Lecture 6

Maps

Let X, Y be sets.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y:

It's a large set!

It's a large set! If X contains q elements and Y contains p elements,

It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains

It's a large set! If X contains q elements and Y contains p elements, then Map(X,Y) contains p^q elements.

It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements.

Indeed,

It's a large set! If X contains q elements and Y contains p elements, then Map(X, Y) contains p^q elements.

Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$.

It's a large set! If X contains q elements and Y contains p elements, then Map(X, Y) contains p^q elements.

Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$.

Any map f:X o Y is determined by its values at x_1,x_2,\ldots,x_q ,

It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements.

Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$.

Any map $f: X \to Y$ is determined by its values at x_1, x_2, \ldots, x_q , that is, by $f(x_1), f(x_2), \ldots, f(x_q)$. Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{f \mid f: X \to Y\}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements.

Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$.

Any map $f: X \to Y$ is determined by its values at x_1, x_2, \ldots, x_q , that is, by $f(x_1), f(x_2), \ldots, f(x_q)$.

For each x_i ($1 \le i \le q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p ,

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{f \mid f: X \to Y\}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}.$

Any map $f: X \to Y$ is determined by its values at x_1, x_2, \ldots, x_q , that is, by $f(x_1), f(x_2), \ldots, f(x_q)$.

For each x_i $(1 \le i \le q)$, $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f : X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map f:X o Y is determined by its values at x_1,x_2,\ldots,x_q , that is, by $f(x_1), f(x_2), ..., f(x_n)$. For each x_i ($1 \le i \le q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i ,

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f : X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map f:X
ightarrow Y is determined by its values at x_1,x_2,\ldots,x_q , that is, by $f(x_1), f(x_2), ..., f(x_n)$. For each x_i ($1 \le i \le q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i , there are $\underbrace{p \cdot p \cdot \ldots \cdot p}_{p}$

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f : X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map f:X
ightarrow Y is determined by its values at x_1,x_2,\ldots,x_q , that is, by $f(x_1), f(x_2), ..., f(x_a)$. For each x_i ($1 \le i \le q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i , there are $\underline{p \cdot p \cdot \ldots \cdot p} = p^q$ choices for $f(x_1), f(x_2), \ldots, f(x_q)$.

 $q \, times$

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f : X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map $f: X \to Y$ is determined by its values at x_1, x_2, \ldots, x_q , that is, by $f(x_1), f(x_2), ..., f(x_a)$. For each x_i ($1 \le i \le q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i , there are $\underline{p \cdot p \cdot \ldots \cdot p} = p^q$ choices for $f(x_1), f(x_2), \ldots, f(x_q)$. a times

Notation:

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f: X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map f:X
ightarrow Y is determined by its values at x_1,x_2,\ldots,x_q , that is, by $f(x_1), f(x_2), ..., f(x_a)$. For each x_i ($1 \leq i \leq q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i , there are $\underline{p \cdot p \cdot \ldots \cdot p} = p^q$ choices for $f(x_1), f(x_2), \ldots, f(x_q)$. a times

Notation: The number elements in a finite set X is denoted by |X|.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f: X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map f:X o Y is determined by its values at x_1,x_2,\ldots,x_q , that is, by $f(x_1), f(x_2), ..., f(x_a)$. For each x_i ($1 \leq i \leq q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i , there are $\underline{p \cdot p \cdot \ldots \cdot p} = p^q$ choices for $f(x_1), f(x_2), \ldots, f(x_q)$. a times **Notation:** The number elements in a finite set X is denoted by |X|.

We have proven that

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f : X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map f:X o Y is determined by its values at x_1,x_2,\ldots,x_q , that is, by $f(x_1), f(x_2), ..., f(x_n)$. For each x_i ($1 \le i \le q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i , there are $\underline{p \cdot p \cdot \ldots \cdot p} = p^q$ choices for $f(x_1), f(x_2), \ldots, f(x_q)$. a times **Notation:** The number elements in a finite set X is denoted by |X|.

We have proven that $|\mathcal{M}ap(X,Y)| = |Y|^{|X|}$.

Let X, Y be sets. Introduce a new set, consisting of all maps from X to Y: $\mathcal{M}ap(X,Y) = \{ f \mid f: X \to Y \}.$ It's a large set! If X contains q elements and Y contains p elements, then $\mathcal{M}ap(X,Y)$ contains p^q elements. Indeed, let $X = \{x_1, x_2, \dots, x_q\}$ and $Y = \{y_1, y_2, \dots, y_p\}$. Any map $f: X \to Y$ is determined by its values at x_1, x_2, \ldots, x_q , that is, by $f(x_1), f(x_2), ..., f(x_n)$. For each x_i ($1 \le i \le q$), $f(x_i)$ may be any of y_1, y_2, \ldots, y_p , therefore, there are p choices for each of $f(x_i)$. Since there are q elements x_i , there are $\underline{p \cdot p \cdot \ldots \cdot p} = p^q$ choices for $f(x_1), f(x_2), \ldots, f(x_q)$. a times **Notation:** The number elements in a finite set X is denoted by |X|. We have proven that $|\mathcal{M}ap(X,Y)| = |Y|^{|X|}$.

That's why $\mathcal{M}ap(X,Y)$ is often denoted by Y^X .

Definition.

MAT 250 Lecture 6 Constructior

Definition. Let X be a set.

MAT 250 Lecture 6 Constructior

Definition. Let X be a set. The **power set** of X

is the set of **all** subsets of X.

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition,

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example.

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$.

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{ \varnothing,$
is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{ \varnothing, \ \{1\}, \$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{ \varnothing, \{1\}, \{2\},$

MAT 250 Lecture 6 Construction

Definition. Let X be a set. The **power set** of X

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \}$

MAT 250 Lecture 6 Construction

Definition. Let X be a set. The **power set** of X

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \}$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\},$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\},$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$

 $\mathcal{P}(X) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

 $1\in X$,

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \in \mathcal{P}(X)$?

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) =$? $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \in \mathcal{P}(X)$? No!

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$,

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \subset \mathcal{P}(X)$?

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \subset \mathcal{P}(X)$? No!

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$,

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$, $\{1\} \in \mathcal{P}(X)$,

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$, $\{1\} \in \mathcal{P}(X)$, $\{1\} \subset \mathcal{P}(X)$?

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$, $\{1\} \in \mathcal{P}(X)$, $\{1\} \subset \mathcal{P}(X)$? No!

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$, $\{1\} \in \mathcal{P}(X)$, $\{1\} \notin \mathcal{P}(X)$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$, $\{1\} \in \mathcal{P}(X)$, $\{1\} \notin \mathcal{P}(X)$

For any set X,

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$, $\{1\} \in \mathcal{P}(X)$, $\{1\} \notin \mathcal{P}(X)$

For any set X, $\varnothing \in \mathcal{P}(X)$

is the set of **all** subsets of X.

Notation: $\mathcal{P}(X)$

By definition, $\mathcal{P}(X) = \{A \mid A \subset X\}$

Example. Let $X = \{1, 2, 3\}$. $\mathcal{P}(X) = ?$ $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ $1 \in X$, $1 \notin \mathcal{P}(X)$, $1 \notin \mathcal{P}(X)$ $\{1\} \subset X$, $\{1\} \in \mathcal{P}(X)$, $\{1\} \notin \mathcal{P}(X)$

For any set X, $\varnothing \in \mathcal{P}(X)$ and $X \in \mathcal{P}(X)$.

Theorem.

Theorem. If X has n elements,

Proof. The number of elements in $\mathcal{P}(X)$

Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X.

Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets

Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X.

How many subsets can we construct out of n elements of X?

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^n elements. **Proof.** The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X? For each element in X, **Theorem.** If X has n elements, then $\mathcal{P}(X)$ has 2^n elements. **Proof.** The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X? For each element in X, there are **two** choices: **Theorem.** If X has n elements, then $\mathcal{P}(X)$ has 2^n elements. **Proof.** The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X? For each element in X, there are **two** choices: either it's included in a subset,

Proof. The number of elements in $\mathcal{P}(X)$ is the number of subsets in X.

How many subsets can we construct out of n elements of X?

For each element in X, there are **two** choices:

either it's included in a subset, or not.

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^n elements. **Proof.** The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X? For each element in X, there are **two** choices:

either it's included in a subset, or not.

