebraic over Q.
These are definitions.
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In this lecture we will discuss basic proof techniques:

● Direct proof

● Proof by contraposition

● Proof by contradiction

● Proof by exhaustion (proof by cases)
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Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof.
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Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd Ô⇒ n2 is odd)
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Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.
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Example 1. Prove that if an integer n is odd, then n2 is odd.
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P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z .
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Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z . Therefore,

n2 = (2k + 1)2
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Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z . Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1



MAT 250
Lecture 8
Proof techniquesDirect proof (to prove P Ô⇒ Q )

9 / 31

Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z . Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1



MAT 250
Lecture 8
Proof techniquesDirect proof (to prove P Ô⇒ Q )

9 / 31

Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z . Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 , which is odd



MAT 250
Lecture 8
Proof techniquesDirect proof (to prove P Ô⇒ Q )

9 / 31

Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z . Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 , which is odd, as required.



MAT 250
Lecture 8
Proof techniquesDirect proof (to prove P Ô⇒ Q )

9 / 31

Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z . Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 , which is odd, as required.
qed



MAT 250
Lecture 8
Proof techniquesDirect proof (to prove P Ô⇒ Q )

9 / 31

Idea: If P is true and P Ô⇒ Q , then Q is also true.

Logical justification: (P ∧ (P Ô⇒ Q)) Ô⇒ Q is a tautology.

This rule of logical deduction is called modus ponens.

It allows to eliminate a conditional statement from a proof.

Method: Assume (let) P . Then ... Then ... Therefore, Q .

Example 1. Prove that if an integer n is odd, then n2 is odd.

Proof. We have to prove that ∀ n ∈ Z (n is odd´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
P

Ô⇒ n2 is odd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

)
(given) (to prove)

Let n be odd. Then n = 2k + 1 for some k ∈ Z . Therefore,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 , which is odd, as required.
qed
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Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .

√
ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:

a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab

Ô⇒ a + b ≥ 2√ab Ô⇒↑
a, b ≥ 0

(√a)2 + (√b)2 − 2
√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab

Ô⇒↑
a, b ≥ 0

(√a)2 + (√b)2 − 2
√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .

Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof?

NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO !

Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications?

Yes!



MAT 250
Lecture 8
Proof techniquesArithmetic mean and geometric mean

10 / 31

Example 2. Show that
a + b

2
≥√ab for any non-negative real numbers a, b .

Remark.
a + b

2
is called the arithmetic mean (AM) of numbers a, b .√

ab is called the geometric mean (GM) of numbers a, b .

Discussion. We have to prove that ∀ a, b ∈ R (a, b ≥ 0 Ô⇒ a + b

2
≥√ab) .

It’s difficult to get
a + b

2
≥√ab directly from a, b ≥ 0 , though.

Let us work “backwards”:
a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Is this a proof? NO ! Can we reverse the implications? Yes!



MAT 250
Lecture 8
Proof techniquesAM-GM inequality

11 / 31

Recall backwards arguments:

a + b

2
≥√ab Ô⇒ a + b ≥ 2√ab Ô⇒↑

a, b ≥ 0
(√a)2 + (√b)2 − 2

√
a
√
b ≥ 0

Ô⇒ (√a −√b)2 ≥ 0 .
Theorem. The arithmetic mean of two non-negative numbers

is greater than or equal to their geometric mean.

Proof. Take any non-negative real numbers a and b . Then

(√a −√b)2 ≥ 0 Ô⇒ a − 2
√
a
√
b + b ≥ 0 Ô⇒ a + b ≥ 2√ab Ô⇒ a + b

2
≥√ab ,

as required.

Corollary. AM(a, b) = GM(a, b) iff a = b .
Proof. Let a, b ≥ 0 . Then a = b ⇐⇒ (√a −√b)2 = 0 ⇐⇒ a − 2

√
a
√
b + b = 0

⇐⇒ a + b

2
=√ab ⇐⇒ AM(a, b) = GM(a, b) , as required.
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Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,

then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion.

Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given:

function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,

point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,

differentiability of f at a . What does it mean exactly?
Definition. A function f is differentiable at point a if there exists f ′(a) ,

that is, there exists the limit lim
h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a .

What does it mean exactly?
Definition. A function f is differentiable at point a if there exists f ′(a) ,

that is, there exists the limit lim
h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition.

A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,

that is, there exists the limit lim
h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove:

f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a .

What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition.

A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .

What does the phrase lim
x→a

f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)

2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a

3. lim
x→a

f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

13 / 31

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Discussion. Given: function f ,
point a in its domain,
differentiability of f at a . What does it mean exactly?

