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Mathematics is an exact science. All the statements should be precise,
that is, to be understood in a unique way.

The precision (exactness, accuracy, clarity) is ensured by
a careful usage of definitions.

A definition is an agreement about terms. A definition introduces a new word
(or words), which will be understood exactly as it is stated in the definition.

A definition describes the meaning
in which a certain word (or words) will be used.

It is important to know the definitions in their exact forms,
not just to have an approximate idea.
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Like a fairy tale often begins with words “Once upon a time ...”,

a typical definition in a well-written math book begins
with a description of a context.

Definition. Let . . . <description of objects, universe, etc.>
<notation> is called <name>
if <statement>.

The description is followed by one or several statements of names.
Names are emphasized typographically (by italic or bold).
The statements of names are followed by the conditions.

Example:
Let X , Y and Z be sets, and let f ∶X → Y , g ∶ Y → Z be maps.
A map h ∶X → Z is called the composition of f and g

if h(x) = g(f(x)) for any x ∈X .

This is a descriptive (or implicit) definition.
There are also constructive (or explicit) definitions.
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(1) Sometimes a description of context is omitted.

(2) The last two parts may be written in the opposite order:
If <condition>, then <description of names>.

(3) By a tradition, the conditional statement
must be understood as a biconditional.

(4) if the name is an adjective,
then instead of is called one may use is said to be.
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The scheme of a constructive definition looks as follows:

<description of objects>
<formula> is called <name>.

Example.
Let X , Y and Z be sets, and let f ∶X → Y , g ∶ Y → Z be maps.
Then the map g ○ f ∶X → Z defined by formula g ○ f(x) = g(f(x)) is

called the composition of f and g .
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Definition. Let d and n be integers and d ≠ 0 . One says that
d divides n (or, equivalently, n is divisible by d )
if n = d ⋅ k for some integer k .

Notation: d ∣n
Remarks. 1. The definition of divisibility is made in terms of multiplication,

not division. Why? Is there a division?How would it be with
division?

2. Why d ≠ 0 ? Why we can’t divide by 0 ?

Let us see how this definition is used in the proof of a theorem.

Theorem. Let a, b and c be integers, and a ≠ 0 .
If a divides both b and c , then a divides b + c .

Proof. Since a ∣ b , then, by definition of divisibility, b = a ⋅ k for some integer k .
Since a ∣ c , then c = a ⋅ l for some integer l . Therefore,

b + c = ak + al = a(k + l) .
Since k + l is an integer, a is a factor of b + c . Therefore, a divides b + c . ◻
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Definition. Let l be a line and α be a plane in the space. The line l is said to
be parallel to the plane α , if either l doesn’t intersect α or l lies on α .

Notation: l ∣∣α
Illustration:

α

l

α
l

Control question: What does it mean that a line is not parallel to a plane?

By definition, l ∣∣α ⇐⇒ l ∩ α = ∅´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l doesn’t intersect α

∨ l ⊂ α±
l lies on α

Therefore, l ∦ α ⇐⇒ l ∩ α ≠ ∅´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l intersects α

∧ l /⊂ α±
l doesn’t lies on α
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l ∦ α ⇐⇒ l ∩ α ≠ ∅´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l intersects α

∧ l /⊂ α±
l doesn’t lies on α

In words:
A line l is not parallel to a plane α if l intersects α , but doesn’t lie on α .

A line which is not parallel to a plane is said to transverse the plane.

(The line and plane are said to be transversal. )

Illustration:

α

l
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Definition. Let f(x) be a function, a and L be real numbers.
L is called a limit of f as x approaches a if

∀ ε > 0 ∃ δ > 0 ∀x 0 < ∣x − a∣ < δ Ô⇒ ∣f(x) −L∣ < ε .
Notations: L = lim

x→a
f(x) or f(x) Ð→

x→a
L .

Why does this definition appear to be difficult?