For all n elements in X,

Theorem. If X has n elements, then $\mathcal{P}(X)$ has 2^n elements. **Proof.** The number of elements in $\mathcal{P}(X)$ is the number of subsets in X. How many subsets can we construct out of n elements of X? For each element in X, there are **two** choices: either it's included in a subset, or not.

For all n elements in X, there are totally
For all n elements in X, there are totally 2^n choices.

For all n elements in X, there are totally 2^n choices. This is the number of all subsets.

For all n elements in X, there are totally 2^n choices. This is the number of all subsets.

Another notation for $\mathcal{P}(X)$ is

For all n elements in X, there are totally 2^n choices. This is the number of all subsets.

Another notation for $\mathcal{P}(X)$ is 2^X .

• Characteristic function of a set

• Characteristic function of a set $A \subset U$

- Characteristic function of a set $A \subset U$
- $\chi_A:U o \{0,1\}$,

• Characteristic function of a set $A \subset U$

$$\chi_A: U \to \{0, 1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{if } x \in A\\ 0, & \text{if } x \notin A \end{cases}$$

• Characteristic function of a set $A \subset U$

$$\chi_A: U \to \{0, 1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Example:

• Characteristic function of a set $A \subset U$

$$\chi_A: U \to \{0, 1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{if } x \in A\\ 0, & \text{if } x \notin A \end{cases}$$

Example: for $[2,4]\subset\mathbb{R}$,

• Characteristic function of a set $A \subset U$

$$\chi_A : U \to \{0, 1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Example: for $[2, 4] \subset \mathbb{R}, \quad \chi_{[2, 4]}(x) = \begin{cases} 1, & \text{if } x \in [2, 4] \\ 0, & \text{if } x \notin [2, 4] \end{cases}$

• Characteristic function of a set $A \subset U$

$$\chi_A: U \to \{0, 1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{if } x \in A\\ 0, & \text{if } x \notin A \end{cases}$$

Example: for $[2,4] \subset \mathbb{R}$, $\chi_{[2,4]}(x) = \begin{cases} 1, & \text{if } x \in [2,4] \\ 0, & \text{if } x \notin [2,4] \end{cases}$

Theorem.

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set X

Theorem. There is a bijection between the power set $\mathcal{P}(X)$ of a set Xand the set $\mathcal{M}ap(X, \{0, 1\})$ of all maps from X to the two point set $\{0, 1\}$. **Proof.** A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$,

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions:

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in \mathcal{M}ap(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$,

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in Map(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$, for which f is the characteristic function:

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in \mathcal{M}ap(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$, for which f is the characteristic function: $\chi_A = f$

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in \mathcal{M}ap(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$, for which f is the characteristic function: $\chi_A = f$

Corollary.

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in \mathcal{M}ap(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$, for which f is the characteristic function: $\chi_A = f$

Corollary. $|\mathcal{P}(X)|$

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in \mathcal{M}ap(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$, for which f is the characteristic function: $\chi_A = f$

Corollary. $|\mathcal{P}(X)| = |\mathcal{M}ap(X, \{0, 1\})|$

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in \mathcal{M}ap(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$, for which f is the characteristic function: $\chi_A = f$

Corollary. $|\mathcal{P}(X)| = |\mathcal{M}ap(X, \{0, 1\})| = 2^{|X|}$,

Proof. A bijection is given by $\mathcal{P}(X) \to \mathcal{M}ap(X, \{0, 1\})$ $A \mapsto \chi_A$, where $A \subset X$.

Indeed, the map above is injective,

since different subsets of X have different characteristic functions: $A \neq B \implies \chi_A \neq \chi_B$ for any $A, B \subset X$.

The map is surjective,

since any $f \in \mathcal{M}ap(X, \{0, 1\})$ defines a set $A = \{f^{-1}\{1\}\} \subset X$, for which f is the characteristic function: $\chi_A = f$

Corollary. $|\mathcal{P}(X)| = |\mathcal{M}ap(X, \{0, 1\})| = 2^{|X|}$, as we already know.

Theorem. Let A, B be sets.

Theorem. Let A, B be sets. Then $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$.
Proof. Let $A \subset B$.

Theorem. Let A, B be sets. Then $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$.

7 / 31

MAT 250 Lecture 6 Construction

Theorem. Let A, B be sets. Then $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion,

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$,

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

And the half of the proof is done!

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case. Since $A \subset A$,

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case. Since $A \subset A$, we have that $A \in \mathcal{P}(A)$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case. Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case. Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Therefore, $A \in \mathcal{P}(B)$,

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case. Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take **any** $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case. Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.

And the other half of the proof is done!

Proof. Let $A \subset B$. We have to prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Take any $X \in \mathcal{P}(A)$. Then $X \subset A$, but $A \subset B$.

Therefore, by the transitivity of inclusion, $X \subset B$. So $X \in \mathcal{P}(B)$.

We have got that $\forall X \in \mathcal{P}(A)$, $X \in \mathcal{P}(B)$, therefore, $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Assume now that $\mathcal{P}(A) \subset \mathcal{P}(B)$ and prove that $A \subset B$ in this case. Since $A \subset A$, we have that $A \in \mathcal{P}(A)$. But by the assumption, $\mathcal{P}(A) \subset \mathcal{P}(B)$. Therefore $A \subset \mathcal{P}(B)$, that is $A \subset B$.

Therefore, $A \in \mathcal{P}(B)$, that is, $A \subset B$.

Overall, $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$

Any map $f: X \to Y$ induces maps

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y),$

Any map $f: X \to Y$ induces maps

 $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$

Any map $f: X \to Y$ induces maps

 $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X),$ Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$.

(We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B,

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B,

and **not** the result of applying the inverse map f^{-1} .)

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B,

and **not** the result of applying the inverse map f^{-1} .)

The maps f_* and f^* are well defined

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B, and **not** the result of applying the inverse map f^{-1} .) The maps f_* and f^* are well defined since for any $A \subset X$, Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B,

and **not** the result of applying the inverse map f^{-1} .)

The maps f_* and f^* are well defined since

for any $A \subset X$, $f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B, and **not** the result of applying the inverse map f^{-1} .) The maps f_* and f^* are well defined since

for any $A \subset X$, $f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y$, Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$.

(We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B, and **not** the result of applying the inverse map f^{-1} .)

The maps f_* and f^* are well defined since

for any $A \subset X$, $f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and

for any $B \subset Y$, $f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B, and **not** the result of applying the inverse map f^{-1} .) The maps f_* and f^* are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1.

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^* : \mathcal{P}(Y) \to \mathcal{P}(X), \ B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B, and **not** the result of applying the inverse map f^{-1} .) The maps f_* and f^* are well defined since for any $A \subset X$, $f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y$, $f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$. **Exercise 1.** Prove that if $f: X \to Y$ and $g: Y \to Z$ are maps,

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B, and **not** the result of applying the inverse map f^{-1} .)

The maps f_* and f^* are well defined since for any $A \subset X$, $f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y$, $f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \to Y$ and $g: Y \to Z$ are maps, then

 $(g \circ f)_* = g_* \circ f_*$.

Any map $f: X \to Y$ induces maps $f_*: \mathcal{P}(X) \to \mathcal{P}(Y), A \mapsto f(A)$ for any $A \subset X$ and $f^*: \mathcal{P}(Y) \to \mathcal{P}(X), B \mapsto f^{-1}(B)$ for any $B \subset Y$. (We remember that $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$ is the preimage of B, and **not** the result of applying the inverse map f^{-1} .) The maps f_* and f^* are well defined since for any $A \subset X, f(A) \subset Y$ and, therefore, $f(A) \in \mathcal{P}(Y)$ and for any $B \subset Y, f^{-1}(B) \subset X$ and, therefore, $f^{-1}(B) \in \mathcal{P}(X)$.

Exercise 1. Prove that if $f: X \to Y$ and $g: Y \to Z$ are maps, then

 $(g \circ f)_* = g_* \circ f_*.$

Exercise 2. Formulate and prove a similar identity for $(g \circ f)^*$.
Definition.

Definition. Let X, Y be sets.

Definition. Let X, Y be sets. The **Cartesian product** **Definition.** Let X, Y be sets. The **Cartesian product** (or cross product

The **Cartesian product** (or cross product, or direct product)

The Cartesian product (or cross product, or direct product) of X and Y

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs

The **Cartesian product** (or cross product, or direct product) of X and Y

is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Yis the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs,

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times V = \{(x, y) \mid x \in V \ y \in V\}$

is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $(x_1, y_1) = (x_2, y_2)$

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$.

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Yis the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For **ordered** pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$.

