Lecture 6

Maps

The set of all maps $X \rightarrow Y$

Let X, Y be sets.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\}
$$

It's a large set!

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements,

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed,

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\}
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$,

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$,

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},

$$
\text { there are } \underbrace{p \cdot p \cdot \ldots \cdot p}_{q \text { times }}
$$

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},
there are $\underbrace{p \cdot p \cdot \ldots \cdot p}_{q \text { times }}=p^{q}$ choices for $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},

$$
\text { there are } \underbrace{p \cdot p \cdot \ldots \cdot p}_{q \text { times }}=p^{q} \text { choices for } f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right) \text {. }
$$

Notation:

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\}
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},

$$
\text { there are } \underbrace{p \cdot p \cdot \ldots \cdot p}_{q \text { times }}=p^{q} \text { choices for } f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right) \text {. }
$$

Notation: The number elements in a finite set X is denoted by $|X|$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\}
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},

$$
\text { there are } \underbrace{p \cdot p \cdot \ldots \cdot p}_{q \text { times }}=p^{q} \text { choices for } f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right) \text {. }
$$

Notation: The number elements in a finite set X is denoted by $|X|$.
We have proven that

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},

$$
\text { there are } \underbrace{p \cdot p \cdot \ldots \cdot p}_{q \text { times }}=p^{q} \text { choices for } f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right) \text {. }
$$

Notation: The number elements in a finite set X is denoted by $|X|$.
We have proven that $|\mathcal{M a p}(X, Y)|=|Y|^{|X|}$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y :

$$
\mathcal{M a p}(X, Y)=\{f \mid f: X \rightarrow Y\} .
$$

It's a large set! If X contains q elements and Y contains p elements, then $\operatorname{Map}(X, Y)$ contains p^{q} elements.
Indeed, let $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$.
Any map $f: X \rightarrow Y$ is determined by its values at $x_{1}, x_{2}, \ldots, x_{q}$, that is, by $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right)$.
For each $x_{i}(1 \leq i \leq q), f\left(x_{i}\right)$ may be any of $y_{1}, y_{2}, \ldots, y_{p}$, therefore, there are p choices for each of $f\left(x_{i}\right)$.

Since there are q elements x_{i},

$$
\text { there are } \underbrace{p \cdot p \cdot \ldots \cdot p}_{q \text { times }}=p^{q} \text { choices for } f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{q}\right) \text {. }
$$

Notation: The number elements in a finite set X is denoted by $|X|$.
We have proven that $|\operatorname{Map}(X, Y)|=|Y|^{|X|}$.
That's why $\operatorname{Map}(X, Y)$ is often denoted by Y^{X}.

Definition.

Definition. Let X be a set.

Definition. Let X be a set. The power set of X

Definition. Let X be a set. The power set of X

is the set of all subsets of X.

Definition. Let X be a set. The power set of X

 is the set of all subsets of X.Notation: $\mathcal{P}(X)$

Definition. Let X be a set. The power set of X

 is the set of all subsets of X.Notation: $\mathcal{P}(X)$
By definition,

Definition. Let X be a set. The power set of X

 is the set of all subsets of X.Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$

Definition. Let X be a set. The power set of X

 is the set of all subsets of X.Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example.

Definition. Let X be a set. The power set of X

 is the set of all subsets of X.Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\}$.

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

$1 \in X$,

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\begin{aligned}
\quad \mathcal{P}(X)= & \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \\
1 \in X, & 1 \in \mathcal{P}(X) ?
\end{aligned}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\begin{aligned}
\quad \mathcal{P}(X)= & \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \\
1 \in X, & 1 \in \mathcal{P}(X) ? \text { No! }
\end{aligned}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\begin{aligned}
\quad \mathcal{P}(X)= & \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \\
1 \in X, & 1 \notin \mathcal{P}(X),
\end{aligned}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

\[

\]

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\begin{aligned}
& \mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \\
& 1 \in X, \quad 1 \notin \mathcal{P}(X), \quad 1 \subset \mathcal{P}(X) ? \mathrm{No!}
\end{aligned}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\begin{aligned}
& \mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \\
& 1 \in X, \quad 1 \notin \mathcal{P}(X), \quad 1 \not \subset \mathcal{P}(X)
\end{aligned}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\begin{array}{ll}
& \mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\}, \\
1 \in X, & 1 \notin \mathcal{P}(X), \\
\{1\} \subset X, & 1 \not \subset \mathcal{P}(X)
\end{array}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\begin{array}{rlr}
& \mathcal{P}(X)= & \{\varnothing,\{1\},\{2\},\{3\}, \\
1 \in X, & 1 \notin \mathcal{P}(X), & 1 \not \subset \mathcal{P}(X) \\
\{1\} \subset X, & \{1\} \in \mathcal{P}(X), &
\end{array}
$$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

\[

\]

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

\[

\]

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

\[

\]

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

\[

\]

For any set X,

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

\[

\]

For any set $X, \quad \varnothing \in \mathcal{P}(X)$

Definition. Let X be a set. The power set of X
is the set of all subsets of X.
Notation: $\mathcal{P}(X)$
By definition, $\mathcal{P}(X)=\{A \mid A \subset X\}$
Example. Let $X=\{1,2,3\} . \mathcal{P}(X)=$?

$$
\mathcal{P}(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

$1 \in X, \quad 1 \notin \mathcal{P}(X), \quad 1 \not \subset \mathcal{P}(X)$
$\{1\} \subset X$,
$\{1\} \in \mathcal{P}(X)$,
$\{1\} \not \subset \mathcal{P}(X)$
For any set $X, \quad \varnothing \in \mathcal{P}(X)$ and $X \in \mathcal{P}(X)$.