– Unknown letters: ε , δ from Greek alphabet:

α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, µ, ν, ξ, o, π, ρ, σ, τ, υ, ϕ, χ, ψ, ω

A, B, Γ, ∆, E, Z, H, Θ, I, K, Λ, M, N, Ξ, O, Π, P, Σ, T, Υ, Φ, X, Ψ, Ω

– Three quantifiers

– Two inequalities

– One implication
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Why does this definition appear to be difficult?

– Unknown letters: ε , δ from Greek alphabet

:

α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, µ, ν, ξ, o, π, ρ, σ, τ, υ, ϕ, χ, ψ, ω

A, B, Γ, ∆, E, Z, H, Θ, I, K, Λ, M, N, Ξ, O, Π, P, Σ, T, Υ, Φ, X, Ψ, Ω

– Three quantifiers

– Two inequalities

– One implication
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How to understand what exactly the definition says?

L = lim
x→a

f(x) ⇐⇒ ∀ ε > 0 ∃ δ > 0 ∀x 0 < ∣x − a∣ < δ Ô⇒ ∣f(x) −L∣ < ε .

x

y y = f(x)

a

L
L + ε

L − ε

a + δa − δ

x

f(x)

For any x such that x ∈ (a − δ, a + δ) , we have f(x) ∈ (L − ε,L + ε) .
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What does it mean that L ≠ lim
x→a

f(x) ?

L = lim
x→a

f(x) ⇐⇒ ∀ ε > 0 ∃ δ > 0 ∀x 0 < ∣x − a∣ < δ Ô⇒ ∣f(x) −L∣ < ε .
L ≠ lim

x→a
f(x) ⇐⇒ ∃ ε > 0 ∀ δ > 0 ∃x 0 < ∣x − a∣ < δ ∧ ∣f(x) −L∣ ≥ ε .

In words:

A number L is not a limit of a function f(x) at a point a , if there exists a
positive number ε , such that for any positive number δ one can find x , such
that 0 < ∣x − a∣ < δ , but ∣f(x) −L∣ ≥ ε .
Exercise 1. Use the definition of limit to prove that lim

x→3

(2x + 1) = 7 .
Exercise 2. Use the definition of limit to prove that lim

x→0

(sin 1

x
) ≠ 0 .
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L is a limit of f as x approaches a iff for each neighborhood V of L
f−1(V ) ∪ {a} is a neighborhood of a .

The notion of limit can be replaced by the notion of continuity:
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Definition. The vectors Ð→v 1,
Ð→v 2, . . . ,

Ð→v n are called linearly dependent if
there exist numbers a1, a2, . . . , an , which are not all zeros, such that

a1
Ð→v 1 + a2

Ð→v 2 + ⋅ ⋅ ⋅ + an
Ð→v n =

Ð→
0 .

Disclaimer. We do not discuss the mathematical concept of linear dependence,
but rather the logical structure of the definition above.

How to express in short that the numbers a1, a2, . . . , an are not all zeros?

a1, a2, . . . , an are not all zeros ⇐⇒ a2
1
+ a2

2
+ ⋅ ⋅ ⋅ + a2n ≠ 0

Linear independence in symbolic form:

Ð→v 1,
Ð→v 2, . . . ,

Ð→v n are linearly dependent ⇐⇒
∃ a1, a2, . . . , an a2

1
+ a2

2
+ ⋅ ⋅ ⋅ + a2n ≠ 0 ∧ a1

Ð→v 1 + a2
Ð→v 2 + ⋅ ⋅ ⋅ + an

Ð→v n =
Ð→
0

Definition. The vectors Ð→v 1,
Ð→v 2, . . . ,

Ð→v n are called linearly independent if
they are not linearly dependent.
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Let us construct a symbolic form of linear independence.