So if x
eq y ,

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x, y) \neq (y, x)$,

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$.

So if $x \neq y$, then $(x,y) \neq (y,x)$, and if $X \neq Y$

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$.

So if $x \neq y$, then $(x,y) \neq (y,x)$, and if $X \neq Y$ then $X \times Y$

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$.

So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$.

So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$.

Example 1. Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$.

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$. $X \times Y$ $b \bullet ($ **Example 1.** Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Then $X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$. $X \times Y$ **Example 1.** Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Then $b \not\models (\bullet X \times Y = \{(1, b) \in (1, b) \in (1, b)\}$ $X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

However, there is a **natural bijection** $X \times Y \to Y \times X : (x, y) \mapsto (y, x)$.

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$. Example 1. Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Then $X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

However, there is a **natural bijection** $X \times Y \to Y \times X : (x, y) \mapsto (y, x)$. In this sense, the Cartesian product is **commutative**.

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$. $X \times Y$ **Example 1.** Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Then $b \neq (\bullet \bullet)$ $X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

However, there is a **natural bijection** $X \times Y \to Y \times X : (x, y) \mapsto (y, x)$. In this sense, the Cartesian product is **commutative**.

Theorem.

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$. Example 1. Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Then $X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$.

However, there is a **natural bijection** $X \times Y \to Y \times X : (x, y) \mapsto (y, x)$. In this sense, the Cartesian product is **commutative**.

Theorem. If X has p elements,

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x, y) \neq (y, x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$. Example 1. Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Then $X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

However, there is a **natural bijection** $X \times Y \to Y \times X : (x, y) \mapsto (y, x)$. In this sense, the Cartesian product is **commutative**.

Theorem. If X has p elements, and Y has q elements,

Definition. Let X, Y be sets. The **Cartesian product** (or cross product, or direct product) of X and Y is the set of all ordered pairs $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. For ordered pairs, $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2$ and $y_1 = y_2$. So if $x \neq y$, then $(x,y) \neq (y,x)$, and if $X \neq Y$ then $X \times Y \neq Y \times X$. Example 1. Let $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. Then $X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

However, there is a **natural bijection** $X \times Y \to Y \times X : (x, y) \mapsto (y, x)$. In this sense, the Cartesian product is **commutative**.

Theorem. If X has p elements, and Y has q elements,

then $X \times Y$ has pq elements.

Example 2.

Example 2. Let $X = Y = \mathbb{R}$.

Example 2. Let $X = Y = \mathbb{R}$. Then

 $X \times Y =$

Example 2. Let $X = Y = \mathbb{R}$. Then

 $X \times Y = \mathbb{R} \times \mathbb{R} =$

Example 2. Let $X = Y = \mathbb{R}$. Then $X \times Y = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$

Example 2. Let $X = Y = \mathbb{R}$. Then

 $X\times Y=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2=\{(x,y)\mid x\in\mathbb{R},\ y\in\mathbb{R}\}$

Example 2. Let $X = Y = \mathbb{R}$. Then

 $X\times Y=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2=\{(x,y)\,|\,x\in\mathbb{R},\,y\in\mathbb{R}\}\quad\text{Cartesian plane}$

Example 2. Let $X = Y = \mathbb{R}$. Then

 $X\times Y=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2=\{(x,y)\,|\,x\in\mathbb{R},\,y\in\mathbb{R}\}\quad\text{Cartesian plane}$

Example 3.

Example 2. Let $X = Y = \mathbb{R}$. Then $X \times Y = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$ Cartesian plane

Example 3. Let $X = [1, 2] \cup [3, 5)$,

Example 2. Let $X = Y = \mathbb{R}$. Then $X \times Y = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$ Cartesian plane

Example 3. Let $X = [1, 2] \cup [3, 5)$, Y = (4, 6].
Example 2. Let $X = Y = \mathbb{R}$. Then $X \times Y = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$ Cartesian plane

Example 3. Let $X = [1, 2] \cup [3, 5)$, Y = (4, 6]. $X \times Y = ?$

Example 2. Let $X = Y = \mathbb{R}$. Then $X \times Y = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$ Cartesian plane

Example 3. Let $X = [1, 2] \cup [3, 5)$, Y = (4, 6]. $X \times Y = ?$ $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$

Example 2. Let $X = Y = \mathbb{R}$. Then $X \times Y = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$ Cartesian plane

Example 3. Let $X = [1, 2] \cup [3, 5)$, Y = (4, 6]. $X \times Y = ?$

 $X \times Y = \{(x, y) \mid x \in X, \ y \in Y\} = \{(x, y) \mid x \in [1, 2] \cup [3, 5), \ y \in (4, 6]\}$

Example 4.

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane)

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1]

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1] (a line segment)

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$

 $X \times Y =$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$ $X \times Y = \{((x, y), z) \mid (x, y) \in X, z \in Y\}$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$ $X \times Y = \{((x, y), z) \mid (x, y) \in X, \ z \in Y\}$ $= \{(x, y, z) \mid x^2 + y^2 \le 1, \ 0 \le z \le 1\}$ Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$ $X \times Y = \{((x, y), z) \mid (x, y) \in X, \ z \in Y\}$ $= \{(x, y, z) \mid x^2 + y^2 \le 1, \ 0 \le z \le 1\} \subset \mathbb{R}^3.$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$ $X \times Y = \{((x, y), z) \mid (x, y) \in X, \ z \in Y\}$ $= \{(x, y, z) \mid x^2 + y^2 \leq 1, \ 0 \leq z \leq 1\} \subset \mathbb{R}^3.$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$ $X \times Y = \{((x, y), z) \mid (x, y) \in X, \ z \in Y\}$ $= \{(x, y, z) \mid x^2 + y^2 \le 1, \ 0 \le z \le 1\} \subset \mathbb{R}^3.$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$ $X \times Y = \{((x, y), z) \mid (x, y) \in X, \ z \in Y\}$ $= \{(x, y, z) \mid x^2 + y^2 \leq 1, \ 0 \leq z \leq 1\} \subset \mathbb{R}^3.$

Example 4. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ (a disk on a plane) Y = [0, 1] (a line segment) $X \times Y = ?$ $X \times Y = \{((x, y), z) \mid (x, y) \in X, \ z \in Y\}$ $= \{(x, y, z) \mid x^2 + y^2 \le 1, \ 0 \le z \le 1\} \subset \mathbb{R}^3.$

Let X, Y be sets.

Let X, Y be sets. The maps

Let X, Y be sets. The maps $\operatorname{proj}_X : X \times Y \to X$,

Let X,Y be sets. The maps $\mathrm{proj}_X:\,X\times Y\to X\,,\quad (x,y)\mapsto x$

Let X,Y be sets. The maps $\begin{array}{l} {\rm proj}_X:\,X\times Y\to X\,,\quad (x,y)\mapsto x\, \text{ and}\\ {\rm proj}_Y:\,X\times Y\to Y\,,\end{array}$

Let X,Y be sets. The maps $\begin{array}{ll} \operatorname{proj}_X:\,X\times Y\to X\,,\quad (x,y)\mapsto x \ \text{ and} \\ \operatorname{proj}_Y:\,X\times Y\to Y\,,\quad (x,y)\mapsto y \end{array}$

Let X,Y be sets. The maps $\begin{array}{ll} \operatorname{proj}_X:\,X\times Y\to X\,,\quad (x,y)\mapsto x \text{ and}\\ \operatorname{proj}_Y:\,X\times Y\to Y\,,\quad (x,y)\mapsto y \end{array}$

are called the **coordinate projections**.

Let X, Y be sets. The maps

$$\begin{array}{ll} \mathrm{proj}_X:\, X\times Y\to X\,, \quad (x,y)\mapsto x \;\; \mathrm{and} \\ \mathrm{proj}_Y:\, X\times Y\to Y\,, \quad (x,y)\mapsto y \end{array}$$

are called the **coordinate projections**.

The subsets $\{x\} \times Y$ and $X \times \{y\}$ of $X \times Y$ are called **fibers**.

Let X, Y be sets. The maps

$$\mathrm{proj}_X:\,X\times Y\to X\,,\quad (x,y)\mapsto x\,$$
 and $\mathrm{proj}_Y:\,X\times Y\to Y\,,\quad (x,y)\mapsto y$

are called the **coordinate projections**.

The subsets $\{x\} \times Y$ and $X \times \{y\}$ of $X \times Y$ are called **fibers**.

