Lecture 8

Structure of mathematical text. Proof techniques

Structures in a mathematical text

Structures in a mathematical text

In any mathematical text (article, monograph, textbook, etc.)

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature, acknowledgements, history remarks, expositions, authors' opinions, and many other not that essential details.

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature, acknowledgements, history remarks, expositions, authors' opinions, and many other not that essential details.

Rarely one reads a mathematical text from the very beginning to the very end and understands everything at once.

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature, acknowledgements, history remarks, expositions, authors' opinions, and many other not that essential details.

Rarely one reads a mathematical text from the very beginning to the very end and understands everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods).

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature, acknowledgements, history remarks, expositions, authors' opinions, and many other not that essential details.

Rarely one reads a mathematical text from the very beginning to the very end and understands everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding.

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature, acknowledgements, history remarks, expositions, authors' opinions, and many other not that essential details.

Rarely one reads a mathematical text from the very beginning to the very end and understands everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding.
An experienced reader starts with determining the structure of the text and sorting out its elements.

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature, acknowledgements, history remarks, expositions, authors' opinions, and many other not that essential details.

Rarely one reads a mathematical text from the very beginning to the very end and understands everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding.
An experienced reader starts with determining the structure of the text and sorting out its elements.

The second round is to focus on the primary parts of the text:
definitions and statements of theorems.

Structure of mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
motivations, definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, list of literature, acknowledgements, history remarks, expositions, authors' opinions, and many other not that essential details.

Rarely one reads a mathematical text from the very beginning to the very end and understands everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding.
An experienced reader starts with determining the structure of the text and sorting out its elements.

The second round is to focus on the primary parts of the text:
definitions and statements of theorems.
Next come examples and detailed reading of proofs.

Let's try to read an excerpt from a math textbook.

Let us read!

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics,

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text:

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text:
detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
This implies that e and π are algebraic over \mathbb{R}, though they are not algebraic over \mathbb{Q} as we will prove later.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text:
detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.
What is this?

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.
What is this? Promises,

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.
What is this? Promises, planning.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.
What is this?

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.
What is this? Definition.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.
What is this? Definition. Definition of what?

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F}

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} What is this?

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} What is this? Theorem.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F}
What is this? Theorem. Probably very simple, because it is not called Theorem.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
What is this?

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
What is this? This is a proof.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
This implies that e and π are algebraic over \mathbb{R},

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
This implies that e and π are algebraic over \mathbb{R},
What is this?

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
This implies that e and π are algebraic over \mathbb{R},
What is this? Corollary, with a proof.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
This implies that e and π are algebraic over \mathbb{R}, though they are not algebraic over \mathbb{Q} as we will prove later.

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
This implies that e and π are algebraic over \mathbb{R}, though they are not algebraic over \mathbb{Q} as we will prove later.
What is this?

Let's try to read an excerpt from a math textbook. We do not intend to understand the mathematics, nonetheless we should be able to analyze the structure of the text: detect and distinguish definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$.
This implies that e and π are algebraic over \mathbb{R}, though they are not algebraic over \mathbb{Q} as we will prove later.
What is this? This is a promise, planning.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.
In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}.

It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.
Indeed, if $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ then there exists a polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, whose coefficients $a_{0}, a_{1}, \ldots, a_{n}$ all belong to \mathbb{F}, at least one of these coefficients is nonzero, and $f(\alpha)=0$, that is

$$
\begin{equation*}
a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \cdots+a_{n-1} \alpha^{n-1}+a_{n} \alpha^{n}=0 \tag{*}
\end{equation*}
$$

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.
What is this?

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.
What is this? Example.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero.
What is this?

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero.
What is this? Explanation, advice.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. What is this?

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. What is this? Exercise.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises:

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises:
What is this?

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises:
What is this? Motivation

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.
What is this?

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}. It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.
What is this? Theorem, test for algebraicity.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.
In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}.

It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.
Indeed, if $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ then there exists a polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, whose coefficients $a_{0}, a_{1}, \ldots, a_{n}$ all belong to \mathbb{F}, at least one of these coefficients is nonzero, and $f(\alpha)=0$, that is

$$
\begin{equation*}
a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \cdots+a_{n-1} \alpha^{n-1}+a_{n} \alpha^{n}=0 \tag{*}
\end{equation*}
$$

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}.

It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.
Indeed, if $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ then there exists a polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, whose coefficients $a_{0}, a_{1}, \ldots, a_{n}$ all belong to \mathbb{F}, at least one of these coefficients is nonzero, and $f(\alpha)=0$, that is

$$
\begin{equation*}
a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \cdots+a_{n-1} \alpha^{n-1}+a_{n} \alpha^{n}=0 \tag{*}
\end{equation*}
$$

What is this?

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.

In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}.

It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.
Indeed, if $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ then there exists a polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, whose coefficients $a_{0}, a_{1}, \ldots, a_{n}$ all belong to \mathbb{F}, at least one of these coefficients is nonzero, and $f(\alpha)=0$, that is

$$
\begin{equation*}
a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \cdots+a_{n-1} \alpha^{n-1}+a_{n} \alpha^{n}=0 \tag{*}
\end{equation*}
$$

What is this? Proof.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

The coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, on the other hand, are all in \mathbb{F} so we can regard them as scalars. Thus, the equality ($*$) can be interpreted as a linear dependence of vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ in \mathbb{C}.
You will often meet the terms "algebraic number" and "transcendental number" where no field is specified.
In such cases the field is taken to be \mathbb{Q}.
We formalize this as follows.
A complex number is said to be an algebraic number if it is algebraic over \mathbb{Q};
a transcendental number if it is not algebraic over \mathbb{Q}.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. Reminding

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. Reminding about relation between the notions of subfield and vector space.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.
Reminding

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.
Reminding about relation between complex numbers and vectors.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

The coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, on the other hand, are all in \mathbb{F} so we can regard them as scalars. Thus, the equality ($*$) can be interpreted as a linear dependence of vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ in \mathbb{C}.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

The coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, on the other hand, are all in \mathbb{F} so we can regard them as scalars. Thus, the equality ($*$) can be interpreted as a linear dependence of vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ in \mathbb{C}.

You will often meet the terms "algebraic number" and "transcendental number" where no field is specified.
In such cases the field is taken to be \mathbb{Q}.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

The coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, on the other hand, are all in \mathbb{F} so we can regard them as scalars. Thus, the equality ($*$) can be interpreted as a linear dependence of vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ in \mathbb{C}.

You will often meet the terms "algebraic number" and "transcendental number" where no field is specified.
In such cases the field is taken to be \mathbb{Q}.
Motivation and informal definition.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

The coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, on the other hand, are all in \mathbb{F} so we can regard them as scalars. Thus, the equality ($*$) can be interpreted as a linear dependence of vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ in \mathbb{C}.
You will often meet the terms "algebraic number" and "transcendental number" where no field is specified.
In such cases the field is taken to be \mathbb{Q}.
We formalize this as follows.
A complex number is said to be an algebraic number if it is algebraic over \mathbb{Q};
a transcendental number if it is not algebraic over \mathbb{Q}.

