Lecture 4

Definitions in Mathematics

The role of a mathematical definition

Definitions in mathematics

Mathematics is an exact science.

The role of a mathematical definition

Mathematics is an exact science. All the statements should be precise,

The role of a mathematical definition

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.

The role of a mathematical definition

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by

The role of a mathematical definition

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.

The role of a mathematical definition

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by a careful usage of definitions.
A definition is an agreement about terms.

The role of a mathematical definition

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.
A definition is an agreement about terms. A definition introduces a new word (or words),

The role of a mathematical definition

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.
A definition is an agreement about terms. A definition introduces a new word (or words), which will be understood exactly as it is stated in the definition.

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.
A definition is an agreement about terms. A definition introduces a new word (or words), which will be understood exactly as it is stated in the definition.

A definition describes the meaning

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.
A definition is an agreement about terms. A definition introduces a new word (or words), which will be understood exactly as it is stated in the definition.

A definition describes the meaning
in which a certain word (or words) will be used.

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.
A definition is an agreement about terms. A definition introduces a new word (or words), which will be understood exactly as it is stated in the definition.
A definition describes the meaning
in which a certain word (or words) will be used.
It is important to know the definitions in their exact forms,

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.
A definition is an agreement about terms. A definition introduces a new word (or words), which will be understood exactly as it is stated in the definition.
A definition describes the meaning
in which a certain word (or words) will be used.
It is important to know the definitions in their exact forms, not just to have an approximate idea.

Mathematics is an exact science. All the statements should be precise, that is, to be understood in a unique way.
The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.
A definition is an agreement about terms. A definition introduces a new word (or words), which will be understood exactly as it is stated in the definition.
A definition describes the meaning
in which a certain word (or words) will be used.
It is important to know the definitions in their exact forms, not just to have an approximate idea.

Structure of a definition

Like a fairy tale often begins with words "Once upon a time ...",

Structure of a definition

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Structure of a definition

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Definition. Let ... <description of objects, universe, etc.>

Structure of a definition

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Definition. Let ... <description of objects, universe, etc.>

The word Definition is not necessary here.

Structure of a definition

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.
Let ... <description of objects, universe, etc.>

The word Definition is not necessary here.

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Let . . . <description of objects, universe, etc.>

The word Definition is not necessary here.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Let . . . <description of objects, universe, etc.>

The word Definition is not necessary here.
The description is followed by one or several statements of names.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Let . . . <description of objects, universe, etc.>
<notation> is called <name>

The word Definition is not necessary here.
The description is followed by one or several statements of names.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Let . . . <description of objects, universe, etc.> <notation> is called <name>

The word Definition is not necessary here.
The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.

Let . . . <description of objects, universe, etc.> <notation> is called <name>

The word Definition is not necessary here.
The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.
A map $h: X \rightarrow Z$ is called the composition of f and g

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.
Let ... <description of objects, universe, etc.> <notation> is called <name>

The word Definition is not necessary here.
The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).
The statements of names are followed by the conditions.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.
A map $h: X \rightarrow Z$ is called the composition of f and g

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.
Let ... <description of objects, universe, etc.>
<notation> is called <name>
if <statement>.
The word Definition is not necessary here.
The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).
The statements of names are followed by the conditions.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.
A map $h: X \rightarrow Z$ is called the composition of f and g

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.
Let ... <description of objects, universe, etc.>
<notation> is called <name>
if <statement>.
The word Definition is not necessary here.
The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).
The statements of names are followed by the conditions.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.
A map $h: X \rightarrow Z$ is called the composition of f and g
if $h(x)=g(f(x))$ for any $x \in X$.

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.
Let ... <description of objects, universe, etc.>
<notation> is called <name>
if <statement>.
The word Definition is not necessary here.
The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).
The statements of names are followed by the conditions.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.
A map $h: X \rightarrow Z$ is called the composition of f and g
if $h(x)=g(f(x))$ for any $x \in X$.
This is a descriptive (or implicit) definition.

Like a fairy tale often begins with words "Once upon a time ...", a typical definition in a well-written math book begins with a description of a context.
Let ... <description of objects, universe, etc.>
<notation> is called <name>
if <statement>.
The word Definition is not necessary here.
The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).
The statements of names are followed by the conditions.

Example:

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.
A map $h: X \rightarrow Z$ is called the composition of f and g
if $h(x)=g(f(x))$ for any $x \in X$.
This is a descriptive (or implicit) definition.
There are also constructive (or explicit) definitions.

Variations

Variations

(1) Sometimes a description of context is omitted.
(1) Sometimes a description of context is omitted.
(2) The last two parts may be written in the opposite order: If <condition>, then <description of names>.

Variations

(1) Sometimes a description of context is omitted.
(2) The last two parts may be written in the opposite order: If <condition>, then <description of names>.
(3) By a tradition, the conditional statement must be understood as a biconditional.
(1) Sometimes a description of context is omitted.
(2) The last two parts may be written in the opposite order: If <condition>, then <description of names>.
(3) By a tradition, the conditional statement must be understood as a biconditional.
(4) if the name is an adjective, then instead of is called one may use is said to be.