Definition. A function f is differentiable at point a if there exists f ′(a) ,
that is, there exists the limit lim

h→0

f(a + h) − f(a)
h

.

Have to prove: f is continuous at a . What does it mean exactly?

Definition. A function f is continuous at point a if lim
x→a

f(x) = f(a) .
What does the phrase lim

x→a
f(x) = f(a) say exactly?

1. ∃ lim
x→a

f(x)
2. f(x) is defined at x = a
3. lim

x→a
f(x) = f(a) .



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

14 / 31

We have to prove the implication

=®
x ≠ a

by def. of lim

lim
x→a
(f(x) − f(a)

x − a
⋅ (x − a))

=®
leth=x−a

lim
h→0

(f(a + h) − f(a)
h

⋅ h) =®
since both
lims exist

lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h

= f ′(a) ⋅ 0 = 0 , as required.
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f(x) = f(a) , and, by this, f is continuous at a , as required.



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

15 / 31

Let us clear our work off unnecessary ”educational” bells and whistles:

Theorem. Let f be a function defined in a neighborhood of a point a .

If f is differentiable at a , then f is continuous at a .

Proof. lim
x→a

f(x) − f(a) = lim
x→a
(f(x) − f(a)) = lim

x→a
(f(x) − f(a)

x − a
⋅ (x − a)) =

lim
h→0

(f(a + h) − f(a)
h

⋅ h) = lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h = f ′(a) ⋅ 0 = 0 .
Therefore, lim

x→a
f(x) = f(a) , and, by this, f is continuous at a , as required.



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

15 / 31

Let us clear our work off unnecessary ”educational” bells and whistles:

Theorem. Let f be a function defined in a neighborhood of a point a .

If f is differentiable at a , then f is continuous at a .

Proof. lim
x→a

f(x) − f(a) = lim
x→a
(f(x) − f(a)) = lim

x→a
(f(x) − f(a)

x − a
⋅ (x − a)) =

lim
h→0

(f(a + h) − f(a)
h

⋅ h) = lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h = f ′(a) ⋅ 0 = 0 .
Therefore, lim

x→a
f(x) = f(a) , and, by this, f is continuous at a , as required.



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

15 / 31

Let us clear our work off unnecessary ”educational” bells and whistles:

Theorem. Let f be a function defined in a neighborhood of a point a .

If f is differentiable at a , then f is continuous at a .

Proof.

lim
x→a

f(x) − f(a) = lim
x→a
(f(x) − f(a)) = lim

x→a
(f(x) − f(a)

x − a
⋅ (x − a)) =

lim
h→0

(f(a + h) − f(a)
h

⋅ h) = lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h = f ′(a) ⋅ 0 = 0 .
Therefore, lim

x→a
f(x) = f(a) , and, by this, f is continuous at a , as required.



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

15 / 31

Let us clear our work off unnecessary ”educational” bells and whistles:

Theorem. Let f be a function defined in a neighborhood of a point a .

If f is differentiable at a , then f is continuous at a .

Proof. lim
x→a

f(x) − f(a) = lim
x→a
(f(x) − f(a)) = lim

x→a
(f(x) − f(a)

x − a
⋅ (x − a)) =

lim
h→0

(f(a + h) − f(a)
h

⋅ h) = lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h = f ′(a) ⋅ 0 = 0 .

Therefore, lim
x→a

f(x) = f(a) , and, by this, f is continuous at a , as required.



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

15 / 31

Let us clear our work off unnecessary ”educational” bells and whistles:

Theorem. Let f be a function defined in a neighborhood of a point a .

If f is differentiable at a , then f is continuous at a .

Proof. lim
x→a

f(x) − f(a) = lim
x→a
(f(x) − f(a)) = lim

x→a
(f(x) − f(a)

x − a
⋅ (x − a)) =

lim
h→0

(f(a + h) − f(a)
h

⋅ h) = lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h = f ′(a) ⋅ 0 = 0 .
Therefore, lim

x→a
f(x) = f(a) ,

and, by this, f is continuous at a , as required.



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

15 / 31

Let us clear our work off unnecessary ”educational” bells and whistles:

Theorem. Let f be a function defined in a neighborhood of a point a .

If f is differentiable at a , then f is continuous at a .

Proof. lim
x→a

f(x) − f(a) = lim
x→a
(f(x) − f(a)) = lim

x→a
(f(x) − f(a)

x − a
⋅ (x − a)) =

lim
h→0

(f(a + h) − f(a)
h

⋅ h) = lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h = f ′(a) ⋅ 0 = 0 .
Therefore, lim

x→a
f(x) = f(a) , and, by this, f is continuous at a

, as required.