X

Y

Let X, Y be sets. The maps

$$\begin{array}{ll} \operatorname{proj}_X:\,X\times Y\to X\,, & (x,y)\mapsto x \text{ and}\\ \operatorname{proj}_Y:\,X\times Y\to Y\,, & (x,y)\mapsto y \end{array}$$

are called the **coordinate projections**.

The subsets $\{x\} \times Y$ and $X \times \{y\}$ of $X \times Y$ are called **fibers**.

Let X, Y be sets. The maps

$$\begin{array}{ll} \operatorname{proj}_X:\,X\times Y\to X\,, & (x,y)\mapsto x \text{ and}\\ \operatorname{proj}_Y:\,X\times Y\to Y\,, & (x,y)\mapsto y \end{array}$$

are called the **coordinate projections**.

The subsets $\{x\} \times Y$ and $X \times \{y\}$ of $X \times Y$ are called **fibers**.

Let X, Y be sets. The maps

$$\begin{array}{ll} \mathrm{proj}_X:\, X\times Y\to X\,, \quad (x,y)\mapsto x \;\; \mathrm{and} \\ \mathrm{proj}_Y:\, X\times Y\to Y\,, \quad (x,y)\mapsto y \end{array}$$

are called the **coordinate projections**.

The subsets $\{x\} \times Y$ and $X \times \{y\}$ of $X \times Y$ are called **fibers**.

Let X, Y be sets. The maps

$$\begin{array}{ll} \operatorname{proj}_X:\, X\times Y\to X\,, \quad (x,y)\mapsto x \;\; \text{and} \\ \operatorname{proj}_Y:\, X\times Y\to Y\,, \quad (x,y)\mapsto y \end{array}$$

are called the coordinate projections.

The subsets $\{x\} \times Y$ and $X \times \{y\}$ of $X \times Y$ are called **fibers**.

Let X, Y be sets. The maps

$$\begin{array}{ll} \mathrm{proj}_X:\,X\times Y\to X\,,\quad (x,y)\mapsto x \;\;\mathrm{and}\\ \mathrm{proj}_Y:\,X\times Y\to Y\,,\quad (x,y)\mapsto y \end{array}$$

are called the coordinate projections.

The subsets $\{x\} \times Y$ and $X \times \{y\}$ of $X \times Y$ are called **fibers**.

Let $f: A \to B$ and $g: X \to Y$ be maps.

Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map

Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map $f \times g: A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x)).$ Let $f : A \to B$ and $g : X \to Y$ be maps. Define a map $f \times g : A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x))$. This map is called the **direct product** of maps f and g. Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map $f \times g: A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x))$. This map is called the **direct product** of maps f and g. Let $f: Z \to X$ and $g: Z \to Y$ be maps. Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map $f \times g: A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x))$. This map is called the **direct product** of maps f and g. Let $f: Z \to X$ and $g: Z \to Y$ be maps. Define a map Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map $f \times g: A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x))$. This map is called the **direct product** of maps f and g. Let $f: Z \to X$ and $g: Z \to Y$ be maps. Define a map $f \odot g: Z \to X \times Y$ by $(f \odot g)(z) = (f(z), g(z))$. Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map $f \times g: A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x))$. This map is called the **direct product** of maps f and g. Let $f: Z \to X$ and $g: Z \to Y$ be maps. Define a map $f \odot g: Z \to X \times Y$ by $(f \odot g)(z) = (f(z), g(z))$. When X = Y = Z and $f = g = \operatorname{id}_X$, Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map $f \times g: A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x))$. This map is called the **direct product** of maps f and g. Let $f: Z \to X$ and $g: Z \to Y$ be maps. Define a map $f \odot g: Z \to X \times Y$ by $(f \odot g)(z) = (f(z), g(z))$. When X = Y = Z and $f = g = \operatorname{id}_X$, then Let $f: A \to B$ and $g: X \to Y$ be maps. Define a map $f \times g: A \times X \to B \times Y$ by $(f \times g)((a, x)) = (f(a), g(x))$. This map is called the **direct product** of maps f and g. Let $f: Z \to X$ and $g: Z \to Y$ be maps. Define a map $f \odot g: Z \to X \times Y$ by $(f \odot g)(z) = (f(z), g(z))$. When X = Y = Z and $f = g = \operatorname{id}_X$, then $\operatorname{id}_X \odot \operatorname{id}_X : X \to X \times X$

$$X$$
 $X \times X$ $X \times X$

$$X$$
 $X \times X$
 X

The subset $\Delta = \{(x, x) \mid x \in X\} \subset X \times X$ is called the **diagonal** of $X \times X$.

X

The diagonal is the image of $\operatorname{id}_X \odot \operatorname{id}_X$.

The **graph** of a map $f: X \to Y$

The graph of a map $f: X \to Y$ is the set

The graph of a map $f:X \to Y$ is the set $\Gamma_f = \{(x,y) \mid x \in X, y = f(x)\} \subset X \times Y$

The **graph** of a map $f: X \to Y$ is the set $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example.

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} ,

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} ,

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is

 $\operatorname{Im}(f) = \{ y \mid y = x^2 \land x \in \mathbb{R} \}$

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is

 $\operatorname{Im}(f) = \{ y \mid y = x^2 \land x \in \mathbb{R} \} = [0, \infty) .$

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is

 $Im(f) = \{y \mid y = x^2 \land x \in \mathbb{R}\} = [0, \infty).$

The graph f is

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, \ y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is

 $Im(f) = \{y \mid y = x^2 \land x \in \mathbb{R}\} = [0, \infty).$

The graph f is $\Gamma_f = \{(x, y) \mid x \in \mathbb{R}, y = x^2\}$
The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, \ y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is $\operatorname{Im}(f) = \{u \mid v = x^2 \land v\}$

 $\operatorname{Im}(f) = \{ y \mid y = x^2 \land x \in \mathbb{R} \} = [0, \infty) \,.$

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is

 $Im(f) = \{y \mid y = x^2 \land x \in \mathbb{R}\} = [0, \infty).$

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is $Im(f) = \{y \mid y = x^2 \land x \in \mathbb{R}\} = [0, \infty).$

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, \ y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is $Im(f) = \{y \mid y = x^2 \land x \in \mathbb{R}\} = [0, \infty).$

The **graph** of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is $Im(f) = \{y \mid y = x^2 \land x \in \mathbb{R}\} = [0, \infty).$

The graph of a map $f: X \to Y$ is the set

 $\Gamma_f = \{(x, y) \mid x \in X, \ y = f(x)\} \subset X \times Y$

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be a map defined by $f(x) = x^2$.

The domain of f is \mathbb{R} , the codomain is \mathbb{R} , the range is $Im(f) = \{y \mid y = x^2 \land x \in \mathbb{R}\} = [0, \infty).$

Example.

Example. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function

Example. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function

given by $f(x,y) = x^2 + y^2$, or $z = x^2 + y^2$.

Example. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function given by $f(x, y) = x^2 + y^2$, or $z = x^2 + y^2$. Its graph is the set $\Gamma_f = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{R} \mid z = x^2 + y^2\}$ **Example.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function given by $f(x, y) = x^2 + y^2$, or $z = x^2 + y^2$. Its graph is the set $\Gamma_f = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{R} \mid z = x^2 + y^2\} \subset \mathbb{R}^3$. **Example.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function given by $f(x, y) = x^2 + y^2$, or $z = x^2 + y^2$. Its graph is the set $\Gamma_f = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{R} \mid z = x^2 + y^2\} \subset \mathbb{R}^3$.

Example.

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$.

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$.

What does this function do?

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$. What does this function do?

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$. What does this function do?

f reels up the line on the circle.

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$. What does this function do?

f reels up the line on the circle.

The graph of f is the set $\Gamma_f = \{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^2\}$

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$. What does this function do?

f reels up the line on the circle.

The graph of f is the set $\Gamma_f = \{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^2\} \subset \mathbb{R}^3$.

Example. Let $f : \mathbb{R} \to \mathbb{R}^2$ be a function given by $f(t) = (\cos t, \sin t)$. What does this function do?

f reels up the line on the circle.