How large is the power set?

How large is the power set?

Theorem.

How large is the power set?

Theorem. If X has n elements,

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X.

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X,

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X, there are two choices:

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X, there are two choices:
either it's included in a subset,

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X, there are two choices:
either it's included in a subset, or not.

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ? For each element in X, there are two choices:
either it's included in a subset, or not.
For all n elements in X,

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X, there are two choices:
either it's included in a subset, or not.
For all n elements in X, there are totally

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X, there are two choices:
either it's included in a subset, or not.
For all n elements in X, there are totally 2^{n} choices.

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ? For each element in X, there are two choices:
either it's included in a subset, or not.
For all n elements in X, there are totally 2^{n} choices.
This is the number of all subsets.

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X, there are two choices:
either it's included in a subset, or not.
For all n elements in X, there are totally 2^{n} choices.
This is the number of all subsets.

Another notation for $\mathcal{P}(X)$ is

How large is the power set?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^{n} elements.
Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X ?

For each element in X, there are two choices:
either it's included in a subset, or not.
For all n elements in X, there are totally 2^{n} choices.
This is the number of all subsets.

Another notation for $\mathcal{P}(X)$ is 2^{X}.

- Characteristic function of a set
- Characteristic function of a set $A \subset U$
- Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}$,
- Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
- Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Example:
- Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Example: for $[2,4] \subset \mathbb{R}$,
- Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Example: for $[2,4] \subset \mathbb{R}, \quad \chi_{[2,4]}(x)= \begin{cases}1, & \text { if } x \in[2,4] \\ 0, & \text { if } x \notin[2,4]\end{cases}$
- Characteristic function of a set $A \subset U$
$\chi_{A}: U \rightarrow\{0,1\}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}$
Example: for $[2,4] \subset \mathbb{R}, \quad \chi_{[2,4]}(x)= \begin{cases}1, & \text { if } x \in[2,4] \\ 0, & \text { if } x \notin[2,4]\end{cases}$

Theorem.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$. Proof.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$. Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$

$$
A \mapsto \chi_{A},
$$

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M} a p(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M} a p(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions: $A \neq B \Longrightarrow \chi_{A} \neq \chi_{B}$ for any $A, B \subset X$.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions: $A \neq B \Longrightarrow \chi_{A} \neq \chi_{B}$ for any $A, B \subset X$.
The map is surjective,

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M} a p(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions:
$A \neq B \Longrightarrow \chi_{A} \neq \chi_{B}$ for any $A, B \subset X$.
The map is surjective,

$$
\text { since any } f \in \mathcal{M a p}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions:
$A \neq B \Longrightarrow \chi_{A} \neq \chi_{B}$ for any $A, B \subset X$.
The map is surjective,

$$
\text { since any } f \in \operatorname{Map}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$ for which f is the characteristic function:

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,
since different subsets of X have different characteristic functions:
$A \neq B \Longrightarrow \chi_{A} \neq \chi_{B}$ for any $A, B \subset X$.
The map is surjective,

$$
\text { since any } f \in \operatorname{Map}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$ for which f is the characteristic function: $\chi_{A}=f$

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M} a p(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,

$$
\text { since different subsets of } X \text { have different characteristic functions: }
$$

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X
$$

The map is surjective,

$$
\text { since any } f \in \operatorname{Map}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$

for which f is the characteristic function: $\chi_{A}=f$

Corollary.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M} a p(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,

$$
\text { since different subsets of } X \text { have different characteristic functions: }
$$

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X
$$

The map is surjective,

$$
\text { since any } f \in \operatorname{Map}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$

for which f is the characteristic function: $\chi_{A}=f$
Corollary. $|\mathcal{P}(X)|$

Power set as a set of maps

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.

Indeed, the map above is injective,

$$
\text { since different subsets of } X \text { have different characteristic functions: }
$$

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X
$$

The map is surjective,

$$
\text { since any } f \in \operatorname{Map}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$

for which f is the characteristic function: $\chi_{A}=f$
Corollary. $|\mathcal{P}(X)|=|\mathcal{M a p}(X,\{0,1\})|$

Power set as a set of maps

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M}$ ap $(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.