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

The coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, on the other hand, are all in \mathbb{F} so we can regard them as scalars. Thus, the equality ($*$) can be interpreted as a linear dependence of vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ in \mathbb{C}.
You will often meet the terms "algebraic number" and "transcendental number" where no field is specified.
In such cases the field is taken to be \mathbb{Q}.
We formalize this as follows.
A complex number is said to be an algebraic number if it is algebraic over \mathbb{Q};
a transcendental number if it is not algebraic over \mathbb{Q}.
These are definitions.
Structures in amathematical text
Proofs
Basic schemes of
proof
Direct proof (to
prove $P \Longrightarrow Q$)
Arithmetic mean
and geometric mean
AM-GM inequality
Geometric
interpretation of
AM-GM inequality
Differentiability
implies continuity
Differentiability
implies continuity
Differentiability
implies continuity
Proof by
contraposition
What to choose:
direct proof or proof
by contraposition?
Parity
Divisibility
Non-zero integral
Proof by
contradiction
(indirect proof)
$\sqrt{2}$ is irrational

Proofs

Basic schemes of proof

In this lecture we will discuss basic proof techniques:

In this lecture we will discuss basic proof techniques:

- Direct proof

In this lecture we will discuss basic proof techniques:

- Direct proof
- Proof by contraposition

In this lecture we will discuss basic proof techniques:

- Direct proof
- Proof by contraposition
- Proof by contradiction

In this lecture we will discuss basic proof techniques:

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proof by exhaustion (proof by cases)

Direct proof (to prove $P \Longrightarrow Q$)

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.

Direct proof (to prove $P \Longrightarrow Q$)

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.

Direct proof (to prove $P \Longrightarrow Q$)

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ...

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P . Then ... Then ...

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}\left(n\right.$ is odd $\Longrightarrow n^{2}$ is odd $)$

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore, $n^{2}=(2 k+1)^{2}$

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, which is odd

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, which is odd, as required.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, which is odd, as required.

Idea: If P is true and $P \Longrightarrow Q$, then Q is also true.
Logical justification: $(P \wedge(P \Longrightarrow Q)) \Longrightarrow Q$ is a tautology.
This rule of logical deduction is called modus ponens.
It allows to eliminate a conditional statement from a proof.
Method: Assume (let) P. Then ... Then ... Therefore, Q.
Example 1. Prove that if an integer n is odd, then n^{2} is odd.
Proof. We have to prove that $\forall n \in \mathbb{Z}(\underbrace{n \text { is odd }}_{P} \Longrightarrow \underbrace{n^{2} \text { is odd }}_{Q})$
(given) (to prove)
Let n be odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, which is odd, as required.

Arithmetic mean and geometric mean

Arithmetic mean and geometric mean

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b.

Arithmetic mean and geometric mean

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b.
Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.

Arithmetic mean and geometric mean

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b.
Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b.
Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\quad \forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$.

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though.

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though. Let us work "backwards":

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\quad \forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$.
It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though.
Let us work "backwards":
$\frac{a+b}{2} \geq \sqrt{a b}$

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though.
Let us work "backwards":
$\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b}$

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though. Let us work "backwards":

$$
\begin{gathered}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
a, b \geq 0
\end{gathered}
$$

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though. Let us work "backwards":

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0
\end{aligned} \quad \begin{aligned}
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though. Let us work "backwards":

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0
\end{aligned} \quad \begin{aligned}
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Is this a proof?

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though. Let us work "backwards":

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0
\end{aligned} \quad \begin{aligned}
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Is this a proof? NO!

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though. Let us work "backwards":

$$
\begin{aligned}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} & \xlongequal[\uparrow]{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
a, b \geq 0 & \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0
\end{aligned}
$$

Is this a proof? NO! Can we reverse the implications?

Example 2. Show that $\frac{a+b}{2} \geq \sqrt{a b}$ for any non-negative real numbers a, b. Remark. $\frac{a+b}{2}$ is called the arithmetic mean (AM) of numbers a, b.
$\sqrt{a b}$ is called the geometric mean (GM) of numbers a, b.
Discussion. We have to prove that $\forall a, b \in \mathbb{R}\left(a, b \geq 0 \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}\right)$. It's difficult to get $\frac{a+b}{2} \geq \sqrt{a b}$ directly from $a, b \geq 0$, though. Let us work "backwards":

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0
\end{aligned} \quad \begin{aligned}
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Is this a proof? NO!Can we reverse the implications? Yes!

AM-GM inequality

Recall backwards arguments:

AM-GM inequality

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 \text {. }
\end{aligned}
$$

Recall backwards arguments:
$\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0$
$a, b \geq 0$ $\Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0$.
Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \xlongequal[\uparrow]{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers is greater than or equal to their geometric mean.

Proof. Take any non-negative real numbers a and b. Then

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \xlongequal[\uparrow]{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then $(\sqrt{a}-\sqrt{b})^{2} \geq 0$

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \xlongequal[\uparrow]{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0
$$

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \xlongequal[\uparrow]{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b}
$$

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \xlongequal[\uparrow]{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Recall backwards arguments:

$$
\begin{aligned}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} & \Longrightarrow \\
a, b \geq 0 & (\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Recall backwards arguments:

$$
\begin{aligned}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} & \Longrightarrow \\
a, b \geq 0 & (\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Corollary. $A M(a, b)=G M(a, b)$ iff $a=b$.

Recall backwards arguments:

$$
\begin{aligned}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} & \Longrightarrow \\
a, b \geq 0 & (\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Corollary. $A M(a, b)=G M(a, b)$ iff $a=b$.

Proof.

Recall backwards arguments:

$$
\begin{aligned}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} & \Longrightarrow \\
a, b \geq 0 & (\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Corollary. $A M(a, b)=G M(a, b)$ iff $a=b$.
Proof. Let $a, b \geq 0$.