Ð→v 1,
Ð→v 2, . . . ,

Ð→v n are linearly dependent ⇐⇒
∃ a1, a2, . . . , an a2

1
+ a2

2
+ ⋅ ⋅ ⋅ + a2n ≠ 0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

∧ a1
Ð→v 1 + a2

Ð→v 2 + ⋅ ⋅ ⋅ + an
Ð→v n =

Ð→
0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q

Ð→v 1,
Ð→v 2, . . . ,

Ð→v n are linearly independent ⇐⇒
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1
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1
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2
+ ⋅ ⋅ ⋅ + a2n = 0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
¬P

⇐⇒

∀ a1, a2, . . . , an (a1Ð→v 1 + a2
Ð→v 2 + ⋅ ⋅ ⋅ + an

Ð→v n =
Ð→
0 Ô⇒ a1 = a2 = ⋅ ⋅ ⋅ = an = 0)

linear independence



MAT 250
Lecture 7
Definitions in mathematics

Definition of ring (from Algebra)

15 / 22

Motivation. We know that the set of integers is closed with respect to the
operations of addition and multiplication. It means that

∀a, b ∈ Z a + b ∈ Z and ab ∈ Z.

Addition and multiplication in Z possess several important properties,
like associativity and distributivity.

Besides the integers, there are many other sets of mathematical objects
for which there are operations of addition and multiplication

possessing the same properties. For example, polynomials or matrices.

It is natural to gather all such sets equipped with operations under the same roof.

It is done in the definition of ring.
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Definition. A ring R is a set with two operations, addition and multiplication,
denoted by + and ⋅ , satisfying the following properties:
1. ∀a, b ∈ R a + b ∈ R (R is closed with respect to + )
2. ∀a, b ∈ R a ⋅ b ∈ R (R is closed with respect to ⋅ )
3. ∀a, b, c ∈ R (a + b) + c = a + (b + c) (+ is associative)
4. ∀a, b ∈ R a + b = b + a (+ is commutative)
5. ∃0 ∈ R ∀a ∈ R a + 0 = a (there exists an additive identity in R )
6. ∀a ∈ R ∃ − a ∈ R a + (−a) = 0 (each element in R has an additive inverse)
7. ∀a, b, c ∈ R (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) ( ⋅ is associative)
8. ∀a, b, c ∈ R a ⋅ (b + c) = a ⋅ b + a ⋅ c and (b + c) ⋅ a = b ⋅ a + c ⋅ a

(multiplication distributes over addition)
● If, additionally, ∀a, b ∈ R a ⋅ b = b ⋅ a ( ⋅ is commutative),

then R is called a commutative ring.
● If, additionally, ∃1 ∈ R ∀a ∈ R 1 ⋅ a = a ⋅ 1 = a

(there exists a multiplicative identity), then R is called a ring with unity.

The properties are called the axioms of a ring.
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1. Z, Q, R, C are commutative rings with unity.

2. 2Z = {2n ∣ n ∈ Z} is a ring of even integers (Commutative? With unity?)

3. Z[x] , polynomials in variable x with integer coefficients, form a ring.
(Commutative? With unity?)

4.Q[x] , R[x] , Z[x, y] , etc. are rings of polynomials.

5. Mn(R) , square n × n matrices with real coefficients form a ring.
(Commutative? With unity?)

6. Zm , residues modulo m (to be discussed later in the course) form a ring.

7. F = {f ∣f ∶ R → R} , real valued functions with the operations of
addition (f + g)(x) = f(x) + g(x) and multiplication (f ⋅ g)(x) = f(x) ⋅ g(x)
form a ring.

Important: To prove that each of the listed above objects is a ring,
we have to verify all ring axioms.
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Let us see how the definition of ring is used in the proof of a theorem.

Theorem. In any ring R , a ⋅ 0 = 0 for all a ∈ R .

Proof.

a ⋅ 0 = a ⋅ 0 + 0 by axiom 5

= a ⋅ 0 + (a ⋅ 0 + (−a ⋅ 0)) by axiom 6

= (a ⋅ 0 + a ⋅ 0) + (−a ⋅ 0) by axiom 3

= a ⋅ (0 + 0) + (−a ⋅ 0) by axiom 8

= a ⋅ 0 + (−a ⋅ 0) by axiom 5

= 0 by axiom 6
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In any mathematical text (article, monograph, textbook, etc.)
one can trace common elements which help to see the structure of the text.