Indeed, the map above is injective,

$$
\text { since different subsets of } X \text { have different characteristic functions: }
$$

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X
$$

The map is surjective,

$$
\text { since any } f \in \operatorname{Map}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$

for which f is the characteristic function: $\chi_{A}=f$
Corollary. $|\mathcal{P}(X)|=|\mathcal{M a p}(X,\{0,1\})|=2^{|X|}$,

Power set as a set of maps

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X and the set $\operatorname{Map}(X,\{0,1\})$ of all maps from X to the two point set $\{0,1\}$.
Proof. A bijection is given by $\mathcal{P}(X) \rightarrow \mathcal{M a p}(X,\{0,1\})$ $A \mapsto \chi_{A}$, where $A \subset X$.
Indeed, the map above is injective,

$$
\text { since different subsets of } X \text { have different characteristic functions: }
$$

$$
A \neq B \Longrightarrow \chi_{A} \neq \chi_{B} \text { for any } A, B \subset X
$$

The map is surjective,

$$
\text { since any } f \in \operatorname{Map}(X,\{0,1\}) \text { defines a set } A=\left\{f^{-1}\{1\}\right\} \subset X \text {, }
$$ for which f is the characteristic function: $\chi_{A}=f$

Corollary. $|\mathcal{P}(X)|=|\mathcal{M a p}(X,\{0,1\})|=2^{|X|}$, as we already know.

Working with power set

Working with power set

Theorem. Let A, B be sets.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$. Proof. Let $A \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
And the half of the proof is done!

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.
But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$,

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.
But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.
And the other half of the proof is done!

Theorem. Let A, B be sets. Then $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.
Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.
We have got that $\forall X \in \mathcal{P}(A), X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.
Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.
Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.

Overall, $A \subset B \Longleftrightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y),
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and }
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)
\end{aligned}
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B,

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X$,

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$

Induced maps

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y$,

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1.

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps,

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps, then

$$
(g \circ f)_{*}=g_{*} \circ f_{*} .
$$

Any map $f: X \rightarrow Y$ induces maps

$$
\begin{aligned}
& f_{*}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), \quad A \mapsto f(A) \text { for any } A \subset X \text { and } \\
& f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X), \quad B \mapsto f^{-1}(B) \text { for any } B \subset Y .
\end{aligned}
$$

(We remember that $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$ is the preimage of B, and not the result of applying the inverse map f^{-1}.)
The maps f_{*} and f^{*} are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps, then

$$
(g \circ f)_{*}=g_{*} \circ f_{*} .
$$

Exercise 2. Formulate and prove a similar identity for $(g \circ f)^{*}$.

Cartesian product

Cartesian product

Definition.

Cartesian product

Definition. Let X, Y be sets.

Cartesian product

Definition. Let X, Y be sets. The Cartesian product

Cartesian product

Definition. Let X, Y be sets. The Cartesian product (or cross product

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product) of X and Y

Cartesian product

[^0]
Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$,

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y$

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$.

Cartesian product

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.
In this sense, the Cartesian product is commutative.

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.
In this sense, the Cartesian product is commutative.
Theorem.

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.
In this sense, the Cartesian product is commutative.
Theorem. If X has p elements,

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.
In this sense, the Cartesian product is commutative.
Theorem. If X has p elements, and Y has q elements,

Definition. Let X, Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y is the set of all ordered pairs $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}=x_{2} \quad$ and $y_{1}=y_{2}$.
So if $x \neq y$, then $(x, y) \neq(y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X=\{1,2,3\}$ and $Y=\{a, b\}$. Then $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.

However, there is a natural bijection $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$.
In this sense, the Cartesian product is commutative.
Theorem. If X has p elements, and Y has q elements, then $X \times Y$ has $p q$ elements.

Examples of Cartesian product

Examples of Cartesian product

Example 2.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$$
X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}
$$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$$
X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}
$$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane

Example 3.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5)$,

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6]$.

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then

$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}$

Examples of Cartesian product

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$,

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Example 2. Let $X=Y=\mathbb{R}$. Then
$X \times Y=\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\} \quad$ Cartesian plane
Example 3. Let $X=[1,2] \cup[3,5), \quad Y=(4,6] . \quad X \times Y=$?
$X \times Y=\{(x, y) \mid x \in X, y \in Y\}=\{(x, y) \mid x \in[1,2] \cup[3,5), y \in(4,6]\}$
Since $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$, then $X \times Y \subset \mathbb{R}^{2}$.

Examples of Cartesian product

Examples of Cartesian product

Example 4.

Examples of Cartesian product

Example 4. Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$

Examples of Cartesian product

Example 4. Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad$ (a disk on a plane)

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1]
\end{aligned}
$$

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1] \text { (a line segment) }
\end{aligned}
$$

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1] \text { (a line segment) } \\
X & \times Y=?
\end{aligned}
$$

Examples of Cartesian product

$$
\text { Example 4. Let } \begin{aligned}
X & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
Y & =[0,1] \text { (a line segment) } \\
X & \times Y=?
\end{aligned}
$$

$X \times Y=$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
& =\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{aligned}
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
&=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{aligned}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{aligned}
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
&=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{aligned}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{aligned}
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
&=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{aligned}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{aligned}
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
&=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{aligned}
\end{aligned}
$$

Examples of Cartesian product

$$
\begin{aligned}
& \text { Example 4. Let } X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \quad \text { (a disk on a plane) } \\
& Y=[0,1] \text { (a line segment) } \\
& X \times Y=? \\
& \begin{aligned}
& X \times Y=\{((x, y), z) \mid(x, y) \in X, z \in Y\} \\
&=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}
\end{aligned}
\end{aligned}
$$

Coordinate projections

Coordinate projections

Let X, Y be sets.

