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This metric is called Euclidean.

Proof will be given in a course of Linear Algebra.
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for any (ajlayl)? (aj?ny) < RQ
N
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Y2 — 1
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* (T2,Y2)

It's easy to check that this is a metric indeed.

The plane with Euclidean metric
and the plane with taxi driver metric
are different metric spaces.
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The notion of binary relation generalizes the notion of mapping:

any map f: X — Y can be considered as a relation y = f(x)
between elements of X and Y .

Example. Orthogonality of a line and a plane in R3.

We will deal mostly with binary relations on a single set.
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If X has n elements, then X x X has n? elements,
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So the number of relations on a set of 3 elements is 23° = 29 = 512

P(X x X)is a huge set!
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MAT 250
Lecture 6
Construction

< onR = mod 3 on Z C on P(X) divisibility on N
reflexive reflexive reflexive reflexive
r<x a=a mod 3 ACA ala
antisymmetric symmetric antisymmetric antisymmetric

r<yAy<uz a=b mod 3 ACBABcCA | albAbla
— T =Y — b=a mod 3 — A=1H = a=0b
transitive transitive transitive transitive
— albAb|c
r<yNy<z a=b mod3A AcCcBANBcCC | ‘
b=c mod 3 — alc
— <z — ACC
— a=c¢ mod 3
total
Ve,y € R
r<yVy<uzx
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