Recall backwards arguments:

$$
\begin{aligned}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} & \Longrightarrow \\
a, b \geq 0 & (\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
\Longrightarrow & (\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Corollary. $A M(a, b)=G M(a, b)$ iff $a=b$.
Proof. Let $a, b \geq 0$. Then $a=b \Longleftrightarrow(\sqrt{a}-\sqrt{b})^{2}=0 \Longleftrightarrow a-2 \sqrt{a} \sqrt{b}+b=0$

Recall backwards arguments:

$$
\begin{aligned}
\frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} & \Longrightarrow \\
a, b \geq 0 & (\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
\Longrightarrow & (\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Corollary. $A M(a, b)=G M(a, b)$ iff $a=b$.
Proof. Let $a, b \geq 0$. Then $a=b \Longleftrightarrow(\sqrt{a}-\sqrt{b})^{2}=0 \Longleftrightarrow a-2 \sqrt{a} \sqrt{b}+b=0$
$\Longleftrightarrow \frac{a+b}{2}=\sqrt{a b}$

AM-GM inequality

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \underset{\uparrow}{\Longrightarrow}(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b} \geq 0 \\
& a, b \geq 0
\end{aligned} \quad \begin{aligned}
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b},
$$

Corollary. $A M(a, b)=G M(a, b)$ iff $a=b$.
Proof. Let $a, b \geq 0$. Then $a=b \Longleftrightarrow(\sqrt{a}-\sqrt{b})^{2}=0 \Longleftrightarrow a-2 \sqrt{a} \sqrt{b}+b=0$
$\Longleftrightarrow \frac{a+b}{2}=\sqrt{a b} \Longleftrightarrow A M(a, b)=G M(a, b)$

Recall backwards arguments:

$$
\begin{aligned}
& \frac{a+b}{2} \geq \sqrt{a b} \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \\
& a, b \geq 0(\sqrt{a})^{2}+(\sqrt{b})^{2}- \\
& 2 \sqrt{a} \sqrt{b} \geq 0 \\
& \Longrightarrow(\sqrt{a}-\sqrt{b})^{2} \geq 0 .
\end{aligned}
$$

Theorem. The arithmetic mean of two non-negative numbers
is greater than or equal to their geometric mean.
Proof. Take any non-negative real numbers a and b. Then

$$
(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Longrightarrow a-2 \sqrt{a} \sqrt{b}+b \geq 0 \Longrightarrow a+b \geq 2 \sqrt{a b} \Longrightarrow \frac{a+b}{2} \geq \sqrt{a b}
$$

Corollary. $A M(a, b)=G M(a, b)$ iff $a=b$.
Proof. Let $a, b \geq 0$. Then $a=b \Longleftrightarrow(\sqrt{a}-\sqrt{b})^{2}=0 \Longleftrightarrow a-2 \sqrt{a} \sqrt{b}+b=0$
$\Longleftrightarrow \frac{a+b}{2}=\sqrt{a b} \Longleftrightarrow A M(a, b)=G M(a, b)$, as required.

Geometric interpretation of AM-GM inequality

Geometric interpretation of AM-GM inequality

Geometric interpretation of AM-GM inequality

Geometric interpretation of AM-GM inequality

Geometric interpretation of AM-GM inequality

Geometric interpretation of AM-GM inequality

$$
\begin{aligned}
& A M=\frac{a+b}{2} \\
& G M=\sqrt{a b} \\
& A M \geq G M \\
& A M=G M \Longleftrightarrow a=b
\end{aligned}
$$

Differentiability implies continuity

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point,

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point,
then it is continuous at this point.

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion.

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.
Discussion. Given:

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.
Discussion. Given: function f,

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.
Discussion. Given: function f,
point a in its domain,

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.
Discussion. Given: function f,
point a in its domain, differentiability of f at a.

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain, differentiability of f at a. What does it mean exactly?

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain, differentiability of f at a. What does it mean exactly?

Definition.

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.
Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove:

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a.

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a. What does it mean exactly?

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a. What does it mean exactly?
Definition.

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a. What does it mean exactly?
Definition. A function f is continuous at point a if $\lim _{x \rightarrow a} f(x)=f(a)$.

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a. What does it mean exactly?
Definition. A function f is continuous at point a if $\lim _{x \rightarrow a} f(x)=f(a)$.
What does the phrase $\lim _{x \rightarrow a} f(x)=f(a)$ say exactly?

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a. What does it mean exactly?
Definition. A function f is continuous at point a if $\lim _{x \rightarrow a} f(x)=f(a)$.
What does the phrase $\lim _{x \rightarrow a} f(x)=f(a)$ say exactly?

1. $\exists \lim _{x \rightarrow a} f(x)$

Differentiability implies continuity

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a. What does it mean exactly?
Definition. A function f is continuous at point a if $\lim _{x \rightarrow a} f(x)=f(a)$.
What does the phrase $\lim _{x \rightarrow a} f(x)=f(a)$ say exactly?

1. $\exists \lim _{x \rightarrow a} f(x)$
2. $f(x)$ is defined at $x=a$

Example 3. Prove that if a function is differentiable at a point, then it is continuous at this point.

Discussion. Given: function f,
point a in its domain,
differentiability of f at a. What does it mean exactly?
Definition. A function f is differentiable at point a if there exists $f^{\prime}(a)$,
that is, there exists the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
Have to prove: f is continuous at a. What does it mean exactly?
Definition. A function f is continuous at point a if $\lim _{x \rightarrow a} f(x)=f(a)$.
What does the phrase $\lim _{x \rightarrow a} f(x)=f(a)$ say exactly?

1. $\exists \lim _{x \rightarrow a} f(x)$
2. $f(x)$ is defined at $x=a$
3. $\lim _{x \rightarrow a} f(x)=f(a)$.

Differentiability implies continuity

We have to prove the implication

Differentiability implies continuity

We have to prove the implication
$\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \Longrightarrow \lim _{x \rightarrow a} f(x)=f(a)$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:
$\lim _{x \rightarrow a} f(x)-f(a)=$

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:
$\lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=$

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
\lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a))
$$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
\lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a)) \underbrace{=}_{\substack{x \neq a \\ \text { by def. of } \lim }} \lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)
$$

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a)) \underbrace{=}_{\begin{array}{c}
x \neq a \\
\text { by def. of } \lim
\end{array}} \lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right) \\
& \underbrace{=}_{\text {let } h=x-a}
\end{aligned}
$$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a)) \underbrace{=}_{\substack{x \neq a \\
\text { by def. of } \lim }} \lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right) \\
& \underbrace{h=x-a}_{\text {let }}< \\
& =\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right)
\end{aligned}
$$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a)) \underbrace{\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)}_{\begin{array}{c}
x \neq a \\
\text { by def. of } \\
= \\
\lim _{x \rightarrow a}
\end{array}} \\
& \underbrace{=}_{\text {let } h=x-a} \lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right) \underbrace{=}_{\begin{array}{c}
\text { since both } \\
\text { lims exist }
\end{array}} \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h
\end{aligned}
$$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
=f^{\prime}(a) \cdot 0
$$

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a)) \underbrace{=}_{x \neq a} \lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right) \\
& \text { by def. of lim } \\
& \underbrace{=}_{\text {let } h=x-a} \lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right) \underbrace{=}_{\text {since both }} \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h
\end{aligned}
$$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a)) \underbrace{\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)}_{\begin{array}{c}
x \neq a \\
\text { by def. of } \\
= \\
\lim _{x \rightarrow a}
\end{array}} \begin{array}{l}
\underbrace{=}_{\text {let } h=x-a} \lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right) \underbrace{=}_{\begin{array}{c}
\text { since both } \\
\text { lims exist }
\end{array}} \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h
\end{array}, l
\end{aligned}
$$