Coordinate projections

Let X, Y be sets. The maps

Coordinate projections

Let X, Y be sets. The maps
$\operatorname{proj}_{X}: X \times Y \rightarrow X$,

Coordinate projections

Let X, Y be sets. The maps
$\operatorname{proj}_{X}: X \times Y \rightarrow X, \quad(x, y) \mapsto x$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{aligned}
& \operatorname{proj}_{X}: X \times Y \rightarrow X, \quad(x, y) \mapsto x \text { and } \\
& \operatorname{proj}_{Y}: X \times Y \rightarrow Y,
\end{aligned}
$$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

$$
\left.\operatorname{proj}_{Y}\right|_{\{x\} \times Y}:\{x\} \times Y \rightarrow Y \text { is a bijection }
$$

Coordinate projections

Let X, Y be sets. The maps

$$
\begin{array}{ll}
\operatorname{proj}_{X}: X \times Y \rightarrow X, & (x, y) \mapsto x \text { and } \\
\operatorname{proj}_{Y}: X \times Y \rightarrow Y, & (x, y) \mapsto y
\end{array}
$$

are called the coordinate projections.
The subsets $\{x\} \times Y$ and $X \times\{y\}$ of $X \times Y$ are called fibers.

$$
\left.\operatorname{proj}_{Y}\right|_{\{x\} \times Y}:\{x\} \times Y \rightarrow Y \text { is a bijection }
$$

Similarly, $\left.\operatorname{proj}_{X}\right|_{X \times\{y\}}: X \times\{y\} \rightarrow X$ is a bijection.

Products of maps

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$,

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then $\operatorname{id}_{X} \odot \operatorname{id}_{X}: X \rightarrow X \times X$

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then $\mathrm{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{idd}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then $\mathrm{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then $\mathrm{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then $\mathrm{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then $\mathrm{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

Products of maps

Let $f: A \rightarrow B$ and $g: X \rightarrow Y$ be maps. Define a map
$f \times g: A \times X \rightarrow B \times Y$ by $(f \times g)((a, x))=(f(a), g(x))$.
This map is called the direct product of maps f and g.
Let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be maps. Define a map
$f \odot g: Z \rightarrow X \times Y$ by $(f \odot g)(z)=(f(z), g(z))$.
When $X=Y=Z$ and $f=g=\mathrm{id}_{X}$, then $\mathrm{id}_{X} \odot \mathrm{id}_{X}: X \rightarrow X \times X$ and $\left(\mathrm{id}_{X} \odot \mathrm{id}_{X}\right)(x)=(x, x)$.
The subset $\Delta=\{(x, x) \mid x \in X\} \subset X \times X$ is called the diagonal of $X \times X$.

The diagonal is the image of $\operatorname{id}_{X} \odot \operatorname{id}_{X}$.

Graph of a map

Graph of a map

The graph of a map $f: X \rightarrow Y$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R},

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R},

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}
$$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\}$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}$

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

Graph of a map

The graph of a map $f: X \rightarrow Y$ is the set

$$
\Gamma_{f}=\{(x, y) \mid x \in X, y=f(x)\} \subset X \times Y
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $f(x)=x^{2}$.
The domain of f is \mathbb{R}, the codomain is \mathbb{R}, the range is

$$
\operatorname{Im}(f)=\left\{y \mid y=x^{2} \wedge x \in \mathbb{R}\right\}=[0, \infty)
$$

The graph f is $\Gamma_{f}=\left\{(x, y) \mid x \in \mathbb{R}, y=x^{2}\right\} \subset \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$.

When the graph is a surface

When the graph is a surface

Example.

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2} \text {. }
$$

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2} \text {. }
$$

Its graph is the set $\Gamma_{f}=\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{R} \mid z=x^{2}+y^{2}\right\}$

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2} \text {. }
$$

Its graph is the set $\quad \Gamma_{f}=\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{R} \mid z=x^{2}+y^{2}\right\} \subset \mathbb{R}^{3}$.

When the graph is a surface

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function

$$
\text { given by } f(x, y)=x^{2}+y^{2} \text {, or } z=x^{2}+y^{2} \text {. }
$$

Its graph is the set $\quad \Gamma_{f}=\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{R} \mid z=x^{2}+y^{2}\right\} \subset \mathbb{R}^{3}$.

Vector-valued functions

Vector-valued functions

Example.

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.

What does this function do?

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

f reels up the line on the circle.

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

f reels up the line on the circle.
The graph of f is the set $\Gamma_{f}=\left\{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^{2}\right\}$

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

f reels up the line on the circle.
The graph of f is the set $\Gamma_{f}=\left\{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^{2}\right\} \subset \mathbb{R}^{3}$.