Constructive definitions

Definitions in mathematics

The scheme of a constructive definition looks as follows:

Constructive definitions

The scheme of a constructive definition looks as follows:
<description of objects>
<formula> is called <name>.

Constructive definitions

The scheme of a constructive definition looks as follows:
<description of objects>
<formula> is called <name>.

Example.

Let X, Y and Z be sets, and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps.
Then the map $g \circ f: X \rightarrow Z$ defined by formula $g \circ f(x)=g(f(x))$ is called the composition of f and g.

Example of a definition: divisibility

Definitions in mathematics

Example of a definition: divisibility

Definitions in mathematics

Definition. Let d and n be integers and $d \neq 0$.

Example of a definition: divisibility

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d)

Example of a definition: divisibility

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.

Example of a definition: divisibility

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$

Example of a definition: divisibility

[^0]
Example of a definition: divisibility

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division.

Example of a definition: divisibility

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why?

Example of a definition: divisibility

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?

Example of a definition: divisibility

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$?

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division? How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c,

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility,

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

$$
b+c=
$$

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

$$
b+c=a k+a l
$$

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k.
Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

$$
b+c=a k+a l=a(k+l) .
$$

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

$$
b+c=a k+a l=a(k+l) .
$$

Since $k+l$ is an integer,

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

$$
b+c=a k+a l=a(k+l) .
$$

Since $k+l$ is an integer, a is a factor of $b+c$.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

$$
b+c=a k+a l=a(k+l) .
$$

Since $k+l$ is an integer, a is a factor of $b+c$. Therefore, a divides $b+c$.

Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
Notation: $d \mid n$
Remarks. 1. The definition of divisibility is made in terms of multiplication, not division. Why? Is there a division?How would it be with division?
2. Why $d \neq 0$? Why we can't divide by 0 ?

Let us see how this definition is used in the proof of a theorem.
Theorem. Let a, b and c be integers, and $a \neq 0$.
If a divides both b and c, then a divides $b+c$.
Proof. Since $a \mid b$, then, by definition of divisibility, $b=a \cdot k$ for some integer k. Since $a \mid c$, then $c=a \cdot l$ for some integer l. Therefore,

$$
b+c=a k+a l=a(k+l) .
$$

Since $k+l$ is an integer, a is a factor of $b+c$. Therefore, a divides $b+c$.

A definition from geometry

Definitions in mathematics

A definition from geometry

Definitions in mathematics

Definition. Let l be a line and α be a plane in the space.

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α,

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.

Notation: $l \| \alpha$

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.

Notation: $l \| \alpha$
Illustration:

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.
Notation: $l \| \alpha$

Illustration:

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.
Notation: $l \| \alpha$

Illustration:

Control question: What does it mean that a line is not parallel to a plane?

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.
Notation: $l \| \alpha$

Illustration:

Control question: What does it mean that a line is not parallel to a plane?
By definition, $l \| \alpha \Longleftrightarrow$

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.
Notation: $l \| \alpha$

Illustration:

Control question: What does it mean that a line is not parallel to a plane?
By definition, $l \| \alpha \Longleftrightarrow \underbrace{l \cap \alpha=\varnothing}_{l \text { doesn't intersect } \alpha} \vee \underbrace{l \subset \alpha}_{l \text { lies on } \alpha}$

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.
Notation: $l \| \alpha$

Illustration:

Control question: What does it mean that a line is not parallel to a plane?
By definition, $l \| \alpha \Longleftrightarrow \underbrace{l \cap \alpha=\varnothing}_{l \text { doesn't intersect } \alpha} \vee \underbrace{l \subset \alpha}_{l \text { lies on } \alpha}$
Therefore, $\quad l \sharp \alpha \Longleftrightarrow$

A definition from geometry

Definition. Let l be a line and α be a plane in the space. The line l is said to be parallel to the plane α, if either l doesn't intersect α or l lies on α.
Notation: $l \| \alpha$

Illustration:

Control question: What does it mean that a line is not parallel to a plane?
By definition, $l \| \alpha \Longleftrightarrow \underbrace{l \cap \alpha=\varnothing}_{l \text { doesn't intersect } \alpha} \vee \underbrace{l \subset \alpha}_{l \text { lies on } \alpha}$
Therefore, $l \sharp \alpha \Longleftrightarrow \underbrace{l \cap \alpha \neq \varnothing} \wedge \underbrace{l \neq \alpha}$ l intersects $\alpha \quad l$ doesn't lies on α

Non-parallel

Definitions in mathematics

Non-parallel

```
lH}\alpha\Longleftrightarrow\mp@subsup{\underbrace}{}{l\cap\alpha\not=\varnothing}\wedge\quad\mp@subsup{\underbrace}{}{l\not\in\alpha
    l intersects \alpha l doesn't lies on \alpha
```


Non-parallel

$$
l \text { H } \alpha \Longleftrightarrow \underbrace{l \cap \alpha \neq \varnothing}_{l \text { intersects } \alpha} \wedge \underbrace{l \notin \alpha}_{l \text { doesn't lies on } \alpha}
$$

In words:

Non-parallel

$$
l \text { H } \alpha \Longleftrightarrow \underbrace{l \cap \alpha \neq \varnothing}_{l \text { intersects } \alpha} \wedge \underbrace{l \notin \alpha}_{l \text { doesn't lies on } \alpha}
$$

In words:
A line l is not parallel to a plane α if l intersects α, but doesn't lie on α.