$=f^{\prime}(a) \cdot 0=0$

Differentiability implies continuity

We have to prove the implication
$\underbrace{\exists \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}}_{\text {given }} \Longrightarrow \underbrace{\lim _{x \rightarrow a} f(x)=f(a)}_{\text {to prove }}$
Let us prove that $\lim _{x \rightarrow a} f(x)-f(a)=0$:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)-\underbrace{f(a)}_{\text {constant }}=\lim _{x \rightarrow a}(f(x)-f(a)) \underbrace{\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)}_{\begin{array}{c}
x \neq a \\
\text { by def. of } \\
= \\
\lim _{x \rightarrow a}
\end{array}} \\
& \underbrace{=}_{\text {let } h=x-a} \lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right) \underbrace{=}_{\begin{array}{c}
\text { since both } \\
\text { lims exist }
\end{array}} \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h
\end{aligned}
$$

$$
=f^{\prime}(a) \cdot 0=0 \text {, as required. }
$$

Differentiability implies continuity

Let us clear our work off unnecessary "educational" bells and whistles:

Differentiability implies continuity

Let us clear our work off unnecessary "educational" bells and whistles:
Theorem. Let f be a function defined in a neighborhood of a point a.

Differentiability implies continuity

Let us clear our work off unnecessary "educational" bells and whistles:
Theorem. Let f be a function defined in a neighborhood of a point a.
If f is differentiable at a, then f is continuous at a.

Let us clear our work off unnecessary "educational" bells and whistles:
Theorem. Let f be a function defined in a neighborhood of a point a. If f is differentiable at a, then f is continuous at a.

Proof.

Differentiability implies continuity

Let us clear our work off unnecessary "educational" bells and whistles:
Theorem. Let f be a function defined in a neighborhood of a point a.
If f is differentiable at a, then f is continuous at a.
Proof. $\lim _{x \rightarrow a} f(x)-f(a)=\lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)=$
$\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h=f^{\prime}(a) \cdot 0=0$.

Differentiability implies continuity

Let us clear our work off unnecessary "educational" bells and whistles:
Theorem. Let f be a function defined in a neighborhood of a point a. If f is differentiable at a, then f is continuous at a.
Proof. $\lim _{x \rightarrow a} f(x)-f(a)=\lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)=$
$\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h=f^{\prime}(a) \cdot 0=0$.
Therefore, $\lim _{x \rightarrow a} f(x)=f(a)$,

Differentiability implies continuity

Let us clear our work off unnecessary "educational" bells and whistles:
Theorem. Let f be a function defined in a neighborhood of a point a.
If f is differentiable at a, then f is continuous at a.
Proof. $\lim _{x \rightarrow a} f(x)-f(a)=\lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)=$
$\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h=f^{\prime}(a) \cdot 0=0$.
Therefore, $\lim _{x \rightarrow a} f(x)=f(a)$, and, by this, f is continuous at a

Differentiability implies continuity

Let us clear our work off unnecessary "educational" bells and whistles:
Theorem. Let f be a function defined in a neighborhood of a point a. If f is differentiable at a, then f is continuous at a.
Proof. $\lim _{x \rightarrow a} f(x)-f(a)=\lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)=$
$\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot h\right)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h=f^{\prime}(a) \cdot 0=0$.
Therefore, $\lim _{x \rightarrow a} f(x)=f(a)$, and, by this, f is continuous at a, as required.

Proof by contraposition

Proof by contraposition

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ...

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ...

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. }
$$

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd. Discussion.

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd.
Discussion. We have to prove that

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd.
Discussion. We have to prove that

$$
\forall n \in \mathbb{Z} \quad n^{2} \text { is odd } \Longrightarrow n \text { is odd }
$$

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd.
Discussion. We have to prove that

$$
\forall n \in \mathbb{Z} \begin{array}{|c}
\frac{n^{2} \text { is odd }}{P} \Longrightarrow n \text { is odd } \\
\hline
\end{array}
$$

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd.
Discussion. We have to prove that

$$
\forall n \in \mathbb{Z} \begin{gather*}
\frac{n^{2} \text { is odd }}{P} \Longrightarrow \frac{n \text { is odd }}{Q} \\
\hline
\end{gather*}
$$

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd.
Discussion. We have to prove that

Why not to prove like this:

Idea: To prove $P \Longrightarrow Q$, we prove $\neg Q \Longrightarrow \neg P$.
Logical justification: $P \Longrightarrow Q$ is equivalent to $\neg Q \Longrightarrow \neg P$.
This rule of logical deduction $((P \Longrightarrow Q) \wedge \neg Q) \Longrightarrow \neg P$ is called modus tollens.
Method: Assume (let) $\neg Q$. Then ... Then ... Therefore, $\neg P$.

$$
\text { So } \neg Q \Longrightarrow \neg P \text {. By contraposition, } P \Longrightarrow Q \text {. }
$$

Example 1. Let n be an integer. Prove that if n^{2} is odd then n is odd.
Discussion. We have to prove that

$$
\forall n \in \mathbb{Z} \begin{array}{|c}
n^{2} \text { is odd } \\
P
\end{array} \frac{n \text { is odd }}{Q}
$$

Why not to prove like this: n^{2} is odd $\Longrightarrow \sqrt{n^{2}}=n$ is odd?

What to choose: direct proof or proof by contraposition? ${ }^{\text {Lecture }} 8$

For a direct proof of

What to choose: direct proof or proof by contraposition? ${ }^{\text {Lecture } 8}$

For a direct proof of

we have to start with P.

What to choose: direct proof or proof by contraposition? ${ }_{\text {Proof tec }}^{\text {Lect }}$

For a direct proof of

we have to start with P. But Q seems to be simpler than P.

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$,

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is,

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then n^{2}

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then $n^{2}=4 k^{2}$,

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then $n^{2}=4 k^{2}$, which is even

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then $n^{2}=4 k^{2}$, which is even $(\neg P)$.

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then $n^{2}=4 k^{2}$, which is even $(\neg P)$.
Therefore, $\neg Q \Longrightarrow \neg P$,

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then $n^{2}=4 k^{2}$, which is even $(\neg P)$.
Therefore, $\neg Q \Longrightarrow \neg P$, or, equivalently, $P \Longrightarrow Q$.
Cast off crutches:

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then $n^{2}=4 k^{2}$, which is even $(\neg P)$.
Therefore, $\neg Q \Longrightarrow \neg P$, or, equivalently, $P \Longrightarrow Q$.
Cast off crutches:
Proposition. For any integer n, if n^{2} is odd then n is odd.

For a direct proof of

we have to start with P. But Q seems to be simpler than P.
This suggests a proof by contraposition:
Let $\neg Q$, that is, let n be even, that is, $n=2 k$ for some integer k.
Then $n^{2}=4 k^{2}$, which is even $(\neg P)$.
Therefore, $\neg Q \Longrightarrow \neg P$, or, equivalently, $P \Longrightarrow Q$.
Cast off crutches:
Proposition. For any integer n, if n^{2} is odd then n is odd.
Proof. Let n be even. Then $n=2 k$ for some integer k. So $n^{2}=4 k^{2}$, which is even. Therefore, by contraposition, if n^{2} is odd then n is odd, as required.