Vector-valued functions

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$.
What does this function do?

f reels up the line on the circle.
The graph of f is the set $\Gamma_{f}=\left\{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^{2}\right\} \subset \mathbb{R}^{3}$.
Γ_{f} is a curve in \mathbb{R}^{3}. It is called helix.

Helix

MAT 250
Lecture 6
Construction

Helix

The graph of $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad f(t)=(\cos t, \sin t)$

Helix

The graph of $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad f(t)=(\cos t, \sin t)$
is the helix $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=t \in \mathbb{R}, y=\cos t, z=\sin t\right\}$:

The graph of $f: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad f(t)=(\cos t, \sin t)$
is the helix $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=t \in \mathbb{R}, y=\cos t, z=\sin t\right\}$:

Metric

Metric

Definition.

Metric

Definition. A metric

Metric

Definition. A metric (or distance function) on a set X

Metric

Definition. A metric (or distance function) on a set X is a map

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

Metric

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y \quad$ coincidence axiom
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y \quad$ coincidence axiom
2. $d(x, y)=d(y, x) \quad$ symmetry
3. $d(x, z) \leq d(x, y)+d(y, z)$

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Definition. A metric (or distance function) on a set X is a map

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}=[0, \infty)
$$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x, y)=0 \Longleftrightarrow x=y \quad$ coincidence axiom
2. $d(x, y)=d(y, x) \quad$ symmetry
3. $d(x, z) \leq d(x, y)+d(y, z) \quad$ triangle inequality

A pair (X, d) is called a metric space.
The conditions $\mathbf{1 , 2 , 3}$ are called the axioms of metric space.

Euclidean metric on a line

Euclidean metric on a line

Theorem.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$,

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y|
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R},
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R} \text {, is a metric. }
$$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers.

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$

Euclidean metric on a line

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x| \quad$ since $|a|=|-a|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R} \text {, is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R} \text {, is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)| \leq|x-y|+|y-z|$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)| \leq|x-y|+|y-z|$ by the triangle inequality

$$
(|a+b| \leq|a|+|b| \text { for all } a, b \in \mathbb{R})
$$

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, defined by

$$
d(x, y)=|x-y| \text { for any } x, y \in \mathbb{R}, \text { is a metric. }
$$

Proof. Check the axioms of metric space.
Let x, y, z be any real numbers. Then

1. $|x-y|=0 \Longleftrightarrow x=y$ since $|x-y|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y$.
2. $|x-y|=|y-x|$ since $|a|=|-a|$ for any real a.
3. $|x-z| \leq|x-y|+|y-z|$
since $|x-z|=|(x-y)+(y-z)| \leq|x-y|+|y-z|$ by the triangle inequality

$$
(|a+b| \leq|a|+|b| \text { for all } a, b \in \mathbb{R})
$$

Therefore, all axioms are satisfied and the map d is a metric.

Euclidean metric on a plane

Euclidean metric on a plane

Theorem.

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$,

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

Euclidean metric on a plane

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

This metric is called Euclidean.

Theorem. A map $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$, defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, is a metric.

This metric is called Euclidean.
Proof will be given in a course of Linear Algebra.

Taxi driver metric on a plane

Taxi driver metric on a plane

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

Taxi driver metric on a plane

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

Taxi driver metric on a plane

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

Taxi driver metric on a plane

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

Taxi driver metric on a plane

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

Taxi driver metric on a plane

is defined by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|
$$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.

Taxi driver metric on a plane

is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.
The plane with Euclidean metric
is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.
The plane with Euclidean metric
and the plane with taxi driver metric
is defined by
$d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$

$$
\text { for any }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}
$$

It's easy to check that this is a metric indeed.
The plane with Euclidean metric
and the plane with taxi driver metric are different metric spaces.

Relations

MAT 250
Lecture 6
Construction

Relations

Definition.

Definition. A (binary) relation R on a set X

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X
$$

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X.

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X.
More generally:
a statement about an ordered n-tuple of arguments is called an n-ary relation.

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds to a statement about an ordered pair of arguments taken from X.
More generally:
a statement about an ordered n-tuple of arguments is called an n-ary relation.
Furthermore, the arguments may belong to different sets.

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X.
More generally:
a statement about an ordered n-tuple of arguments is called an n-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping:

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X.
More generally:
a statement about an ordered n-tuple of arguments is called an n-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping:
any map $f: X \rightarrow Y$ can be considered as a relation $y=f(x)$
between elements of X and Y.

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X.
More generally:
a statement about an ordered n-tuple of arguments is called an n-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping:
any map $f: X \rightarrow Y$ can be considered as a relation $y=f(x)$ between elements of X and Y.

Example. Orthogonality of a line and a plane in \mathbb{R}^{3}.