Non-parallel

```
lH}\alpha\Longleftrightarrow\mp@subsup{\underbrace}{l\mathrm{ intersects }\alpha}{l\cap\alpha\not=\varnothing}\wedge\mp@subsup{\underbrace}{l\mathrm{ doesn't lies on }\alpha}{l\not\in\alpha
```

In words:
A line l is not parallel to a plane α if l intersects α, but doesn't lie on α. A line which is not parallel to a plane is said to transverse the plane.

Non-parallel

```
lH}\alpha\Longleftrightarrow\mp@subsup{\underbrace}{l\mathrm{ intersects }\alpha}{l\cap\alpha\not=\varnothing}\wedge\mp@subsup{\underbrace}{l\mathrm{ doesn't lies on }\alpha}{l\not\in\alpha
```

In words:
A line l is not parallel to a plane α if l intersects α, but doesn't lie on α. A line which is not parallel to a plane is said to transverse the plane.
(The line and plane are said to be transversal.)

Non-parallel

```
lH\alpha\Longleftrightarrow\mp@subsup{\underbrace}{l\mathrm{ intersects }\alpha}{l\cap\alpha\not=\varnothing}}\wedge=\mp@subsup{\underbrace}{l\mathrm{ doesn't lies on }\alpha}{l\not\in\alpha
```

In words:
A line l is not parallel to a plane α if l intersects α, but doesn't lie on α. A line which is not parallel to a plane is said to transverse the plane.
(The line and plane are said to be transversal.)

Illustration:

$$
l \text { H } \alpha \Longleftrightarrow \underbrace{l \cap \alpha \neq \varnothing}_{l \text { intersects } \alpha} \wedge \underbrace{l \nsubseteq \alpha}_{l \text { doesn't lies on } \alpha}
$$

In words:
A line l is not parallel to a plane α if l intersects α, but doesn't lie on α. A line which is not parallel to a plane is said to transverse the plane.
(The line and plane are said to be transversal.)

Illustration:

Definition of limit

Definition of limit

Definitions in mathematics

Definition. Let $f(x)$ be a function,

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers.

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0
$$

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0
$$

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x
$$

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta
$$

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations:

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers.
L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x)$

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers.
L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.

Definition. Let $f(x)$ be a function, a and L be real numbers.
L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.
Why does this definition appear to be difficult?

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers.
L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.
Why does this definition appear to be difficult?

- Unknown letters: ε, δ from Greek alphabet

Definition of limit

Definition. Let $f(x)$ be a function, a and L be real numbers.
L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.
Why does this definition appear to be difficult?

- Unknown letters: ε, δ from Greek alphabet:
$\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \varphi, \chi, \psi, \omega$

Definition. Let $f(x)$ be a function, a and L be real numbers.
L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.
Why does this definition appear to be difficult?

- Unknown letters: ε, δ from Greek alphabet:
$\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \varphi, \chi, \psi, \omega$
A, B, Г, $\Delta, \mathrm{E}, \mathrm{Z}, \mathrm{H}, \Theta, \mathrm{I}, \mathrm{K}, \Lambda, \mathrm{M}, \mathrm{N}, \Xi, \mathrm{O}, \Pi, \mathrm{P}, \Sigma, \mathrm{T}, \Upsilon, \Phi, \mathrm{X}, \Psi, \Omega$

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.
Why does this definition appear to be difficult?

- Unknown letters: ε, δ from Greek alphabet:
$\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \varphi, \chi, \psi, \omega$ A, B, $, \Delta, \mathrm{E}, \mathrm{Z}, \mathrm{H}, \Theta, \mathrm{I}, \mathrm{K}, \Lambda, \mathrm{M}, \mathrm{N}, \Xi, \mathrm{O}, \Pi, \mathrm{P}, \Sigma, \mathrm{T}, \Upsilon, \Phi, \mathrm{X}, \Psi, \Omega$
- Three quantifiers

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.
Why does this definition appear to be difficult?