MAT 250
Lecture 8
Proof techniquesDifferentiability implies continuity

15 / 31

Let us clear our work off unnecessary ”educational” bells and whistles:

Theorem. Let f be a function defined in a neighborhood of a point a .

If f is differentiable at a , then f is continuous at a .

Proof. lim
x→a

f(x) − f(a) = lim
x→a
(f(x) − f(a)) = lim

x→a
(f(x) − f(a)

x − a
⋅ (x − a)) =

lim
h→0

(f(a + h) − f(a)
h

⋅ h) = lim
h→0

f(a + h) − f(a)
h

⋅ lim
h→0

h = f ′(a) ⋅ 0 = 0 .
Therefore, lim

x→a
f(x) = f(a) , and, by this, f is continuous at a , as required.



MAT 250
Lecture 8
Proof techniquesProof by contraposition

16 / 31

Idea: To prove P Ô⇒ Q , we prove ¬Q Ô⇒ ¬P .

Logical justification: P Ô⇒ Q is equivalent to ¬Q Ô⇒ ¬P .

This rule of logical deduction ((P Ô⇒ Q) ∧ ¬Q) Ô⇒ ¬P is called
modus tollens.

Method: Assume (let) ¬Q . Then ... Then ... Therefore, ¬P .

So ¬Q Ô⇒ ¬P . By contraposition, P Ô⇒ Q .

Example 1. Let n be an integer. Prove that if n2 is odd then n is odd.

Discussion. We have to prove that

∀n ∈ Z n2 is odd Ô⇒ n is odd

P Q

Why not to prove like this: n2 is odd Ô⇒ √
n2 = n is odd?
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For a direct proof of

∀n ∈ Z n2 is odd Ô⇒ n is odd

P Q

we have to start with P . But Q seems to be simpler than P .

This suggests a proof by contraposition:

Let ¬Q , that is, let n be even, that is, n = 2k for some integer k.

Then n2 = 4k2,which is even (¬P ).

Therefore, ¬Q Ô⇒ ¬P , or, equivalently, P Ô⇒ Q .
Cast off crutches:
Proposition. For any integer n , if n2 is odd then n is odd.

Proof. Let n be even. Then n = 2k for some integer k . So n2 = 4k2 , which is
even. Therefore, by contraposition, if n2 is odd then n is odd, as required.
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Let us collect our results about the parity.

Theorem. Any integer has the same parity as its square.

Proof. We have to prove that n and n2 have the same parity, that is,
both are even or both are odd. For this, it’s enough to prove that

n is even ⇐⇒ n2 is even.

Indeed, if n is even, then n = 2k for some k ∈ Z . In this case, n2 = 4k2 , which
is even. So if n is even, then n2 is also even.

To prove the converse (if n2 is even, then n is even), we use contaposition.

Let n be odd, that is n = 2k + 1 for some k ∈ Z . Then n2 = 4k2 + 4k + 1 ,
which is odd. By contraposition, if n2 is even, then n is even.

qed
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Example 2. Prove that if n2
− 1 is not divisible by 8 , then n is even.

Proof. Have to prove: 8 ∤ (n2
− 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

Ô⇒ 2 ∣n°
Q

Q is simpler, so we’ll do contraposition:

Assume that 2 ∤ n (¬Q) . Then n = 2k + 1 for some integer k .

Calculate n2
− 1 :

n2
− 1 = (2k + 1)2 − 1 = 4 k(k + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

divisible by 2

is divisible by 8 (¬P ).

We have proved that 2 ∤ n Ô⇒ 8 ∣(n2
− 1).

By contraposition, 8 ∤ (n2
− 1) Ô⇒ 2 ∣n , as required.
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Example 3. Let f be integrable on [0, 1] .

Prove that

if
1

∫
0

f(x)dx ≠ 0 , then f(x) ≠ 0 for some x ∈ [0, 1] .
Proof. Have to prove:
1

∫
0

f(x)dx ≠ 0 Ô⇒ ∃x ∈ [0, 1] f(x) ≠ 0 .
Assume that f(x) = 0 for all x ∈ [0, 1] . Then 1

∫
0

f(x)dx = 0 .
Therefore, by contraposition,

if
1

∫
0

f(x)dx ≠ 0 , then f(x) ≠ 0 for some x ∈ [0, 1] , as required.
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Idea: To prove P ,

we assume ¬P and get two mutually exclusive statements,
Q and ¬Q .