These common elements are:
definitions, axioms, theorems (statements, propositions, claims, lemmas, corollaries),
proofs of theorems, examples, exercises, etc.

Besides, each mathematical text contains introductions, expositions, motivations,
authors’ opinions, and many other not very essential details.

One can rarely read a mathematical text from the very beginning to the very end and
understand everything at once. Usually a work with a mathematical text involves several
rounds (approaches, periods). Each round contributes to the overall understanding.

A reading starts with determining the structure of the text and sorting out important
and not very important elements.

The second round is to focus on the primary parts of the text: definitions and
statements of theorems.

Next come examples and detailed reading of proofs.
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Let’s try to read an excerpt from a math textbook. We are not expected to understand

the mathematical content, but we should be able to analyze the logical structure of the

text. Determine and indicate definitions, notations, theorems, proofs, examples,

exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F because α is a zero of
the polynomial f(x) = x − α ∈ F[x]. This implies that e and π are algebraic over
R, though they are not algebraic over Q as we will prove later.



MAT 250
Lecture 7
Definitions in mathematics

Let us read!

20 / 22

Let’s try to read an excerpt from a math textbook. We are not expected to understand

the mathematical content, but we should be able to analyze the logical structure of the

text. Determine and indicate definitions, notations, theorems, proofs, examples,

exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F because α is a zero of
the polynomial f(x) = x − α ∈ F[x]. This implies that e and π are algebraic over
R, though they are not algebraic over Q as we will prove later.



MAT 250
Lecture 7
Definitions in mathematics

Let us read!

20 / 22

Let’s try to read an excerpt from a math textbook. We are not expected to understand

the mathematical content, but we should be able to analyze the logical structure of the

text. Determine and indicate definitions, notations, theorems, proofs, examples,

exercises, etc. in the text.

As the first step towards classifying the lengths which can be constructed by
straightedge and compass, this chapter introduces the concept of an algebraic
number. Each such number will satisfy many polynomial equations and our
immediate goal is to choose the simplest one.

A number α ∈ C is said to be algebraic over a field F ⊆ C if there exists a nonzero
polynomial f(x) ∈ F[x] such that α is a zero of f(x).
For each field F, every number α in F is algebraic over F because α is a zero of
the polynomial f(x) = x − α ∈ F[x]. This implies that e and π are algebraic over
R, though they are not algebraic over Q as we will prove later.



MAT 250
Lecture 7
Definitions in mathematics

Let us read!

21 / 22

The number
√
2 is algebraic over Q because it is zero of the polynomial

f(x) = x2 − 2, which is nonzero and has coefficients in Q.

In order to show that a number is algebraic, we look for a suitable polynomial
having that number as zero. Try to prove that 1 +

√
3 is algebraic over Q.

It is useful to be able to recognize the definition of “algebraic over a field F”
when it appears in different guises: a number α ∈ C is algebraic over F ⊆ C if and
only if there is a positive integer n such that {1, α, α2, . . . , αn−1, αn} are linearly
dependent over F.

Indeed, if α ∈ C is algebraic over F ⊆ C then there exists a polynomial
f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anxn, whose coefficients a0, a1, . . . , an all belong to F, at
least one of these coefficients is nonzero, and f(α) = 0, that is

a0 + a1α + a2α
2 ⋅ ⋅ ⋅ + an−1α

n−1 + anα
n
= 0. (∗)
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Since F is a subfield of C, we can regard C as a vector space over F. The
numbers 1, α, α2, . . . , αn−1, αn are all elements in C, and hence can be regarded
as vectors in the vector space C over F.

The coefficients a0, a1, a2, . . . , an−1, an, on the other hand, are all in F so we can
regard them as scalars. Thus, the equality (∗) can be interpreted as a linear
dependence of vectors 1, α, α2, . . . , αn−1, αn in C.

You will often meet the terms “algebraic number” and “transcendental number”
where no field is specified. In such cases the field is taken to be Q. We formalize
this as follows.

A complex number is said to be an algebraic number if it is algebraic over Q;
a transcendental number if it is not algebraic over Q.
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