- Unknown letters: ε, δ from Greek alphabet:
$\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \varphi, \chi, \psi, \omega$
A, B, Г, $\Delta, \mathrm{E}, \mathrm{Z}, \mathrm{H}, \Theta, \mathrm{I}, \mathrm{K}, \Lambda, \mathrm{M}, \mathrm{N}, \Xi, \mathrm{O}, \Pi, \mathrm{P}, \Sigma, \mathrm{T}, \Upsilon, \Phi, \mathrm{X}, \Psi, \Omega$
- Three quantifiers
- Two inequalities

Definition. Let $f(x)$ be a function, a and L be real numbers. L is called a limit of f as x approaches a if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notations: $L=\lim _{x \rightarrow a} f(x) \quad$ or $\quad f(x) \underset{x \rightarrow a}{\longrightarrow} L$.
Why does this definition appear to be difficult?

- Unknown letters: ε, δ from Greek alphabet:
$\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \varphi, \chi, \psi, \omega$
A, B, Г, $\Delta, \mathrm{E}, \mathrm{Z}, \mathrm{H}, \Theta, \mathrm{I}, \mathrm{K}, \Lambda, \mathrm{M}, \mathrm{N}, \Xi, \mathrm{O}, \Pi, \mathrm{P}, \Sigma, \mathrm{T}, \Upsilon, \Phi, \mathrm{X}, \Psi, \Omega$
- Three quantifiers
- Two inequalities
- One implication

Understanding the definition of limit

Definitions in mathematics

Understanding the definition of limit

Definitions in mathematics

How to understand what exactly the definition says?

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

For any x such that $x \in(a-\delta, a+\delta)$,

Understanding the definition of limit

How to understand what exactly the definition says?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

For any x such that $x \in(a-\delta, a+\delta)$, we have $f(x) \in(L-\varepsilon, L+\varepsilon)$.

Working with the definition of limit

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
& L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow
\end{aligned}
$$

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
& L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0
\end{aligned}
$$

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
& L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 \quad \forall \delta>0
\end{aligned}
$$

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
& L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 \quad \forall \delta>0 \quad \exists x
\end{aligned}
$$

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x
\end{aligned} \begin{array}{llll}
L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 & \forall \delta>0 & \exists x & 0<|x-a|<\delta
\end{array}
$$

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x
\end{aligned} \begin{array}{llll}
& 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 & \forall \delta>0 & \exists x & 0<|x-a|<\delta \wedge|f(x)-L| \geq \varepsilon .
\end{array}
$$

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x
\end{aligned} \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

In words:

Working with the definition of limit

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
& L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 \quad \forall \delta>0 \quad \exists x \quad 0<|x-a|<\delta \wedge|f(x)-L| \geq \varepsilon .
\end{aligned}
$$

In words:
A number L is not a limit of a function $f(x)$ at a point a,

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x
\end{aligned} \begin{array}{llll}
& 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 & \forall \delta>0 & \exists x & 0<|x-a|<\delta \wedge|f(x)-L| \geq \varepsilon .
\end{array}
$$

In words:
A number L is not a limit of a function $f(x)$ at a point a, if there exists a positive number ε, such that for any positive number δ one can find x, such that $0<|x-a|<\delta$, but $|f(x)-L| \geq \varepsilon$.

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x
\end{aligned} \begin{array}{llll}
& 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 & \forall \delta>0 & \exists x & 0<|x-a|<\delta \wedge|f(x)-L| \geq \varepsilon .
\end{array}
$$

In words:
A number L is not a limit of a function $f(x)$ at a point a, if there exists a positive number ε, such that for any positive number δ one can find x, such that $0<|x-a|<\delta$, but $|f(x)-L| \geq \varepsilon$.

Exercise 1. Use the definition of limit to prove that $\lim _{x \rightarrow 3}(2 x+1)=7$.

What does it mean that $L \neq \lim _{x \rightarrow a} f(x)$?

$$
\begin{aligned}
& L=\lim _{x \rightarrow a} f(x) \Longleftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x
\end{aligned} \begin{array}{llll}
& 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \\
L \neq \lim _{x \rightarrow a} f(x) \Longleftrightarrow \exists \varepsilon>0 & \forall \delta>0 & \exists x & 0<|x-a|<\delta \wedge|f(x)-L| \geq \varepsilon .
\end{array}
$$

In words:
A number L is not a limit of a function $f(x)$ at a point a, if there exists a positive number ε, such that for any positive number δ one can find x, such that $0<|x-a|<\delta$, but $|f(x)-L| \geq \varepsilon$.

Exercise 1. Use the definition of limit to prove that $\lim _{x \rightarrow 3}(2 x+1)=7$.
Exercise 2. Use the definition of limit to prove that $\lim _{x \rightarrow 0}\left(\sin \frac{1}{x}\right) \neq 0$.

Can one simplify the definition of limit?

Yes, at some cost.

Can one simplify the definition of limit?

Yes, at some cost. At the cost of an extra definition.

Can one simplify the definition of limit?

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$.

Can one simplify the definition of limit?

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.

Can one simplify the definition of limit?

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if

Can one simplify the definition of limit?

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a
such that $f(U \backslash\{a\}) \subset V$.

Can one simplify the definition of limit?

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a such that $f(U \backslash\{a\}) \subset V$.
Not easy enough?