Definition. A (binary) relation R on a set X is a subset of $X \times X$:

$$
R \subset X \times X \Longleftrightarrow R \in \mathcal{P}(X \times X)
$$

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X.
More generally:
a statement about an ordered n-tuple of arguments is called an n-ary relation.
Furthermore, the arguments may belong to different sets.
The notion of binary relation generalizes the notion of mapping:
any map $f: X \rightarrow Y$ can be considered as a relation $y=f(x)$ between elements of X and Y.

Example. Orthogonality of a line and a plane in \mathbb{R}^{3}.
We will deal mostly with binary relations on a single set.

The number of relations

Let a set X have 3 elements.

The number of relations

Let a set X have 3 elements. How many relations are there on X ?

The number of relations

Let a set X have 3 elements. How many relations are there on X ?
Answer:

The number of relations

Let a set X have 3 elements. How many relations are there on X ?
Answer: 512.

The number of relations

Let a set X have 3 elements. How many relations are there on X ?
Answer: 512. How come?

Let a set X have 3 elements. How many relations are there on X ?
Answer: 512 . How come?
The number of relations of a finite set X

Let a set X have 3 elements. How many relations are there on X ?
Answer: 512 . How come?
The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.

Let a set X have 3 elements. How many relations are there on X ?
Answer: 512 . How come?
The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements,

Let a set X have 3 elements. How many relations are there on X ?
Answer: 512 . How come?
The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has

Let a set X have 3 elements. How many relations are there on X ? Answer: 512 . How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements,

Let a set X have 3 elements. How many relations are there on X ? Answer: 512 . How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has

Let a set X have 3 elements. How many relations are there on X ? Answer: 512. How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

Let a set X have 3 elements. How many relations are there on X ? Answer: 512. How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

So the number of relations on a set of 3 elements

Let a set X have 3 elements. How many relations are there on X ? Answer: 512. How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

So the number of relations on a set of 3 elements is $2^{3^{2}}$

Let a set X have 3 elements. How many relations are there on X ? Answer: 512. How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}$

Let a set X have 3 elements. How many relations are there on X ? Answer: 512. How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}=512$.

Let a set X have 3 elements. How many relations are there on X ? Answer: 512. How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}=512$.
$\mathcal{P}(X \times X)$

Let a set X have 3 elements. How many relations are there on X ? Answer: 512. How come?

The number of relations of a finite set X
is equal to the number of elements in $\mathcal{P}(X \times X)$.
If X has n elements, then $X \times X$ has n^{2} elements, and $\mathcal{P}(X \times X)$ has $2^{n^{2}}$ elements.

So the number of relations on a set of 3 elements is $2^{3^{2}}=2^{9}=512$.
$\mathcal{P}(X \times X)$ is a huge set!

Relation " \leq "

Notation.

Notation. Let R be a relation on X,

Notation. Let R be a relation on X, and $x, y \in X$.

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y "

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.

Example 1.

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$.

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y .
$$

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ?

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$?

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq}
$$

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2,
$$

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2, \text { which is true. }
$$

Is it true that 2 is related to 1 ?

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2, \text { which is true. }
$$

Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$?

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2, \text { which is true. }
$$

Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since

$$
(2,1) \in R_{\leq}
$$

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since

$$
(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2, \text { which is true. }
$$

Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since

$$
(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1,
$$

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since
$(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since
$(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.
The relation R_{\leq}is a subset of the plane:

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.

The relation R_{\leq}is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\}$

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.

The relation R_{\leq}is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\} \subset \mathbb{R}^{2}$, so we may draw the graph of R_{\leq}.

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.

The relation R_{\leq}is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\} \subset \mathbb{R}^{2}$,

so we may draw the graph of R_{\leq}.

Relation " \leq "

Notation. Let R be a relation on X, and $x, y \in X$.
If $(x, y) \in R$ then we say that " x is related to y " and write $x R y$.
Example 1. Let $X=\mathbb{R}$. The inequality \leq is a relation R_{\leq}on \mathbb{R} :

$$
(x, y) \in R_{\leq} \Longleftrightarrow x \leq y
$$

Is it true that 1 is related to 2 ? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \Longleftrightarrow 1 \leq 2$, which is true.
Is it true that 2 is related to 1 ? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \Longleftrightarrow 2 \leq 1$, which is false.

The relation R_{\leq}is a subset of the plane: $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\} \subset \mathbb{R}^{2}$,
 so we may draw the graph of R_{\leq}.

$$
\forall x, y \in \mathbb{R} \quad \underbrace{(x, y) \in R_{\leq}}_{x \leq y} \text { or } \underbrace{(y, x) \in R_{\leq}}_{y \leq x} .
$$

Relation of inclusion
MAT 250
Lecture 6

Example 2.

Example 2. Let X be a set,

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.

Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X):$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X)$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set.
Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:
$\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since

$$
A \subset B
$$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since
$A \not \subset B$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

$(A, B) \in R_{\subset}$ since $A \subset B$

$(A, B) \notin R_{\subset}$ since
$A \not \subset B$

Is it true that $\forall A, B \in \mathcal{P}(X)$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

Is it true that $\forall A, B \in \mathcal{P}(X)$

$$
\underbrace{(A, B) \in R_{\subset}}_{A \subset B} \text { or } \underbrace{(B, A) \in R_{C}}_{B \subset A} \text { ? }
$$

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X) \quad(A, B) \in R_{\subset} \Longleftrightarrow A \subset B$.