The graph of f is the set $\Gamma_f = \{(t, \cos t, \sin t) \in \mathbb{R} \times \mathbb{R}^2\} \subset \mathbb{R}^3$. Γ_f is a curve in \mathbb{R}^3 . It is called helix. Helix

The graph of $f: \mathbb{R} \to \mathbb{R}^2$, $f(t) = (\cos t, \sin t)$

Helix

The graph of $f : \mathbb{R} \to \mathbb{R}^2$, $f(t) = (\cos t, \sin t)$ is the helix $\{(x, y, z) \in \mathbb{R}^3 \mid x = t \in \mathbb{R}, y = \cos t, z = \sin t\}$: Helix

The graph of $f : \mathbb{R} \to \mathbb{R}^2$, $f(t) = (\cos t, \sin t)$ is the helix $\{(x, y, z) \in \mathbb{R}^3 \mid x = t \in \mathbb{R}, y = \cos t, z = \sin t\}$:

Definition.

MAT 250 Lecture 6 Construction

Definition. A **metric**

Definition. A **metric** (or distance function) on a set X

Definition. A metric (or distance function) on a set X is a map

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{>0}$

MAT 250 Lecture 6 Construction

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{\geq 0} = [0, \infty)$

MAT 250 Lecture 6 Constructior

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{\geq 0} = [0, \infty)$

satisfying the following conditions

Definition. A metric (or distance function) on a set X is a map

 $d:X\times X\to \mathbb{R}_{\geq 0}=[0,\infty)$ satisfying the following conditions for all $\,x,\,y,\,z\in X$:
Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{\geq 0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

1. $d(x,y) = 0 \iff x = y$

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{\geq 0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

- **1.** $d(x,y) = 0 \iff x = y$
- **2**. d(x, y) = d(y, x)

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{\geq 0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

- **1.** $d(x,y) = 0 \iff x = y$
- **2**. d(x, y) = d(y, x)
- **3**. $d(x, z) \le d(x, y) + d(y, z)$

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{>0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

- **1.** $d(x,y) = 0 \iff x = y$
- **2**. d(x, y) = d(y, x)
- **3.** $d(x,z) \le d(x,y) + d(y,z)$

A pair (X, d) is called a **metric space**.

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{>0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

- **1.** $d(x,y) = 0 \iff x = y$
- **2**. d(x, y) = d(y, x)
- **3**. $d(x, z) \le d(x, y) + d(y, z)$

A pair (X, d) is called a metric space.

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{>0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

- **1**. $d(x,y) = 0 \iff x = y$ coincidence axiom
- **2**. d(x, y) = d(y, x)
- **3**. $d(x, z) \le d(x, y) + d(y, z)$

A pair (X, d) is called a metric space.

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{\geq 0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

- **1**. $d(x,y) = 0 \iff x = y$ coincidence axiom
- **2**. d(x,y) = d(y,x) symmetry
- **3.** $d(x,z) \le d(x,y) + d(y,z)$

A pair (X, d) is called a **metric space**.

Definition. A metric (or distance function) on a set X is a map

 $d: X \times X \to \mathbb{R}_{\geq 0} = [0, \infty)$

satisfying the following conditions for all $x, y, z \in X$:

- **1**. $d(x,y) = 0 \iff x = y$ coincidence axiom
- **2**. d(x,y) = d(y,x) symmetry
- 3. $d(x,z) \leq d(x,y) + d(y,z)$ triangle inequality

A pair (X, d) is called a **metric space**.

Theorem.

Theorem. A map $d:\mathbb{R} imes\mathbb{R} o\mathbb{R}_{\geq 0}$,

Theorem. A map $d:\mathbb{R} imes\mathbb{R} o\mathbb{R}_{\geq 0}$, defined by

Theorem. A map $d:\mathbb{R} imes\mathbb{R} o\mathbb{R}_{\geq 0}$, defined by d(x,y)=|x-y|

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$, defined by d(x,y) = |x-y| for any $x, y \in \mathbb{R}$,

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$, defined by

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$, defined by

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof.

Theorem. A map $d: \mathbb{R} imes \mathbb{R} o \mathbb{R}_{\geq 0}$, defined by

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{>0}$, defined by

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers.

Theorem. A map $d: \mathbb{R} imes \mathbb{R} o \mathbb{R}_{\geq 0}$, defined by

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

Theorem. A map $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{>0}$, defined by

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. $|x - y| = 0 \iff x = y$

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. $|x-y| = 0 \iff x = y$ since $|x-y| = 0 \iff x-y = 0 \iff x = y$.

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. $|x - y| = 0 \iff x = y$ since $|x - y| = 0 \iff x - y = 0 \iff x = y$. 2. |x - y| = |y - x|

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. $|x-y| = 0 \iff x = y$ since $|x-y| = 0 \iff x-y = 0 \iff x = y$.

2. |x - y| = |y - x| since |a| = |-a|

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. $|x-y| = 0 \iff x = y$ since $|x-y| = 0 \iff x-y = 0 \iff x = y$.

2. |x - y| = |y - x| since |a| = |-a| for any real *a*.

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. $|x-y| = 0 \iff x = y$ since $|x-y| = 0 \iff x-y = 0 \iff x = y$.

- **2.** |x y| = |y x| since |a| = |-a| for any real *a*.
- **3.** $|x-z| \le |x-y| + |y-z|$

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then 1. $|x - y| = 0 \iff x = y$ since $|x - y| = 0 \iff x - y = 0 \iff x = y$. 2. |x - y| = |y - x| since |a| = |-a| for any real a. 3. $|x - z| \le |x - y| + |y - z|$ since |x - z| =

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then 1. $|x - y| = 0 \iff x = y$ since $|x - y| = 0 \iff x - y = 0 \iff x = y$. 2. |x - y| = |y - x| since |a| = |-a| for any real a. 3. $|x - z| \le |x - y| + |y - z|$ since |x - z| = |(x - y) + (y - z)|

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then 1. $|x - y| = 0 \iff x = y$ since $|x - y| = 0 \iff x - y = 0 \iff x = y$. 2. |x - y| = |y - x| since |a| = |-a| for any real a. 3. $|x - z| \le |x - y| + |y - z|$ since $|x - z| = |(x - y) + (y - z)| \le |x - y| + |y - z|$

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then 1. $|x - y| = 0 \iff x = y$ since $|x - y| = 0 \iff x - y = 0 \iff x = y$. 2. |x - y| = |y - x| since |a| = |-a| for any real a. 3. $|x - z| \le |x - y| + |y - z|$ since $|x - z| = |(x - y) + (y - z)| \le |x - y| + |y - z|$ by the triangle inequality $(|a + b| \le |a| + |b|)$ for all $a, b \in \mathbb{R}$)

d(x,y) = |x-y| for any $x, y \in \mathbb{R}$, is a metric.

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then 1. $|x - y| = 0 \iff x = y$ since $|x - y| = 0 \iff x - y = 0 \iff x = y$. 2. |x - y| = |y - x| since |a| = |-a| for any real a. 3. $|x - z| \le |x - y| + |y - z|$ since $|x - z| = |(x - y) + (y - z)| \le |x - y| + |y - z|$ by the triangle inequality $(|a + b| \le |a| + |b|)$ for all $a, b \in \mathbb{R}$)

Therefore, all axioms are satisfied and the map d is a metric.

Theorem.

Theorem. A map $d:\mathbb{R}^2 imes\mathbb{R}^2 o\mathbb{R}_{\geq 0}$,

Theorem. A map $d: \mathbb{R}^2 imes \mathbb{R}^2 o \mathbb{R}_{\geq 0}$, defined by

Theorem. A map $d: \mathbb{R}^2 imes \mathbb{R}^2 o \mathbb{R}_{>0}$, defined by

 $d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
Theorem. A map $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{>0}$, defined by

 $d((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$ for any $(x_1,y_1), (x_2,y_2) \in \mathbb{R}^2$,

Theorem. A map $d: \mathbb{R}^2 imes \mathbb{R}^2 o \mathbb{R}_{\geq 0}$, defined by

 $d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for any $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$,

is a metric.

This metric is called **Euclidean**.

This metric is called **Euclidean**.

Proof will be given in a course of Linear Algebra.

 $d((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$

for any $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$

 $d((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$

It's easy to check that this is a metric indeed.

 $d((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$

It's easy to check that this is a metric indeed.

The plane with Euclidean metric

 $d((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$

It's easy to check that this is a metric indeed.

The plane with Euclidean metric

and the plane with taxi driver metric

 $d((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$

It's easy to check that this is a metric indeed.

The plane with Euclidean metric

and the plane with taxi driver metric

are different metric spaces.

Definition.

Definition. A (binary) relation R on a set X

 $R\subset X\times X$

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

A binary relation corresponds

to a statement about an ordered pair of arguments taken from X.