Can one simplify the definition of limit?

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a such that $f(U \backslash\{a\}) \subset V$.
Not easy enough? Then take one more definition:

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a such that $f(U \backslash\{a\}) \subset V$.
Not easy enough? Then take one more definition:
Let $a \in \mathbb{R}$. A set U is a neighborhood of a iff

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a such that $f(U \backslash\{a\}) \subset V$.
Not easy enough? Then take one more definition:
Let $a \in \mathbb{R}$. A set U is a neighborhood of a iff there exists $\varepsilon>0$ such that U contains the ε-neighborhood of a.

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a such that $f(U \backslash\{a\}) \subset V$.
Not easy enough? Then take one more definition:
Let $a \in \mathbb{R}$. A set U is a neighborhood of a iff there exists $\varepsilon>0$ such that U contains the ε-neighborhood of a. Now
L is a limit of f as x approaches a iff for each neighborhood V of L $f^{-1}(V) \cup\{a\}$ is a neighborhood of a.

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a such that $f(U \backslash\{a\}) \subset V$.
Not easy enough? Then take one more definition:
Let $a \in \mathbb{R}$. A set U is a neighborhood of a iff there exists $\varepsilon>0$ such that U contains the ε-neighborhood of a. Now
L is a limit of f as x approaches a iff for each neighborhood V of L $f^{-1}(V) \cup\{a\}$ is a neighborhood of a.

The notion of limit can be replaced by the notion of continuity:

Yes, at some cost. At the cost of an extra definition.
Let $a \in \mathbb{R}, \varepsilon \in \mathbb{R}$ and $\varepsilon>0$. Then the interval $(a-\varepsilon, a+\varepsilon)$
is called the ε-neighborhood of a.
L is called a limit of f as x approaches a if
for any ε-neighborhood V of L there exists a δ-neighborhood U of a such that $f(U \backslash\{a\}) \subset V$.
Not easy enough? Then take one more definition:
Let $a \in \mathbb{R}$. A set U is a neighborhood of a iff there exists $\varepsilon>0$ such that U contains the ε-neighborhood of a. Now
L is a limit of f as x approaches a iff for each neighborhood V of L $f^{-1}(V) \cup\{a\}$ is a neighborhood of a.
The notion of limit can be replaced by the notion of continuity:
A function f is said to be continuous at a if
the preimage $f^{-1}(U)$ of any neighborhood U of $f(a)$ is a neighborhood of a.

Linear dependence

Definitions in mathematics

Linear dependence

Definitions in mathematics

Definition.

Linear dependence

Definitions in mathematics

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if

Linear dependence

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.

Linear dependence

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.

Disclaimer.

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.
Disclaimer. We do not discuss the mathematical concept of linear dependence, but rather the logical structure of the definition above.

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.
Disclaimer. We do not discuss the mathematical concept of linear dependence, but rather the logical structure of the definition above.
How to express in short that the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are not all zeros?

Linear dependence

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.

Disclaimer. We do not discuss the mathematical concept of linear dependence, but rather the logical structure of the definition above.

How to express in short that the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are not all zeros?
$a_{1}, a_{2}, \ldots, a_{n}$ are not all zeros $\Longleftrightarrow a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0$

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.
Disclaimer. We do not discuss the mathematical concept of linear dependence, but rather the logical structure of the definition above.

How to express in short that the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are not all zeros?

$$
a_{1}, a_{2}, \ldots, a_{n} \text { are not all zeros } \Longleftrightarrow a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0
$$

Linear independence in symbolic form:

Linear dependence

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.

Disclaimer. We do not discuss the mathematical concept of linear dependence, but rather the logical structure of the definition above.

How to express in short that the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are not all zeros?

$$
a_{1}, a_{2}, \ldots, a_{n} \text { are not all zeros } \Longleftrightarrow a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0
$$

Linear independence in symbolic form:
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \quad a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0 \wedge a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.
Disclaimer. We do not discuss the mathematical concept of linear dependence, but rather the logical structure of the definition above.

How to express in short that the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are not all zeros?

$$
a_{1}, a_{2}, \ldots, a_{n} \text { are not all zeros } \Longleftrightarrow a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0
$$

Linear independence in symbolic form:
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \quad a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0 \wedge a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$

Definition.

Linear dependence

Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly dependent if there exist numbers $a_{1}, a_{2}, \ldots, a_{n}$, which are not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.

Disclaimer. We do not discuss the mathematical concept of linear dependence, but rather the logical structure of the definition above.

How to express in short that the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are not all zeros?

$$
a_{1}, a_{2}, \ldots, a_{n} \text { are not all zeros } \Longleftrightarrow a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0
$$

Linear independence in symbolic form:
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \quad a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0 \wedge a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$
Definition. The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are called linearly independent if they are not linearly dependent.

Linear independence

Definitions in mathematics

Linear independence

Definitions in mathematics

Let us construct a symbolic form of linear independence.