Parity

Let us collect our results about the parity.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity,

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that n is even $\Longleftrightarrow n^{2}$ is even.

Indeed,

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even,

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that n is even $\Longleftrightarrow n^{2}$ is even.

Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even),

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even), we use contaposition.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even), we use contaposition.
Let n be odd,

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even), we use contaposition.
Let n be odd, that is $n=2 k+1$ for some $k \in \mathbb{Z}$.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even), we use contaposition.
Let n be odd, that is $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}=4 k^{2}+4 k+1$,

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even), we use contaposition. Let n be odd, that is $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}=4 k^{2}+4 k+1$, which is odd.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even), we use contaposition. Let n be odd, that is $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}=4 k^{2}+4 k+1$, which is odd. By contraposition, if n^{2} is even, then n is even.

Let us collect our results about the parity.
Theorem. Any integer has the same parity as its square.
Proof. We have to prove that n and n^{2} have the same parity, that is, both are even or both are odd. For this, it's enough to prove that
n is even $\Longleftrightarrow n^{2}$ is even.
Indeed, if n is even, then $n=2 k$ for some $k \in \mathbb{Z}$. In this case, $n^{2}=4 k^{2}$, which is even. So if n is even, then n^{2} is also even.

To prove the converse (if n^{2} is even, then n is even), we use contaposition. Let n be odd, that is $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}=4 k^{2}+4 k+1$, which is odd. By contraposition, if n^{2} is even, then n is even.

Divisibility

Divisibility

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even. Proof.

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even. Proof. Have to prove:

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even. Proof. Have to prove: $8+\left(n^{2}-1\right) \Longrightarrow 2 \mid n$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even. Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ?

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler,

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? $\quad Q$ is simpler, so we'll do contraposition:

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? $\quad Q$ is simpler, so we'll do contraposition: Assume that $2 \nmid n$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? $\quad Q$ is simpler, so we'll do contraposition:
Assume that $2 \nmid n(\neg Q)$.

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? $\quad Q$ is simpler, so we'll do contraposition:
Assume that $2 \nmid n(\neg Q)$. Then $n=2 k+1$ for some integer k.

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.

Which one is simpler, P or Q ? $\quad Q$ is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.

Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? $\quad Q$ is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k=4 k(k+1)$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k=4 \underbrace{k(k+1)}_{\text {divisible by } 2}$

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k=4 \underbrace{k(k+1)}_{\text {divisible by } 2}$ is divisible by $8(\neg P)$.

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k=4 \underbrace{k(k+1)}_{\text {divisible by } 2}$ is divisible by $8(\neg P)$.
We have proved that $2+n \Longrightarrow 8 \mid\left(n^{2}-1\right)$.

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k=4 \underbrace{k(k+1)}_{\text {divisible by } 2}$ is divisible by $8(\neg P)$.
We have proved that $2+n \Longrightarrow 8 \mid\left(n^{2}-1\right)$.
By contraposition, $8+\left(n^{2}-1\right) \Longrightarrow 2 \mid n$,

Example 2. Prove that if $n^{2}-1$ is not divisible by 8 , then n is even.
Proof. Have to prove: $\underbrace{8+\left(n^{2}-1\right)}_{P} \Longrightarrow \underbrace{2 \mid n}_{Q}$
Which one is simpler, P or Q ? Q is simpler, so we'll do contraposition:
Assume that $2+n(\neg Q)$. Then $n=2 k+1$ for some integer k.
Calculate $n^{2}-1$:
$n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k=4 \underbrace{k(k+1)}_{\text {divisible by } 2}$ is divisible by $8(\neg P)$.
We have proved that $2+n \Longrightarrow 8 \mid\left(n^{2}-1\right)$.
By contraposition, $8+\left(n^{2}-1\right) \Longrightarrow 2 \mid n$, as required.

Example 3. Let f be integrable on $[0,1]$.

Example 3. Let f be integrable on $[0,1]$. Prove that

Example 3. Let f be integrable on $[0,1]$. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] .
$$

Example 3. Let f be integrable on $[0,1]$. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] .
$$

Proof.

Example 3. Let f be integrable on $[0,1]$. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] \text {. }
$$

Proof. Have to prove:

Example 3. Let f be integrable on $[0,1]$. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] \text {. }
$$

Proof. Have to prove:
$\int_{0}^{1} f(x) d x \neq 0 \Longrightarrow \exists x \in[0,1] f(x) \neq 0$.

Example 3. Let f be integrable on $[0,1]$. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] \text {. }
$$

Proof. Have to prove:
$\int_{0}^{1} f(x) d x \neq 0 \Longrightarrow \exists x \in[0,1] f(x) \neq 0$.
Assume that $f(x)=0$ for all $x \in[0,1]$.

Example 3. Let f be integrable on $[0,1]$. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] .
$$

Proof. Have to prove:
$\int_{0}^{1} f(x) d x \neq 0 \Longrightarrow \exists x \in[0,1] f(x) \neq 0$.
Assume that $f(x)=0$ for all $x \in[0,1]$. Then $\int_{0}^{1} f(x) d x=0$.

Example 3. Let f be integrable on $[0,1]$. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] \text {. }
$$

Proof. Have to prove:
$\int_{0}^{1} f(x) d x \neq 0 \Longrightarrow \exists x \in[0,1] f(x) \neq 0$.
Assume that $f(x)=0$ for all $x \in[0,1]$. Then $\int_{0}^{1} f(x) d x=0$.
Therefore, by contraposition,

Example 3. Let f be integrable on [0, 1]. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] .
$$

Proof. Have to prove:
$\int_{0}^{1} f(x) d x \neq 0 \Longrightarrow \exists x \in[0,1] f(x) \neq 0$.
Assume that $f(x)=0$ for all $x \in[0,1]$. Then $\int_{0}^{1} f(x) d x=0$.
Therefore, by contraposition,
if $\int_{0}^{1} f(x) d x \neq 0$, then $f(x) \neq 0$ for some $x \in[0,1]$,

Example 3. Let f be integrable on [0, 1]. Prove that

$$
\text { if } \int_{0}^{1} f(x) d x \neq 0 \text {, then } f(x) \neq 0 \text { for some } x \in[0,1] \text {. }
$$

Proof. Have to prove:
$\int_{0}^{1} f(x) d x \neq 0 \Longrightarrow \exists x \in[0,1] f(x) \neq 0$.
Assume that $f(x)=0$ for all $x \in[0,1]$. Then $\int_{0}^{1} f(x) d x=0$.
Therefore, by contraposition,
if $\int_{0}^{1} f(x) d x \neq 0$, then $f(x) \neq 0$ for some $x \in[0,1]$, as required.