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

A binary relation corresponds

to a statement about an ordered pair of arguments taken from X.

More generally:

a statement about an ordered n-tuple of arguments is called an n-ary relation.

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

A binary relation corresponds

to a statement about an ordered pair of arguments taken from X.

More generally:

a statement about an ordered n-tuple of arguments is called an n-ary relation.

Furthermore, the arguments may belong to different sets.

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

A binary relation corresponds

to a statement about an ordered pair of arguments taken from X.

More generally:

a statement about an ordered n-tuple of arguments is called an n-ary relation.

Furthermore, the arguments may belong to different sets.

The notion of binary relation generalizes the notion of mapping:

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

A binary relation corresponds

to a statement about an ordered pair of arguments taken from X.

More generally:

a statement about an ordered n-tuple of arguments is called an n-ary relation.

Furthermore, the arguments may belong to different sets.

The notion of binary relation generalizes the notion of mapping: any map $f: X \to Y$ can be considered as a relation y = f(x)between elements of

between elements of X and Y.

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

A binary relation corresponds

to a statement about an ordered pair of arguments taken from X.

More generally:

a statement about an ordered n-tuple of arguments is called an n-ary relation.

Furthermore, the arguments may belong to different sets.

The notion of binary relation generalizes the notion of mapping: any map $f: X \to Y$ can be considered as a relation y = f(x)

between elements of X and Y.

Example. Orthogonality of a line and a plane in \mathbb{R}^3 .

 $R \subset X \times X \iff R \in \mathcal{P}(X \times X)$.

A binary relation corresponds

to a statement about an ordered pair of arguments taken from X.

More generally:

a statement about an ordered n-tuple of arguments is called an n-ary relation.

Furthermore, the arguments may belong to different sets.

The notion of binary relation generalizes the notion of mapping: any map $f: X \to Y$ can be considered as a relation y = f(x)between elements of X and Y.

Example. Orthogonality of a line and a plane in \mathbb{R}^3 .

We will deal mostly with **binary** relations on a **single** set.

Let a set X have 3 elements.

Let a set X have 3 elements. How many relations are there on X?

Let a set X have 3 elements. How many relations are there on X? Answer:
The number of relations of a finite set X

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$.

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements,

The number of relations of a finite set X is equal to the number of elements in $\mathcal{P}(X\times X)$. If X has n elements, then $X\times X$ has

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements,

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has 2^{n^2} elements.

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has 2^{n^2} elements.

So the number of relations on a set of 3 elements

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has 2^{n^2} elements.

So the number of relations on a set of 3 elements is 2^{3^2}

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has 2^{n^2} elements.

So the number of relations on a set of 3 elements is $2^{3^2} = 2^9$

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has 2^{n^2} elements.

So the number of relations on a set of 3 elements is $2^{3^2} = 2^9 = 512$.

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has 2^{n^2} elements.

So the number of relations on a set of 3 elements is $2^{3^2} = 2^9 = 512$.

 $\mathcal{P}(X \times X)$

The number of relations of a finite set Xis equal to the number of elements in $\mathcal{P}(X \times X)$. If X has n elements, then $X \times X$ has n^2 elements, and $\mathcal{P}(X \times X)$ has 2^{n^2} elements.

So the number of relations on a set of 3 elements is $2^{3^2} = 2^9 = 512$.

 $\mathcal{P}(X \times X)$ is a huge set!

Notation.

Notation. Let R be a relation on X,

MAT 250 Lecture 6 Construction

Notation. Let R be a relation on X, and $x, y \in X$.

MAT 250 Lecture 6 Construction

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$

MAT 250 Lecture 6 Constructior

Notation. Let R be a relation on X, and $x, y \in X$.

If $(x,y) \in R$ then we say that "x is related to y"

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1.

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$.

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} :

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. **Notation.** Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2?

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$?

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$? Yes, since

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2 ? That is, $(1,2)\in R_{\leq}$? Yes, since $(1,2)\in R_{\leq}$

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \iff 1 \leq 2$,

If $(x,y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. Is it true that 1 is related to 2? That is, $(1, 2) \in R_{\leq}$? Yes, since

 $(1,2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Is it true that 2 is related to 1?

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Is it true that 2 is related to 1? That is, $(2,1) \in R_{\leq}$?

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} :

 $(x,y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Is it true that 2 is related to 1? That is, $(2,1) \in R_{\leq}$? No, since

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. Is it true that 1 is related to 2? That is, $(1, 2) \in R_{\leq}$? Yes, since $(1, 2) \in R_{\leq} \iff 1 \leq 2$, which is true. Is it true that 2 is related to 1? That is, $(2, 1) \in R_{\leq}$? No, since $(2, 1) \in R_{\leq}$
Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. Is it true that 1 is related to 2? That is, $(1, 2) \in R_{\leq}$? Yes, since $(1, 2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Is it true that 2 is related to $1\,?$ That is, $(2,1)\in R_\leq$? No, since $(2,1)\in R_\leq\iff 2\leq 1\,,$

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. Is it true that 1 is related to 2? That is, $(1, 2) \in R_{\leq}$? Yes, since $(1, 2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Is it true that 2 is related to 1? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \iff 2 \leq 1$, which is false.

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. Is it true that 1 is related to 2? That is, $(1, 2) \in R_{\leq}$? Yes, since $(1, 2) \in R_{\leq} \iff 1 \leq 2$, which is true. Is it true that 2 is related to 1? That is, $(2, 1) \in R_{\leq}$? No, since $(2, 1) \in R_{\leq} \iff 2 \leq 1$, which is false.

The relation $R_{<}$ is a subset of the plane:

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. Is it true that 1 is related to 2? That is, $(1, 2) \in R_{\leq}$? Yes, since $(1, 2) \in R_{\leq} \iff 1 \leq 2$, which is true. Is it true that 2 is related to 1? That is, $(2, 1) \in R_{\leq}$? No, since

 $(2,1)\in R_{\leq}\iff 2\leq 1$, which is false.

The relation R_{\leq} is a subset of the plane: $R_{\leq} = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y. **Example 1.** Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$. Is it true that 1 is related to 2? That is, $(1, 2) \in R_{\leq}$? Yes, since

 $(1,2) \in R_{\leq} \iff 1 \leq 2$, which is true. Is it true that 2 is related to 1? That is, $(2,1) \in R_{\leq}$? No, since

Is it true that 2 is related to 1? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \iff 2 \leq 1$, which is false.

The relation R_{\leq} is a subset of the plane: $R_{\leq} = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\} \subset \mathbb{R}^2$, so we may draw the **graph** of R_{\leq} . **Notation.** Let R be a relation on X, and $x, y \in X$.

If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x,y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Is it true that 2 is related to 1? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \iff 2 \leq 1$, which is false.

The relation R_{\leq} is a subset of the plane: $R_{\leq} = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\} \subset \mathbb{R}^2$, so we may draw the **graph** of R_{\leq} .

Notation. Let R be a relation on X, and $x, y \in X$. If $(x, y) \in R$ then we say that "x is related to y" and write x R y.

Example 1. Let $X = \mathbb{R}$. The inequality \leq is a relation R_{\leq} on \mathbb{R} : $(x, y) \in R_{\leq} \iff x \leq y$.

Is it true that 1 is related to 2? That is, $(1,2) \in R_{\leq}$? Yes, since $(1,2) \in R_{\leq} \iff 1 \leq 2$, which is true.

Is it true that 2 is related to 1? That is, $(2,1) \in R_{\leq}$? No, since $(2,1) \in R_{\leq} \iff 2 \leq 1$, which is false.

The relation R_{\leq} is a subset of the plane: $R_{\leq} = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\} \subset \mathbb{R}^2$, so we may draw the **graph** of R_{\leq} .

$$\forall x, y \in \mathbb{R} \quad \underbrace{(x, y) \in R_{\leq}}_{x \leq y} \text{ or } \underbrace{(y, x) \in R_{\leq}}_{y \leq x}.$$

MAT 250 Lecture 6 Construction

Example 2.