Linear independence

Let us construct a symbolic form of linear independence.
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \underbrace{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0}_{P} \wedge \underbrace{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}}_{Q}$

Linear independence

Let us construct a symbolic form of linear independence.
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \underbrace{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0}_{P} \wedge \underbrace{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}}_{Q}$
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent \Longleftrightarrow

Linear independence

Let us construct a symbolic form of linear independence.
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \underbrace{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0}_{P} \wedge \underbrace{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}}_{Q}$
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent \Longleftrightarrow
$\neg\left(\exists a_{1}, a_{2}, \ldots, a_{n} \quad a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0 \wedge a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}\right)$

Linear independence

Let us construct a symbolic form of linear independence.
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \underbrace{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0}_{P} \wedge \underbrace{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}}_{Q}$
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent \Longleftrightarrow
$\neg\left(\exists a_{1}, a_{2}, \ldots, a_{n} a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0 \wedge a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}\right)$
[We negate the conjunction as follows: $\neg(P \wedge Q) \Longleftrightarrow(Q \Longrightarrow \neg P)$]

Linear independence

Let us construct a symbolic form of linear independence.
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow
$\exists a_{1}, a_{2}, \ldots, a_{n} \underbrace{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0}_{P} \wedge \underbrace{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}}_{Q}$
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent \Longleftrightarrow
$\neg\left(\exists a_{1}, a_{2}, \ldots, a_{n} a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0 \wedge a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}\right)$
[We negate the conjunction as follows: $\neg(P \wedge Q) \Longleftrightarrow(Q \Longrightarrow \neg P)$]
$\forall a_{1}, a_{2}, \ldots, a_{n} \underbrace{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}}_{Q} \Longrightarrow$
$\underbrace{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}=0}_{\neg P}$

Linear independence

Let us construct a symbolic form of linear independence.
$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent \Longleftrightarrow

$\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly independent \Longleftrightarrow
$\neg\left(\exists a_{1}, a_{2}, \ldots, a_{n} a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \neq 0 \wedge a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}\right)$
[We negate the conjunction as follows: $\neg(P \wedge Q) \Longleftrightarrow(Q \Longrightarrow \neg P)$]
$\forall a_{1}, a_{2}, \ldots, a_{n} \underbrace{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}}_{Q} \Longrightarrow$
$\underbrace{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}=0}_{\neg P}$
$\forall a_{1}, a_{2}, \ldots, a_{n} \quad\left(a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0} \Longrightarrow a_{1}=a_{2}=\cdots=a_{n}=0\right)$
linear independence

Definition of ring (from Algebra)

Motivation.

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties,

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers,

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties. For example, polynomials or matrices.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties. For example, polynomials or matrices.

It is natural to gather all such sets equipped with operations under the same roof.

Definition of ring (from Algebra)

Motivation. We know that the set of integers is closed with respect to the operations of addition and multiplication. It means that

$$
\forall a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z} \quad \text { and } \quad a b \in \mathbb{Z} \text {. }
$$

Addition and multiplication in \mathbb{Z} possess several important properties, like associativity and distributivity.
Besides the integers, there are many other sets of mathematical objects for which there are operations of addition and multiplication possessing the same properties. For example, polynomials or matrices.

It is natural to gather all such sets equipped with operations under the same roof.

It is done in the definition of ring.

Definition of ring

Definitions in mathematics

Definition. A ring R is a set

Definition. A ring R is a set with two operations, addition and multiplication,

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and .,

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$
(multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.
- If, additionally, $\exists 1 \in R \quad \forall a \in R \quad 1 \cdot a=a \cdot 1=a$

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.
- If, additionally, $\exists 1 \in R \quad \forall a \in R \quad 1 \cdot a=a \cdot 1=a$
(there exists a multiplicative identity), then R is called a ring with unity.

Definition of ring

Definition. A ring R is a set with two operations, addition and multiplication, denoted by + and \cdot, satisfying the following properties:

1. $\forall a, b \in R \quad a+b \in R \quad$ (R is closed with respect to +$)$
2. $\forall a, b \in R \quad a \cdot b \in R \quad$ (R is closed with respect to $\cdot)$
3. $\forall a, b, c \in R \quad(a+b)+c=a+(b+c) \quad$ (+ is associative)
4. $\forall a, b \in R \quad a+b=b+a \quad$ (+ is commutative)
5. $\exists 0 \in R \quad \forall a \in R \quad a+0=a \quad$ (there exists an additive identity in R)
6. $\forall a \in R \quad \exists-a \in R \quad a+(-a)=0$ (each element in R has an additive inverse)
7. $\forall a, b, c \in R \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad$ (is associative)
8. $\forall a, b, c \in R \quad a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$ (multiplication distributes over addition)

- If, additionally, $\forall a, b \in R \quad a \cdot b=b \cdot a \quad$ (. is commutative),
then R is called a commutative ring.
- If, additionally, $\exists 1 \in R \quad \forall a \in R \quad 1 \cdot a=a \cdot 1=a$
(there exists a multiplicative identity), then R is called a ring with unity.
The properties are called the axioms of a ring.