Is it true that $\forall A, B \in \mathcal{P}(X)$

$$
\underbrace{(A, B) \in R_{C}}_{A \subset B} \text { or } \underbrace{(B, A) \in R_{\subset}}_{B \subset A} \text { ? }
$$

No!

Relation of divisibility

Relation of divisibility

Example 3.

Relation of divisibility

Example 3. Define a relation of divisibility on \mathbb{N} as follows:

Example 3. Define a relation of divisibility on \mathbb{N} as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.

Relation of divisibility

Example 3. Define a relation of divisibility on \mathbb{N} as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$

Relation of divisibility

Example 3. Define a relation of divisibility on \mathbb{N} as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,

Relation of divisibility

Example 3. Define a relation of divisibility on \mathbb{N} as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3 \nmid 10$

Relation of divisibility

Example 3. Define a relation of divisibility on \mathbb{N} as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3 \nmid 10$ since there is no $k \in \mathbb{N}$ such that $10=3 \cdot k$,

Relation of divisibility

Example 3. Define a relation of divisibility on \mathbb{N} as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3 \nmid 10$ since there is no $k \in \mathbb{N}$ such that $10=3 \cdot k$,
$\forall a \in \mathbb{N} \quad 1 \mid a$

Relation of divisibility

Example 3. Define a relation of divisibility on \mathbb{N} as follows:
$a \mid b \Longleftrightarrow b=a \cdot k$ for some $k \in \mathbb{N}$.
$2 \mid 6$ since $6=2 \cdot 3$,
$3 \nmid 10$ since there is no $k \in \mathbb{N}$ such that $10=3 \cdot k$,
$\forall a \in \mathbb{N} \quad 1 \mid a$ and $a \mid a$.

Relation of congruence modulo 3

Relation of congruence modulo 3

Example 4.

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows:

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3$

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows:

$$
a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) .
$$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows:

$$
a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) .
$$

$a \equiv b \bmod 3$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows:

$$
a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) .
$$

$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3 \quad$ since $3 \mid(5-2)$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3 \quad$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3 \quad$ since $3 \mid \underbrace{(-4-20)}_{-24}$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .
$5 \equiv 2 \bmod 3 \quad$ since $3 \mid(5-2)$
$-4 \equiv 20 \bmod 3 \quad$ since $3 \mid \underbrace{(-4-20)}_{-24}$
$16 \equiv 16 \bmod 3$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .

$$
\begin{aligned}
& 5 \equiv 2 \bmod 3 \quad \text { since } 3 \mid(5-2) \\
& -4 \equiv 20 \bmod 3 \quad \text { since } 3 \mid \underbrace{(-4-20)}_{-24} \\
& 16 \equiv 16 \bmod 3 \text { since } 3 \mid \underbrace{(16-16)}_{0}
\end{aligned}
$$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .

$$
\begin{aligned}
& 5 \equiv 2 \bmod 3 \quad \text { since } 3 \mid(5-2) \\
& -4 \equiv 20 \bmod 3 \text { since } 3 \mid \underbrace{(-4-20)}_{-24} \\
& 16 \equiv 16 \bmod 3 \text { since } 3 \mid \underbrace{(16-16)}_{0} \\
& 2019 \equiv 0 \bmod 3
\end{aligned}
$$

Relation of congruence modulo 3

Example 4. Define a relation of congruence modulo 3 on \mathbb{Z} as follows: $a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b)$.
$a \equiv b \bmod 3 \Longleftrightarrow 3 \mid(a-b) \Longleftrightarrow a$ and b have the same remainder when divided by 3 .

$$
\begin{aligned}
& 5 \equiv 2 \bmod 3 \text { since } 3 \mid(5-2) \\
& -4 \equiv 20 \bmod 3 \text { since } 3 \mid \underbrace{(-4-20)}_{-24} \\
& 16 \equiv 16 \bmod 3 \text { since } 3 \mid \underbrace{(16-16)}_{0} \\
& 2019 \equiv 0 \bmod 3 \text { since } 3 \mid(2019-0)
\end{aligned}
$$

Criteria for divisibility by 3 and 9

Lemma.

Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3

Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 .

Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof.

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$.

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then $N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0}$

Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0}
\end{aligned}
$$

Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{9 \ldots \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{9 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3}
\end{aligned}
$$

$$
+\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
$$

Criteria for divisibility by 3 and 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{99 \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& \quad+\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, N is divisible by 3 iff the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{9 \ldots \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& \quad+\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, N is divisible by 3 iff
the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

Remark. The same proof proves that,

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{9 \ldots \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& \quad+\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, N is divisible by 3 iff the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

Remark. The same proof proves that, a number is divisible by 9

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3 . Proof. Let a number N is written with digits $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$. Then

$$
\begin{aligned}
& N=a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \\
& =a_{n} \cdot(\underbrace{99 \ldots 9}_{n}+1)+a_{n-1} \cdot(\underbrace{9 \ldots \ldots 9}_{n-1}+1)+\cdots+a_{2} \cdot(99+1)+a_{1}(9+1)+a_{0} \\
& =\underbrace{\left(a_{n} \cdot 99 \ldots 9+a_{n-1} \cdot 99 \ldots 9+\cdots+a_{2} \cdot 99+a_{1} \cdot 9\right)}_{\text {divisible by } 3} \\
& \quad+\left(a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}\right) .
\end{aligned}
$$

Therefore, N is divisible by 3 iff the sum $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}$ of its digits is divisible by 3 .