Example 2. Let X be a set,

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset

Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:

Example 2. Let X be a set, and $\mathcal{P}(X)$ be its power set. Inclusion \subset is a relation \mathbb{R}_{\subset} on $\mathcal{P}(X)$: $\forall A, B \in \mathcal{P}(X)$

Inclusion \subset is a relation R_{\subset} on $\mathcal{P}(X)$:

 $\forall A, B \in \mathcal{P}(X) \quad (A, B) \in \mathbb{R}_{\mathbb{C}} \iff A \subset B.$

 $\begin{array}{l} \text{Inclusion } \subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X) : \\ \forall A, B \in \mathcal{P}(X) \quad (A, B) \in R_{\subset} \iff A \subset B \,. \end{array}$

 $\begin{array}{l} \text{Inclusion } \subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X) : \\ \forall A, B \in \mathcal{P}(X) \quad (A, B) \in R_{\subset} \iff A \subset B \,. \end{array}$

 $\begin{array}{l} \text{Inclusion } \subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X) : \\ \forall A, B \in \mathcal{P}(X) \quad (A, B) \in R_{\subset} \iff A \subset B \,. \end{array}$

 $\begin{array}{l} \text{Inclusion }\subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \textbf{R}_{\subset} \iff A\subset B \,. \end{array}$

 $(A,B)\in \mathbb{R}_{\subset}$ since

 $\begin{array}{l} \text{Inclusion }\subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \textbf{R}_{\subset} \iff A\subset B \,. \end{array}$

 $\begin{array}{l} \text{Inclusion } \subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X) : \\ \forall A, B \in \mathcal{P}(X) \quad (A, B) \in \mathbb{R}_{\subset} \iff A \subset B \,. \end{array}$

 $\begin{array}{l} \text{Inclusion }\subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \textbf{R}_{\subset} \iff A\subset B \,. \end{array}$

 $\begin{array}{l} \text{Inclusion }\subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \textbf{R}_{\subset} \iff A\subset B \,. \end{array}$

 $\begin{array}{l} \text{Inclusion }\subset \text{ is a relation } R_{\mathsf{C}} \text{ on } \mathcal{P}(X):\\ \forall A,B\in \mathcal{P}(X) \quad (A,B)\in \textbf{R}_{\mathsf{C}} \iff A\subset B\,. \end{array}$


```
(A,B) \not\in \mathbb{R}_{\subset} since
```

 $\begin{array}{l} \text{Inclusion }\subset \text{ is a relation } R_{\subset} \text{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \textbf{R}_{\subset} \iff A\subset B \,. \end{array}$

 $(A,B) \in \mathbb{R}_{\subset}$ since $A \subset B$

 $(A,B) \notin \mathbb{R}_{\subset}$ since $A \notin B$

 $\begin{array}{ll} \mbox{Inclusion }\subset\mbox{ is a relation } R_{\mathbb{C}}\mbox{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \mathbf{R}_{\mathbb{C}}\iff A\subset B\,. \end{array}$

 $(A,B) \in \mathbb{R}_{\subset}$ since $A \subset B$

 $(A,B) \not\in \mathbb{R}_{\subset}$ since $A \not\subset B$

Is it true that $\forall A, B \in \mathcal{P}(X)$

 $\begin{array}{ll} \mbox{Inclusion }\subset\mbox{ is a relation } R_{\mathbb{C}}\mbox{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \mathbf{R}_{\mathbb{C}}\iff A\subset B\,. \end{array}$

 $(A,B) \in \mathbb{R}_{\subset}$ since $A \subset B$

 $(A,B) \not\in \mathbb{R}_{\subset}$ since $A \not\subset B$

Is it true that $\forall A, B \in \mathcal{P}(X)$ $\underbrace{(A, B) \in \mathbb{R}_{\subset}}_{A \subset B}$ or $\underbrace{(B, A) \in \mathbb{R}_{\subset}}_{B \subset A}$?

 $\begin{array}{ll} \mbox{Inclusion }\subset\mbox{ is a relation } R_{\mathbb{C}}\mbox{ on } \mathcal{P}(X):\\ \forall A,B\in\mathcal{P}(X) \quad (A,B)\in \mathbf{R}_{\mathbb{C}}\iff A\subset B\,. \end{array}$

 $(A,B) \in \mathbb{R}_{\mathbb{C}}$ since $A \subset B$

 $(A,B) \not\in \mathbb{R}_{\subset}$ since $A \not\subset B$

Is it true that $\forall A, B \in \mathcal{P}(X)$ $\underbrace{(A, B) \in \mathbb{R}_{\subset}}_{A \subset B}$ or $\underbrace{(B, A) \in \mathbb{R}_{\subset}}_{B \subset A}$? No!

MAT 250 Lecture 6 Construction

Example 3.

 $a \mid b \iff b = a \cdot k \text{ for some } k \in \mathbb{N}$.

 $a \mid b \iff b = a \cdot k \text{ for some } k \in \mathbb{N}$.

2 | 6

 $a \mid b \iff b = a \cdot k \text{ for some } k \in \mathbb{N}$.

 $2 \mid 6 \text{ since } 6 = 2 \cdot 3$,

 $a \mid b \iff b = a \cdot k \text{ for some } k \in \mathbb{N}$.

 $2 \mid 6 \text{ since } 6 = 2 \cdot 3$,

 $3 \nmid 10$

 $a \mid b \iff b = a \cdot k \text{ for some } k \in \mathbb{N}$.

 $2 \mid 6 \text{ since } 6 = 2 \cdot 3$,

 $3 \nmid 10$ since there is no $k \in \mathbb{N}$ such that $10 = 3 \cdot k$,
Example 3. Define a relation of **divisibility on** \mathbb{N} as follows:

 $a \mid b \iff b = a \cdot k \text{ for some } k \in \mathbb{N}$.

 $2 \mid 6 \text{ since } 6 = 2 \cdot 3$,

 $3 \nmid 10$ since there is no $k \in \mathbb{N}$ such that $10 = 3 \cdot k$,

 $\forall a \in \mathbb{N} \quad 1 \mid a$

Example 3. Define a relation of **divisibility on** \mathbb{N} as follows:

 $a \mid b \iff b = a \cdot k \text{ for some } k \in \mathbb{N}$.

 $2 \mid 6 \text{ since } 6 = 2 \cdot 3$,

 $3 \nmid 10$ since there is no $k \in \mathbb{N}$ such that $10 = 3 \cdot k$,

 $\forall a \in \mathbb{N} \quad 1 \mid a \text{ and } a \mid a$.

Example 4.

Example 4. Define a relation of **congruence** modulo 3 on \mathbb{Z} as follows:

Example 4. Define a relation of **congruence** modulo 3 on \mathbb{Z} as follows: $a \equiv b \mod 3$

 $a \equiv b \mod 3$

 $a \equiv b \mod 3 \iff 3 \mid (a - b)$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3$ since $3 \mid (5-2)$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3$ since $3 \mid (5-2)$ $-4 \equiv 20 \mod 3$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3 \quad \text{since } 3 \mid (5-2)$ $-4 \equiv 20 \mod 3 \quad \text{since } 3 \mid \underbrace{(-4-20)}_{-24}$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3 \quad \text{since } 3 \mid (5-2)$ $-4 \equiv 20 \mod 3 \quad \text{since } 3 \mid \underbrace{(-4-20)}_{-24}$

 $16 \equiv 16 \mod 3$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3 \quad \text{since } 3 \mid (5-2)$ $-4 \equiv 20 \mod 3 \quad \text{since } 3 \mid \underbrace{(-4-20)}_{-24}$ $16 \equiv 16 \mod 3 \quad \text{since } 3 \mid \underbrace{(16-16)}_{0}$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3 \quad \text{since } 3 \mid (5-2)$ $-4 \equiv 20 \mod 3 \quad \text{since } 3 \mid \underbrace{(-4-20)}_{-24}$ $16 \equiv 16 \mod 3 \quad \text{since } 3 \mid \underbrace{(16-16)}_{0}$

 $2019 \equiv 0 \mod 3$

 $a \equiv b \mod 3 \iff 3 \mid (a - b) \iff a$ and b have the same remainder when divided by 3.

 $5 \equiv 2 \mod 3$ since $3 \mid (5-2)$ $-4 \equiv 20 \mod 3$ since $3 \mid (-4-20)$ $16 \equiv 16 \mod 3$ since $3 \mid (16-16)$ 0 $2019 \equiv 0 \mod 3$ since $3 \mid (2019-0)$ Lemma.

Lemma. A number is divisible by 3

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3.

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. **Proof.**

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. **Proof.** Let a number N is written with digits $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$. **Lemma.** A number is divisible by 3 iff the sum of its digits is divisible by 3.