Proof by contradiction (indirect proof)

Idea: To prove P,

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements,

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then $\ldots \quad Q$.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then $\ldots \quad Q$. Then $\ldots \neg Q$.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then $\ldots \quad Q$. Then $\ldots \neg Q$. Therefore, P.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then $\ldots \quad Q$. Then $\ldots \neg Q$. Therefore, P.

Example 1.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then $\ldots \quad Q$. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then ... Q. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.
Proof. The statement to prove:

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then ... Q. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.
Proof. The statement to prove: $\sqrt{2}$ is irrational.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then ... Q. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.
Proof. The statement to prove: $\frac{\sqrt{2} \text { is irrational }}{P}$.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then ... Q. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.
Proof. The statement to prove: $\frac{\sqrt{2} \text { is irrational }}{P}$.
Assume, to the contrary, that

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then ... Q. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.
Proof. The statement to prove: $\frac{\sqrt{2} \text { is irrational }}{P}$.
Assume, to the contrary, that $\sqrt{2}$ is rational.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.

Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then ... Q. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.
Proof. The statement to prove: $\frac{\sqrt{2} \text { is irrational }}{P}$.
Assume, to the contrary, that $\frac{\sqrt{2} \text { is rational }}{\neg P}$.

Proof by contradiction (indirect proof)

Idea: To prove P, we assume $\neg P$ and get two mutually exclusive statements, Q and $\neg Q$.
Logical justification: $(\neg P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q)) \Longrightarrow P$ is a tautology.
This rule of logical deduction is called reductio ad absurdum.
It is based on the law of excluded middle: $P \vee \neg P$ is a tautology.
Method: Assume (let) $\neg P$. Then $\ldots Q$. Then $\ldots \neg Q$. Therefore, P.
Example 1. Prove that $\sqrt{2}$ is irrational.
Proof. The statement to prove: $\frac{\sqrt{2} \text { is irrational }}{P}$.
Assume, to the contrary, that $\frac{\sqrt{2} \text { is rational }}{\neg P}$.
Then $\sqrt{2}=\frac{p}{q}$ for some $p, q \in \mathbb{Z}, q \neq 0$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\operatorname{gcd}(p, q)=1$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\operatorname{gcd}(p, q)=1$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square),

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.
In this case, the identity $2 q^{2}=p^{2}$

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.

In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too:

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$.
But p is also even,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$. But p is also even, that is $2 \mid p$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$. But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.

In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$.
By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$.
But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$.
Therefore, $\operatorname{gcd}(p, q) \neq 1$

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$. But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$.
Therefore $\operatorname{gcd}(p, q) \neq 1$,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms,
we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.

In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$.
By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$.
But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$.
Therefore $\frac{\operatorname{gcd}(p, q) \neq 1}{\neg Q}$,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}

(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$. But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$. Therefore | $\operatorname{gcd}(p, q) \neq 1$ |
| :---: |
| $\neg Q$ | , which contradicts to the fact that $\operatorname{gcd}(p, q)=1$.

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}

(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k. In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$. By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$. But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$. Therefore | $\operatorname{gcd}(p, q) \neq 1$ |
| :---: |
| $\neg Q$ | , which contradicts to the fact that $\operatorname{gcd}(p, q)=1$. This contradiction shows that the original assumption ($\sqrt{2}$ is rational)

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.
In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$.
By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$.
But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$.

Therefore | $\operatorname{gcd}(p, q) \neq 1$ |
| :---: |
| $\neg Q$ | , which contradicts to the fact that $\operatorname{gcd}(p, q)=1$.

This contradiction shows that the original assumption ($\sqrt{2}$ is rational) was erroneous,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.
In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$.
By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$.
But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$.

Therefore | $\operatorname{gcd}(p, q) \neq 1$ |
| :---: |
| $\neg Q$ | , which contradicts to the fact that $\operatorname{gcd}(p, q)=1$.

This contradiction shows that the original assumption ($\sqrt{2}$ is rational) was erroneous, and $\sqrt{2}$ is actually irrational,

Since any fraction $\frac{p}{q}$ can be reduced to lowest terms, we may assume, without loss of generality, that $\frac{\operatorname{gcd}(p, q)=1}{Q}$.
According to our assumption, $\sqrt{2}=\frac{p}{q}$. By squaring, we get $2=\frac{p^{2}}{q^{2}}$, so $2 q^{2}=p^{2}$.
It means that p^{2} is even. Since p has the same parity as p^{2}
(see Theorem about the same parity of an integer and its square), we conclude that p should be even, that is, $p=2 k$ for some integer k.

In this case, the identity $2 q^{2}=p^{2}$ is equivalent to $2 q^{2}=(2 k)^{2}$, or $q^{2}=2 k^{2}$.
By this, q^{2} is even, and, therefore, q is even too: $2 \mid q$.
But p is also even, that is $2 \mid p$. We have got that $2 \mid p$ and $2 \mid q$.

Therefore | $\operatorname{gcd}(p, q) \neq 1$ |
| :---: |
| $\neg Q$ | , which contradicts to the fact that $\operatorname{gcd}(p, q)=1$.

This contradiction shows that the original assumption ($\sqrt{2}$ is rational) was erroneous, and $\sqrt{2}$ is actually irrational, as required.

Euclid's theorem

Euclid's theorem

Theorem (Euclid).

Euclid's theorem

Theorem (Euclid). There are infinitely many prime numbers.

Theorem (Euclid). There are infinitely many prime numbers. Proof.

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number N

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of p_{1},

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of p_{1}, p_{2},

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed,

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them.

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them. As any natural number greater than $1, N$ is divisible by some prime number.

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them.
As any natural number greater than $1, N$ is divisible by some prime number.
By this, N should be divisible by one of the primes $p_{1}, p_{2}, \ldots, p_{n}$.

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them.
As any natural number greater than $1, N$ is divisible by some prime number.
By this, N should be divisible by one of the primes $p_{1}, p_{2}, \ldots, p_{n}$.
This contradiction shows that

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them.
As any natural number greater than $1, N$ is divisible by some prime number.
By this, N should be divisible by one of the primes $p_{1}, p_{2}, \ldots, p_{n}$.
This contradiction shows that
the assumption (there are only finitely many prime numbers) was erroneous,

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them.
As any natural number greater than $1, N$ is divisible by some prime number.
By this, N should be divisible by one of the primes $p_{1}, p_{2}, \ldots, p_{n}$.
This contradiction shows that
the assumption (there are only finitely many prime numbers) was erroneous, and there are infinitely many primes,

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them.
As any natural number greater than $1, N$ is divisible by some prime number.
By this, N should be divisible by one of the primes $p_{1}, p_{2}, \ldots, p_{n}$.
This contradiction shows that
the assumption (there are only finitely many prime numbers) was erroneous, and there are infinitely many primes, as required.

Theorem (Euclid). There are infinitely many prime numbers.
Proof. Assume, to the contrary, that there are only finitely many prime numbers:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Construct a number $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1$.
N is not divisible by any of $p_{1}, p_{2}, \ldots, p_{n}$.
Indeed, N has a remainder of 1 when divided by any of them.
As any natural number greater than $1, N$ is divisible by some prime number.
By this, N should be divisible by one of the primes $p_{1}, p_{2}, \ldots, p_{n}$.
This contradiction shows that
the assumption (there are only finitely many prime numbers) was erroneous, and there are infinitely many primes, as required.