Logical justification: (¬P Ô⇒ Q) ∧ (¬P Ô⇒ ¬Q)) Ô⇒ P is a tautology.

This rule of logical deduction is called reductio ad absurdum.

It is based on the law of excluded middle: P ∨ ¬P is a tautology.

Method: Assume (let) ¬P . Then ... Q . Then ... ¬Q . Therefore, P .

Example 1. Prove that
√
2 is irrational.

Proof. The statement to prove:
√
2 is irrational .

P

Assume, to the contrary, that
√
2 is rational .

¬P

Then
√
2 = p

q
for some p, q ∈ Z, q ≠ 0 .
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Since any fraction
p

q
can be reduced to lowest terms,

we may assume, without loss of generality, that gcd(p, q) = 1 .

Q

According to our assumption,
√
2 = p

q
. By squaring, we get 2 = p2

q2
, so 2q2 = p2.

It means that p2 is even. Since p has the same parity as p2

(see Theorem about the same parity of an integer and its square),
we conclude that p should be even, that is, p = 2k for some integer k .

In this case, the identity 2q2 = p2 is equivalent to 2q2 = (2k)2 , or q2 = 2k2 .
By this, q2 is even, and, therefore, q is even too: 2 ∣ q .
But p is also even, that is 2 ∣p . We have got that 2 ∣p and 2 ∣ q .
Therefore gcd(p, q) ≠ 1 , which contradicts to the fact that gcd(p, q) = 1 .

¬Q

This contradiction shows that the original assumption (
√
2 is rational) was erroneous,

and
√
2 is actually irrational, as required.
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But p is also even, that is 2 ∣p . We have got that 2 ∣p and 2 ∣ q .
Therefore gcd(p, q) ≠ 1 , which contradicts to the fact that gcd(p, q) = 1 .
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and
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Theorem (Euclid). There are infinitely many prime numbers.

Proof. Assume, to the contrary, that there are only finitely many prime numbers:
p1, p2, . . . , pn .

Construct a number N = p1 ⋅ p2 ⋅ . . . ⋅ pn + 1 .

N is not divisible by any of p1 , p2 , . . . , pn .
Indeed, N has a remainder of 1 when divided by any of them.

As any natural number greater than 1 , N is divisible by some prime number.

By this, N should be divisible by one of the primes p1, p2, . . . , pn .
This contradiction shows that

the assumption (there are only finitely many prime numbers) was erroneous,
and there are infinitely many primes, as required.

For source and comments see
Euclid’s Elements, Book IX, Proposition 20.
http://aleph0.clarku.edu/ djoyce/java/elements/bookIX/propIX20.html
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A proof by exhaustion consists of examination of every possible case.

Theorem about inscribed angle. An angle inscribed in a circle is half of the

central angle subtending the same arc.

Proof. How an inscribed angle may be positioned with respect to the center of
the circle?

Listen to the proof and try to write it down...
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Theorem (triangle inequality). ∣a + b∣ ≤ ∣a∣ + ∣b∣ for any real numbers a, b .

Proof (by cases).
● Case 1. a ≥ 0 and b ≥ 0 .Then ∣a∣ = a , ∣b∣ = b , ∣a + b∣ = a + b , so∣a + b∣ = a + b = ∣a∣ + ∣b∣ , and, by this ∣a + b∣ ≤ ∣a∣ + ∣b∣ .
● Case 2. a ≥ 0 and b < 0 .Then ∣a∣ = a , ∣b∣ = −b , ∣a + b∣ =?
● Case 2a) a+ b ≥ 0 . Then ∣a+ b∣ = a+ b < a− b = ∣a∣+ ∣b∣ , so ∣a+ b∣ ≤ ∣a∣+ ∣b∣ .
● Case 2b) a+b < 0 . Then ∣a+b∣ = −a−b ≤ a−b = ∣a∣+ ∣b∣ , so ∣a+b∣ ≤ ∣a∣+ ∣b∣ .

● Case 3. a < 0 and b ≥ 0 is similar to Case 2, just swap a and b .