Examples of rings

Lecture 7
Definitions in mathematics

Examples of rings

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.

Examples of rings

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
2. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)

Examples of rings

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
2. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
3. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
4. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
5. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
6. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
7. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
8. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
9. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
10. $\mathbb{Q}[x], \quad \mathbb{R}[x], \quad \mathbb{Z}[x, y]$, etc. are rings of polynomials.
11. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
12. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
13. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
14. $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{Z}[x, y]$, etc. are rings of polynomials.
15. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring.
16. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
17. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
18. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
19. $\mathbb{Q}[x], \quad \mathbb{R}[x], \quad \mathbb{Z}[x, y]$, etc. are rings of polynomials.
20. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring. (Commutative? With unity?)
21. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
22. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
23. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
24. $\mathbb{Q}[x], \quad \mathbb{R}[x], \quad \mathbb{Z}[x, y]$, etc. are rings of polynomials.
25. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring.
(Commutative? With unity?)
26. \mathbb{Z}_{m}, residues modulo m (to be discussed later in the course) form a ring.
27. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
28. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
29. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
30. $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{Z}[x, y]$, etc. are rings of polynomials.
31. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring. (Commutative? With unity?)
32. \mathbb{Z}_{m}, residues modulo m (to be discussed later in the course) form a ring.
33. $\mathcal{F}=\{f \mid f: \mathbb{R} \rightarrow \mathbb{R}\}$, real valued functions with the operations of addition $(f+g)(x)=f(x)+g(x)$ and multiplication $(f \cdot g)(x)=f(x) \cdot g(x)$ form a ring.
34. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with unity.
35. $2 \mathbb{Z}=\{2 n \mid n \in \mathbb{Z}\}$ is a ring of even integers (Commutative? With unity?)
36. $\mathbb{Z}[x]$, polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)
37. $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{Z}[x, y]$, etc. are rings of polynomials.
38. $M_{n}(\mathbb{R})$, square $n \times n$ matrices with real coefficients form a ring. (Commutative? With unity?)
39. \mathbb{Z}_{m}, residues modulo m (to be discussed later in the course) form a ring.
40. $\mathcal{F}=\{f \mid f: \mathbb{R} \rightarrow \mathbb{R}\}$, real valued functions with the operations of addition $(f+g)(x)=f(x)+g(x)$ and multiplication $(f \cdot g)(x)=f(x) \cdot g(x)$ form a ring.

Important: To prove that each of the listed above objects is a ring, we have to verify all ring axioms.

How to use the definition of ring

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem. Theorem.

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, \quad a \cdot 0=0$ for all $a \in R$.

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, \quad a \cdot 0=0$ for all $a \in R$. Proof.

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, \quad a \cdot 0=0$ for all $a \in R$. Proof.

$$
a \cdot 0=a \cdot 0+0
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.
$a \cdot 0=a \cdot 0+0 \quad$ by axiom $\mathbf{5}$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } 5 \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0))
\end{aligned}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) \quad \text { by axiom } \mathbf{6}
\end{aligned}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) \quad \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0)
\end{aligned}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} & & \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) & & \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) & & \text { by axiom } \mathbf{3}
\end{aligned}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{array}{rlrl}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} & \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) & & \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) & & \text { by axiom } \mathbf{3} \\
& =a \cdot(0+0)+(-a \cdot 0) & &
\end{array}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, \quad a \cdot 0=0$ for all $a \in R$.
Proof.

$$
\begin{array}{rlrl}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) & & \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) & & \text { by axiom } \mathbf{3} \\
& =a \cdot(0+0)+(-a \cdot 0) & \text { by axiom } \mathbf{8}
\end{array}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$.
Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) \quad \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{3} \\
& =a \cdot(0+0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{8} \\
& =a \cdot 0+(-a \cdot 0)
\end{aligned}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) \quad \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{3} \\
& =a \cdot(0+0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{8} \\
& =a \cdot 0+(-a \cdot 0) \quad \text { by axiom } \mathbf{5}
\end{aligned}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) \quad \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{3} \\
& =a \cdot(0+0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{8} \\
& =a \cdot 0+(-a \cdot 0) \quad \text { by axiom } \mathbf{5} \\
& =0
\end{aligned}
$$

How to use the definition of ring

Let us see how the definition of ring is used in the proof of a theorem.
Theorem. In any ring $R, a \cdot 0=0$ for all $a \in R$. Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot 0+0 \quad \text { by axiom } \mathbf{5} \\
& =a \cdot 0+(a \cdot 0+(-a \cdot 0)) \quad \text { by axiom } \mathbf{6} \\
& =(a \cdot 0+a \cdot 0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{3} \\
& =a \cdot(0+0)+(-a \cdot 0) \quad \text { by axiom } \mathbf{8} \\
& =a \cdot 0+(-a \cdot 0) \quad \text { by axiom } \mathbf{5} \\
& =0 \quad \text { by axiom } \mathbf{6}
\end{aligned}
$$

Understanding mathematical texts

Definitions in mathematics

Understanding mathematical texts

Definitions in mathematics

In any mathematical text (article, monograph, textbook, etc.)