For source and comments see
Euclid's Elements, Book IX, Proposition 20.
http://aleph0.clarku.edu/ djoyce/java/elements/bookIX/propIX20.html

Proof by exhaustion (proof by cases)

Proof by exhaustion (proof by cases)

A proof by exhaustion consists of examination of every possible case.

Proof by exhaustion (proof by cases)

A proof by exhaustion consists of examination of every possible case. Theorem about inscribed angle.

Proof by exhaustion (proof by cases)

A proof by exhaustion consists of examination of every possible case.
Theorem about inscribed angle. An angle inscribed in a circle is half of the central angle subtending the same arc.

Proof by exhaustion (proof by cases)

A proof by exhaustion consists of examination of every possible case.
Theorem about inscribed angle. An angle inscribed in a circle is half of the central angle subtending the same arc. Proof.

Proof by exhaustion (proof by cases)

A proof by exhaustion consists of examination of every possible case.
Theorem about inscribed angle. An angle inscribed in a circle is half of the central angle subtending the same arc.

Proof. How an inscribed angle may be positioned with respect to the center of the circle?

A proof by exhaustion consists of examination of every possible case.
Theorem about inscribed angle. An angle inscribed in a circle is half of the central angle subtending the same arc.

Proof. How an inscribed angle may be positioned with respect to the center of the circle?

Listen to the proof and try to write it down...

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b. Proof

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b. Proof (by cases).

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$,

The triangle inequality

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$,

The triangle inequality

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b$,

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$,

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$,

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$ is similar to Case 2, just swap a and b.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$ is similar to Case 2, just swap a and b.
- Case 4. $a<0$ and $b<0$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$ is similar to Case 2, just swap a and b.
- Case 4. $a<0$ and $b<0$. Then $|a|=-a,|b|=-b,|a+b|=-a-b$,

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$ is similar to Case 2, just swap a and b.
- Case 4. $a<0$ and $b<0$. Then $|a|=-a,|b|=-b,|a+b|=-a-b$, so $|a+b|=-a-b=|a|+|b|$,

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$ is similar to Case 2, just swap a and b.
- Case 4. $a<0$ and $b<0$. Then $|a|=-a,|b|=-b,|a+b|=-a-b$, so $|a+b|=-a-b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$ is similar to Case 2, just swap a and b.
- Case 4. $a<0$ and $b<0$. Then $|a|=-a,|b|=-b,|a+b|=-a-b$, so $|a+b|=-a-b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
Therefore, $|a+b| \leq|a|+|b|$ for all real numbers a and b,

Theorem (triangle inequality). $|a+b| \leq|a|+|b|$ for any real numbers a, b.
Proof (by cases).

- Case 1. $a \geq 0$ and $b \geq 0$. Then $|a|=a,|b|=b,|a+b|=a+b$, so $|a+b|=a+b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
- Case 2. $a \geq 0$ and $b<0$. Then $|a|=a,|b|=-b,|a+b|=$?
- Case 2a) $a+b \geq 0$. Then $|a+b|=a+b<a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 2b) $a+b<0$. Then $|a+b|=-a-b \leq a-b=|a|+|b|$, so $|a+b| \leq|a|+|b|$.
- Case 3. $a<0$ and $b \geq 0$ is similar to Case 2, just swap a and b.
- Case 4. $a<0$ and $b<0$. Then $|a|=-a,|b|=-b,|a+b|=-a-b$, so $|a+b|=-a-b=|a|+|b|$, and, by this $|a+b| \leq|a|+|b|$.
Therefore, $|a+b| \leq|a|+|b|$ for all real numbers a and b, as required.

The triangle inequality

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

The triangle inequality

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

The triangle inequality

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

The triangle inequality

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.
Corollary 2. $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.
Corollary 2. $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
Proof. $|a|=|(a-b)+b|$

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.
Corollary 2. $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
Proof. $|a|=|(a-b)+b| \leq|a-b|+|b|$

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.
Corollary 2. $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
Proof. $|a|=|(a-b)+b| \leq|a-b|+|b| \Longrightarrow|a|-|b| \leq|a-b|$.

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.
Corollary 2. $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
Proof. $|a|=|(a-b)+b| \leq|a-b|+|b| \Longrightarrow|a|-|b| \leq|a-b|$.
$|b|=|(b-a)+a| \leq|b-a|+|a| \Longrightarrow|a|-|b| \geq-|a-b|$.

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.
Corollary 2. $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
Proof. $|a|=|(a-b)+b| \leq|a-b|+|b| \Longrightarrow|a|-|b| \leq|a-b|$.
$|b|=|(b-a)+a| \leq|b-a|+|a| \Longrightarrow|a|-|b| \geq-|a-b|$.
Therefore, $-|a-b| \leq|a|-|b| \leq|a-b|$.

Why the inequality $|a+b| \leq|a|+|b|$ is called the triangle inequality?

$$
|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|
$$

Corollary 1. $|a-b| \leq|a|+|b|$ for all $a, b \in \mathbb{R}$.
Proof. Apply the triangle inequality to a and $-b$:
$|a+(-b)| \leq|a|+|-b|$.
Since $a+(-b)=a-b$ and $|-b|=|b|$,
we have got $|a-b| \leq|a|+|b|$, as required.
Corollary 2. $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.
Proof. $|a|=|(a-b)+b| \leq|a-b|+|b| \Longrightarrow|a|-|b| \leq|a-b|$.
$|b|=|(b-a)+a| \leq|b-a|+|a| \Longrightarrow|a|-|b| \geq-|a-b|$.
Therefore, $-|a-b| \leq|a|-|b| \leq|a-b|$. Hence $||a|-|b|| \leq|a-b|$, as required.

Let us give another proof of the triangle inequality.

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have
$(a+b)^{2}=a^{2}+b^{2}+2 a b$

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|
$$

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|
$$

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|=(|a|+|b|)^{2} .
$$

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have
$(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|=(|a|+|b|)^{2}$.
Therefore, $(a+b)^{2} \leq(|a|+|b|)^{2}$.

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|=(|a|+|b|)^{2} .
$$

Therefore, $(a+b)^{2} \leq(|a|+|b|)^{2}$. From this we get

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have
$(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|=(|a|+|b|)^{2}$.
Therefore, $(a+b)^{2} \leq(|a|+|b|)^{2}$. From this we get
$\sqrt{(a+b)^{2}} \leq \sqrt{(|a|+|b|)^{2}}$,

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have
$(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|=(|a|+|b|)^{2}$.
Therefore, $(a+b)^{2} \leq(|a|+|b|)^{2}$. From this we get
$\sqrt{(a+b)^{2}} \leq \sqrt{(|a|+|b|)^{2}}$, which implies
$|a+b| \leq||a|+|b||$.