Remark. The same proof proves that,
a number is divisible by 9 iff the sum of its digits is divisible by 9 .

Relations may differ by their properties.

Relations may differ by their properties. Here are some of them:

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called reflexive

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
for example, \leq

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x \quad$ for example, \leq
irreflexive

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called reflexive if $\forall x \in X \quad x R x$ irreflexive if $\forall x \in X \quad \neg(x R x)$ for example, \leq

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
for example, \leq
for example, <

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric
for example, \leq
for example, <

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x$
for example, \leq
for example, <

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x$
for example, \leq
for example, <
for example, ||

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x$ antisymmetric
for example, \leq
for example, <
for example, ||

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, $\|$
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y$

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, \subset

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, \subset
transitive

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, \subset
transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z$

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called reflexive if $\forall x \in X \quad x R x$ irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, \subset transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, $<$

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$
irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, \subset
transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, $<$
total

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called reflexive if $\forall x \in X \quad x R x$ irreflexive if $\forall x \in X \quad \neg(x R x)$
symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \|
antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, \subset transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, $<$
total if $\forall x, y \in X \quad x R y \vee y R x$

Relations may differ by their properties. Here are some of them:
A relation R on a set X is called
reflexive if $\forall x \in X \quad x R x$ irreflexive if $\forall x \in X \quad \neg(x R x)$ symmetric if $\forall x, y \in X \quad x R y \Longrightarrow y R x \quad$ for example, \| antisymmetric if $\forall x, y \in X x R y \wedge y R x \Longrightarrow x=y \quad$ for example, \subset transitive if $\forall x, y, z \in X \quad x R y \wedge y R z \Longrightarrow x R z \quad$ for example, $<$ total if $\forall x, y \in X \quad x R y \vee y R x$
for example, \leq
for example, < for example, \leq

Properties of relations

Properties of relations

\leq on \mathbb{R}	$\equiv \bmod 3$ on \mathbb{Z}	\subset on $\mathcal{P}(X)$	divisibility on \mathbb{N}
reflexive $x \leq x$	reflexive $a \equiv a \bmod 3$	reflexive $A \subset A$	reflexive $a \mid a$
$\begin{aligned} & \text { antisymmetric } \\ & x \leq y \wedge y \leq x \\ & \Longrightarrow x=y \end{aligned}$	symmetric $a \equiv b \bmod 3$ $\Longrightarrow b \equiv a \bmod 3$	$\begin{gathered} \text { antisymmetric } \\ A \subset B \wedge B \subset A \\ \Longrightarrow A=B \end{gathered}$	antisymmetric $a\|b \wedge b\| a$ $\Longrightarrow a=b$
transitive $\begin{gathered} x \leq y \wedge y \leq z \\ \Longrightarrow x \leq z \end{gathered}$	transitive $\begin{gathered} a \equiv b \bmod 3 \wedge \\ b \equiv c \bmod 3 \\ \Longrightarrow a \equiv c \bmod 3 \end{gathered}$	transitive $\begin{aligned} & A \subset B \wedge B \subset C \\ & \Longrightarrow A \subset C \end{aligned}$	$\begin{aligned} & \quad \text { transitive } \\ & a\|b \wedge b\| c \\ & \quad \Longrightarrow a \mid c \end{aligned}$
$\begin{aligned} & \text { total } \\ & \forall x, y \in \mathbb{R} \\ & x \leq y \vee y \leq x \end{aligned}$			

Special classes of relations

Special classes of relations

- Ordering relations:
- Ordering relations:

Non-strict total (linear) order

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)
\leq on \mathbb{R}

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive)

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) \subset on $\mathcal{P}(X)$, divisibility on \mathbb{N}

- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) \subset on $\mathcal{P}(X)$, divisibility on \mathbb{N}

- Equivalence relation
- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) \subset on $\mathcal{P}(X)$, divisibility on \mathbb{N}

- Equivalence relation (reflexive+symmetric+transitive)
- Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

$$
\leq \text { on } \mathbb{R}
$$

Non-strict partial order (reflexive+antisymmetric+transitive) \subset on $\mathcal{P}(X)$, divisibility on \mathbb{N}

- Equivalence relation (reflexive+symmetric+transitive)

$$
\equiv \bmod 3 \text { on } \mathbb{Z} \text {. }
$$

[^0]: Definition. Let X, Y be sets.
 The Cartesian product (or cross product, or direct product) of X and Y is the set of all ordered pairs