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.)
one can trace common elements which help to see the structure of the text.

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations, authors' opinions, and many other not very essential details.

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations, authors' opinions, and many other not very essential details.

One can rarely read a mathematical text from the very beginning to the very end and understand everything at once.

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations, authors' opinions, and many other not very essential details.

One can rarely read a mathematical text from the very beginning to the very end and understand everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods).

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations, authors' opinions, and many other not very essential details.

One can rarely read a mathematical text from the very beginning to the very end and understand everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding.

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations, authors' opinions, and many other not very essential details.

One can rarely read a mathematical text from the very beginning to the very end and understand everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding. A reading starts with determining the structure of the text and sorting out important and not very important elements.

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations, authors' opinions, and many other not very essential details.

One can rarely read a mathematical text from the very beginning to the very end and understand everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding.

A reading starts with determining the structure of the text and sorting out important and not very important elements.

The second round is to focus on the primary parts of the text: definitions and statements of theorems.

Understanding mathematical texts

In any mathematical text (article, monograph, textbook, etc.) one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries), proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations, authors' opinions, and many other not very essential details.

One can rarely read a mathematical text from the very beginning to the very end and understand everything at once. Usually a work with a mathematical text involves several rounds (approaches, periods). Each round contributes to the overall understanding.

A reading starts with determining the structure of the text and sorting out important and not very important elements.

The second round is to focus on the primary parts of the text: definitions and statements of theorems.

Next come examples and detailed reading of proofs.

Let us read!

Let's try to read an excerpt from a math textbook. We are not expected to understand the mathematical content, but we should be able to analyze the logical structure of the text. Determine and indicate definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

Let's try to read an excerpt from a math textbook. We are not expected to understand the mathematical content, but we should be able to analyze the logical structure of the text. Determine and indicate definitions, notations, theorems, proofs, examples, exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by straightedge and compass, this chapter introduces the concept of an algebraic number. Each such number will satisfy many polynomial equations and our immediate goal is to choose the simplest one.

A number $\alpha \in \mathbb{C}$ is said to be algebraic over a field $\mathbb{F} \subseteq \mathbb{C}$ if there exists a nonzero polynomial $f(x) \in \mathbb{F}[x]$ such that α is a zero of $f(x)$.

For each field \mathbb{F}, every number α in \mathbb{F} is algebraic over \mathbb{F} because α is a zero of the polynomial $f(x)=x-\alpha \in \mathbb{F}[x]$. This implies that e and π are algebraic over \mathbb{R}, though they are not algebraic over \mathbb{Q} as we will prove later.

The number $\sqrt{2}$ is algebraic over \mathbb{Q} because it is zero of the polynomial $f(x)=x^{2}-2$, which is nonzero and has coefficients in \mathbb{Q}.
In order to show that a number is algebraic, we look for a suitable polynomial having that number as zero. Try to prove that $1+\sqrt{3}$ is algebraic over \mathbb{Q}.
It is useful to be able to recognize the definition of "algebraic over a field \mathbb{F} " when it appears in different guises: a number $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ if and only if there is a positive integer n such that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}\right\}$ are linearly dependent over \mathbb{F}.

Indeed, if $\alpha \in \mathbb{C}$ is algebraic over $\mathbb{F} \subseteq \mathbb{C}$ then there exists a polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, whose coefficients $a_{0}, a_{1}, \ldots, a_{n}$ all belong to \mathbb{F}, at least one of these coefficients is nonzero, and $f(\alpha)=0$, that is

$$
a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \cdots+a_{n-1} \alpha^{n-1}+a_{n} \alpha^{n}=0
$$

Since \mathbb{F} is a subfield of \mathbb{C}, we can regard \mathbb{C} as a vector space over \mathbb{F}. The numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ are all elements in \mathbb{C}, and hence can be regarded as vectors in the vector space \mathbb{C} over \mathbb{F}.

The coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, on the other hand, are all in \mathbb{F} so we can regard them as scalars. Thus, the equality ($*$) can be interpreted as a linear dependence of vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n}$ in \mathbb{C}.
You will often meet the terms "algebraic number" and "transcendental number" where no field is specified. In such cases the field is taken to be \mathbb{Q}. We formalize this as follows.

A complex number is said to be an algebraic number if it is algebraic over \mathbb{Q}; a transcendental number if it is not algebraic over \mathbb{Q}.

[^0]: Definition. Let d and n be integers and $d \neq 0$. One says that d divides n (or, equivalently, n is divisible by d) if $n=d \cdot k$ for some integer k.
 Notation: $d \mid n$
 Remarks.