● Case 4. a < 0 and b < 0 .Then ∣a∣ = −a , ∣b∣ = −b , ∣a + b∣ = −a − b , so∣a + b∣ = −a − b = ∣a∣ + ∣b∣ , and, by this ∣a + b∣ ≤ ∣a∣ + ∣b∣ .
Therefore, ∣a + b∣ ≤ ∣a∣ + ∣b∣ for all real numbers a and b , as required.
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Why the inequality ∣a + b∣ ≤ ∣a∣ + ∣b∣ is called the triangle inequality?
Ð→a Ð→

b

Ð→a +
Ð→
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∣Ð→a +
Ð→

b ∣ < ∣Ð→a ∣ + ∣Ð→b ∣

Corollary 1. ∣a − b∣ ≤ ∣a∣ + ∣b∣ for all a, b ∈ R.
Proof. Apply the triangle inequality to a and −b :∣a + (−b)∣ ≤ ∣a∣ + ∣ − b∣.
Since a + (−b) = a − b and ∣ − b∣ = ∣b∣ ,
we have got ∣a − b∣ ≤ ∣a∣ + ∣b∣ , as required.
Corollary 2. ∣∣a∣ − ∣b∣∣ ≤ ∣a − b∣ for all a, b ∈ R.
Proof. ∣a∣ = ∣(a − b) + b∣ ≤ ∣a − b∣ + ∣b∣ Ô⇒ ∣a∣ − ∣b∣ ≤ ∣a − b∣ .∣b∣ = ∣(b − a) + a∣ ≤ ∣b − a∣ + ∣a∣ Ô⇒ ∣a∣ − ∣b∣ ≥ −∣a − b∣ .
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Let us give another proof of the triangle inequality.

For any real numbers a and b , we have

(a + b)2 = a2 + b2 + 2ab ≤®
ab≤∣ab∣

a2 + b2 + 2∣ab∣ = ∣a∣2 + ∣b∣2 + 2∣a∣∣b∣ = (∣a∣ + ∣b∣)2 .
Therefore, (a + b)2 ≤ (∣a∣ + ∣b∣)2 . From this we get√(a + b)2 ≤√(∣a∣ + ∣b∣)2 , which implies

∣a + b∣ ≤ ∣∣a∣ + ∣b∣∣ .
Since ∣∣a∣ + ∣b∣∣∣ = ∣a∣ + ∣b∣ , we get ∣a + b∣ ≤ ∣a∣ + ∣b∣ .
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To prove a statement of type P ⇐⇒ Q , we may use one of two alternatives:

Alternative 1: P ⇐⇒ R ⇐⇒ S ⇐⇒ ⋅ ⋅ ⋅ ⇐⇒ Q

Alternative 2: P Ô⇒ Q and Q Ô⇒ P .

Example 1. Let a, b, c be the lengths of the sides of a triangle and a ≤ b ≤ c .
Using the law of cosines, prove that the triangle is right if and only if
a2 + b2 = c2 .
Proof. What is the law of cosines?

c

ba θ

c2 = a2 + b2 − 2ab cos θ

A triangle with the sides a, b, c is right ⇐⇒
?

θ = 90○ ⇐⇒
?

cos θ = 0
⇐⇒

?

c2 = a2 + b2 .
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Example 2. Let n be an integer. Prove that n is even iff n3 is even.

Proof. Let us prove first that
n is even Ô⇒ n3 is even.

Let n be even, so n = 2k for some k ∈ Z . Then n3 = 8k3 , which is even.

Let us prove now that
n3 is even Ô⇒ n is even.

Assume that n is odd. Then n = 2k + 1 for some k ∈ Z . In this case,
n3 = (2k + 1)3 = 8k3 + 12k2 + 6k + 1 = 2(4k3 + 6k2 + 3k) + 1 , which is odd.
We have got that n is odd Ô⇒ n3 is odd. Therefore, by contraposition,

n3 is even Ô⇒ n is even.
qed
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In order to prove that an object is unique,
one assumes that there are two such objects

and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.

Proof. Assume that there are two additive identities, 0 and 0′ . Then

0′ = 0′ + 0 since a = a + 0 for any element a in the ring

= 0 + 0′ by commutativity of addition in the ring

= 0 since 0′ is an additive identity: a+0′ = a for any a in the ring.

Therefore, 0′ = 0 .
qed
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● Understand what is given and what is to be proven.
If you prove an implication, identify the assumption (what is given)

and conclusion (what should be proven).
● Recall all relevant definitions and theorems in their precise form.
● Do math. Logic can’t replace missing mathematics.
● Put math in a correct logical form.
● Avoid typical logical mistakes:

1. Affirming the consequent

Prove P Ô⇒ Q .
“Proof.” Let Q. . .

2. Denying the antecedent

Prove P Ô⇒ Q .
“Proof.” Let ¬P . . .

3. Guilt by assumption (proof by example)
∃x P (x) Ô⇒ ∀x P (x)
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