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have
$(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|=(|a|+|b|)^{2}$.
Therefore, $(a+b)^{2} \leq(|a|+|b|)^{2}$. From this we get
$\sqrt{(a+b)^{2}} \leq \sqrt{(|a|+|b|)^{2}}$, which implies
$|a+b| \leq||a|+|b||$.
Since $\|a|+|b| \|=|a|+|b|$,

Let us give another proof of the triangle inequality.
For any real numbers a and b, we have
$(a+b)^{2}=a^{2}+b^{2}+2 a b \underbrace{\leq}_{a b \leq|a b|} a^{2}+b^{2}+2|a b|=|a|^{2}+|b|^{2}+2|a||b|=(|a|+|b|)^{2}$.
Therefore, $(a+b)^{2} \leq(|a|+|b|)^{2}$. From this we get
$\sqrt{(a+b)^{2}} \leq \sqrt{(|a|+|b|)^{2}}$, which implies
$|a+b| \leq||a|+|b||$.
Since $\|a|+|b| \|=|a|+|b|$, we get $| a+b|\leq|a|+|b|$.

How to prove an equivalence

How to prove an equivalence

To prove a statement of type $P \Longleftrightarrow Q$,

How to prove an equivalence

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: P

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R$

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives: Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S$

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.

Example 1.

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$.

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

Proof. What is the law of cosines?

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

Proof. What is the law of cosines?

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

Proof. What is the law of cosines?

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

Proof. What is the law of cosines?

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

A triangle with the sides a, b, c is right

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

Proof. What is the law of cosines?

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

A triangle with the sides a, b, c is right $\Longleftrightarrow \theta=90^{\circ}$

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

Proof. What is the law of cosines?

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

A triangle with the sides a, b, c is right $\Longleftrightarrow \vec{?} \theta=90^{\circ} \Longleftrightarrow \cos \theta=0$

To prove a statement of type $P \Longleftrightarrow Q$, we may use one of two alternatives:
Alternative 1: $P \Longleftrightarrow R \Longleftrightarrow S \Longleftrightarrow \cdots \Longleftrightarrow Q$
Alternative 2: $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
Example 1. Let a, b, c be the lengths of the sides of a triangle and $a \leq b \leq c$. Using the law of cosines, prove that the triangle is right if and only if $a^{2}+b^{2}=c^{2}$.

Proof. What is the law of cosines?

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

A triangle with the sides a, b, c is right $\Longleftrightarrow \theta=90^{\circ} \Longleftrightarrow \cos \theta=0$

$$
\Longleftrightarrow c^{2}=a^{2}+b^{2}
$$

An integer and its cube have the same parity

Example 2. Let n be an integer.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even,

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$,

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=$

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1$

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$,

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$, which is odd.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$, which is odd. We have got that n is odd $\Longrightarrow n^{3}$ is odd.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$, which is odd. We have got that n is odd $\Longrightarrow n^{3}$ is odd. Therefore, by contraposition,

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$, which is odd. We have got that n is odd $\Longrightarrow n^{3}$ is odd. Therefore, by contraposition, n^{3} is even $\Longrightarrow n$ is even.

Example 2. Let n be an integer. Prove that n is even iff n^{3} is even.
Proof. Let us prove first that
n is even $\Longrightarrow n^{3}$ is even.
Let n be even, so $n=2 k$ for some $k \in \mathbb{Z}$. Then $n^{3}=8 k^{3}$, which is even.
Let us prove now that
n^{3} is even $\Longrightarrow n$ is even.
Assume that n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. In this case, $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$, which is odd. We have got that n is odd $\Longrightarrow n^{3}$ is odd. Therefore, by contraposition,

$$
n^{3} \text { is even } \Longrightarrow n \text { is even. }
$$

How to prove uniqueness

How to prove uniqueness

In order to prove that an object is unique,

In order to prove that an object is unique,
one assumes that there are two such objects

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example.

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique. Proof.

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities,

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}.

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0$

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring

$$
=0+0^{\prime}
$$

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring
$=0+0^{\prime} \quad$ by commutativity of addition in the ring

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring
$=0+0^{\prime} \quad$ by commutativity of addition in the ring
$=0$

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring
$=0+0^{\prime} \quad$ by commutativity of addition in the ring
$=0 \quad$ since 0^{\prime} is an additive identity:

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring
$=0+0^{\prime} \quad$ by commutativity of addition in the ring
$=0 \quad$ since 0^{\prime} is an additive identity: $a+0^{\prime}=a$ for any a in the ring.

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring
$=0+0^{\prime} \quad$ by commutativity of addition in the ring
$=0 \quad$ since 0^{\prime} is an additive identity: $a+0^{\prime}=a$ for any a in the ring.
Therefore, $0^{\prime}=0$.

In order to prove that an object is unique,
one assumes that there are two such objects and come to a conclusion that they have to be equal.

Example. Prove that in any ring, the additive identity is unique.
Proof. Assume that there are two additive identities, 0 and 0^{\prime}. Then
$0^{\prime}=0^{\prime}+0 \quad$ since $a=a+0$ for any element a in the ring
$=0+0^{\prime} \quad$ by commutativity of addition in the ring
$=0 \quad$ since 0^{\prime} is an additive identity: $a+0^{\prime}=a$ for any a in the ring.
Therefore, $0^{\prime}=0$.

- Understand what is given and what is to be proven.
- Understand what is given and what is to be proven.

If you prove an implication,

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math.
- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:
- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

Prove $P \Longrightarrow Q$.

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

Prove $P \Longrightarrow Q$.
"Proof." Let $Q \ldots$

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

Prove $P \Longrightarrow Q$.
"Proof." Let $Q \ldots$
2. Denying the antecedent

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

Prove $P \Longrightarrow Q$.
"Proof." Let $Q \ldots$
2. Denying the antecedent

Prove $P \Longrightarrow Q$.

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

Prove $P \Longrightarrow Q$.
"Proof." Let $Q \ldots$
2. Denying the antecedent

Prove $P \Longrightarrow Q$.
"Proof." Let $\neg P$...

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

Prove $P \Longrightarrow Q$.
"Proof." Let Q...
2. Denying the antecedent

Prove $P \Longrightarrow Q$.
"Proof." Let $\neg P$...
3. Guilt by assumption (proof by example)

- Understand what is given and what is to be proven.

If you prove an implication, identify the assumption (what is given)
and conclusion (what should be proven).

- Recall all relevant definitions and theorems in their precise form.
- Do math. Logic can't replace missing mathematics.
- Put math in a correct logical form.
- Avoid typical logical mistakes:

1. Affirming the consequent

Prove $P \Longrightarrow Q$.
"Proof." Let $Q \ldots$
2. Denying the antecedent

Prove $P \Longrightarrow Q$.
"Proof." Let $\neg P$...
3. Guilt by assumption (proof by example)
$\exists x P(x) \Longrightarrow \forall x P(x)$