Proof. Let a number N is written with digits $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$. Then

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. **Proof.** Let a number N is written with digits $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$. Then $N = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \cdots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ **Lemma.** A number is divisible by 3 iff the sum of its digits is divisible by 3. **Proof.** Let a number N is written with digits $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$. Then $N = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \cdots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ $= a_n \cdot (\underbrace{99 \dots 9}_n + 1) + a_{n-1} \cdot (\underbrace{99 \dots 9}_{n-1} + 1) + \cdots + a_2 \cdot (99 + 1) + a_1(9 + 1) + a_0$ Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. Proof. Let a number N is written with digits $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$. Then $N = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \cdots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ $= a_n \cdot (\underbrace{99 \dots 9}_n + 1) + a_{n-1} \cdot (\underbrace{99 \dots 9}_{n-1} + 1) + \cdots + a_2 \cdot (99 + 1) + a_1(9 + 1) + a_0$ $= \underbrace{(a_n \cdot 99 \dots 9 + a_{n-1} \cdot 99 \dots 9 + \cdots + a_2 \cdot 99 + a_1 \cdot 9)}_{\text{divisible by 3}} + (a_n + a_{n-1} + \cdots + a_2 + a_1 + a_0).$ Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. Proof. Let a number N is written with digits $a_0, a_1, a_2, \dots, a_{n-1}, a_n$. Then $N = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \dots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ $= a_n \cdot (99 \dots 9 + 1) + a_{n-1} \cdot (99 \dots 9 + 1) + \dots + a_2 \cdot (99 + 1) + a_1(9 + 1) + a_0$ $= (a_n \cdot 99 \dots 9 + a_{n-1} \cdot 99 \dots 9 + \dots + a_2 \cdot 99 + a_1 \cdot 9)$ divisible by 3 $+(a_n + a_{n-1} + \dots + a_2 + a_1 + a_0).$

Therefore, N is divisible by 3 iff the sum $a_n + a_{n-1} + \cdots + a_2 + a_1 + a_0$ of its digits is divisible by 3.

MAT 250 Lecture 6 Constructior

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. Proof. Let a number N is written with digits $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$. Then $N = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \cdots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ $= a_n \cdot (\underbrace{99 \dots 9}_n + 1) + a_{n-1} \cdot (\underbrace{99 \dots 9}_{n-1} + 1) + \cdots + a_2 \cdot (99 + 1) + a_1(9 + 1) + a_0$ $= (\underbrace{a_n \cdot 99 \dots 9 + a_{n-1} \cdot 99 \dots 9 + \cdots + a_2 \cdot 99 + a_1 \cdot 9)}_{\text{divisible by 3}} + (a_n + a_{n-1} + \cdots + a_2 + a_1 + a_0).$ Therefore, N is divisible by 3 iff

the sum $a_n + a_{n-1} + \cdots + a_2 + a_1 + a_0$ of its digits is divisible by 3.

Remark. The same proof proves that,

MAT 250 Lecture 6 Constructior

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. Proof. Let a number N is written with digits $a_0, a_1, a_2, \dots, a_{n-1}, a_n$. Then $N = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \dots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ $= a_n \cdot (\underbrace{99 \dots 9}_n + 1) + a_{n-1} \cdot (\underbrace{99 \dots 9}_{n-1} + 1) + \dots + a_2 \cdot (99 + 1) + a_1(9 + 1) + a_0$ $= \underbrace{(a_n \cdot 99 \dots 9 + a_{n-1} \cdot 99 \dots 9 + \dots + a_2 \cdot 99 + a_1 \cdot 9)}_{\text{divisible by 3}} + (a_n + a_{n-1} + \dots + a_2 + a_1 + a_0).$

Therefore, N is divisible by 3 iff the sum $a_n + a_{n-1} + \cdots + a_2 + a_1 + a_0$ of its digits is divisible by 3.

Remark. The same proof proves that, a number is divisible by 9

MAT 250 Lecture 6 Constructior

Lemma. A number is divisible by 3 iff the sum of its digits is divisible by 3. Proof. Let a number N is written with digits $a_0, a_1, a_2, \dots, a_{n-1}, a_n$. Then $N = a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \dots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ $= a_n \cdot (99 \dots 9 + 1) + a_{n-1} \cdot (99 \dots 9 + 1) + \dots + a_2 \cdot (99 + 1) + a_1(9 + 1) + a_0$ $= (a_n \cdot 99 \dots 9 + a_{n-1} \cdot 99 \dots 9 + \dots + a_2 \cdot 99 + a_1 \cdot 9)$ divisible by 3 $+(a_n + a_{n-1} + \dots + a_2 + a_1 + a_0)$.

Therefore, N is divisible by 3 iff the sum $a_n + a_{n-1} + \cdots + a_2 + a_1 + a_0$ of its digits is divisible by 3.

Remark. The same proof proves that, a number is divisible by 9 iff the sum of its digits is divisible by 9. Relations may differ by their properties.

Relations may differ by their properties. Here are some of them:

Relations may differ by their properties. Here are some of them:

A relation R on a set X is called
A relation R on a set X is called

reflexive

A relation R on a set X is called

reflexive if $\forall x \in X$ x R x

A relation R on a set X is called

reflexive if $\forall x \in X$ x R x

for example, \leq

A relation R on a set X is called

reflexive if $\forall x \in X$ x R x

for example, \leq

irreflexive

A relation R on a set X is called reflexive if $\forall x \in X$ x R x

for example, \leq

irreflexive if $\forall x \in X \quad \neg(x R x)$

A relation R on a set X is called reflexive if $\forall x \in X$ x R xirreflexive if $\forall x \in X$ $\neg(x R x)$

for example, \leq

for example, <

MAT 250 Lecture 6 Construction

Relations may differ by their properties. Here are some of them:

A relation R on a set X is called reflexive if $\forall x \in X$ x R xirreflexive if $\forall x \in X$ $\neg(x R x)$

for example, \leq

for example, <

symmetric

Relations may differ by their properties. Here are some of them:A relation R on a set X is calledreflexive if $\forall x \in X$ x R xfor example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <

symmetric if $\forall x, y \in X$ $x R y \implies y R x$

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R x for example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, \parallel

29 / 31

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R x for example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, \parallel

antisymmetric

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R x for example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, \parallel

antisymmetric if $\forall x, y \in X \ x R y \land y R x \implies x = y$

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R x for example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, \parallel

antisymmetric if $\forall x, y \in X \ x R y \land y R x \implies x = y$ for example, \subset

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R x for example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, \parallel antisymmetric if $\forall x, y \in X$ $x R y \land y R x \implies x = y$ for example, \subset

transitive

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R x for example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, \parallel antisymmetric if $\forall x, y \in X$ $x R y \land y R x \implies x = y$ for example, \subset

transitive if $\forall x, y, z \in X$ $x R y \land y R z \implies x R z$

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R x for example, \leq irreflexive if $\forall x \in X$ $\neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, \parallel antisymmetric if $\forall x, y \in X$ $x R y \land y R x \implies x = y$ for example, \subset transitive if $\forall x, y, z \in X$ $x R y \land y R z \implies x R z$ for example, <

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R xfor example, \leq irreflexive if $\forall x \in X \quad \neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, **antisymmetric** if $\forall x, y \in X \ x R y \land y R x \implies x = y$ for example, \subset **transitive** if $\forall x, y, z \in X$ $x R y \wedge y R z \implies x R z$ for example, <

total

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R xfor example, \leq irreflexive if $\forall x \in X \quad \neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, **antisymmetric** if $\forall x, y \in X \ x R y \land y R x \implies x = y$ for example, \subset **transitive** if $\forall x, y, z \in X$ $x R y \wedge y R z \implies x R z$ for example, <

total if $\forall x, y \in X \quad x \, R \, y \, \lor \, y \, R \, x$

Relations may differ by their properties. Here are some of them: A relation R on a set X is called reflexive if $\forall x \in X$ x R xfor example, \leq irreflexive if $\forall x \in X \quad \neg(x R x)$ for example, <symmetric if $\forall x, y \in X$ $x R y \implies y R x$ for example, **antisymmetric** if $\forall x, y \in X \ x R y \land y R x \implies x = y$ for example, \subset **transitive** if $\forall x, y, z \in X$ $x R y \land y R z \implies x R z$ for example, < total if $\forall x, y \in X \quad x \, R \, y \, \lor \, y \, R \, x$ for example, <

$\leq on \mathbb{R}$	$\equiv \mod 3$ on $\mathbb Z$	\subset on $\mathcal{P}(X)$	divisibility on $\mathbb N$
reflexive	reflexive	reflexive	reflexive
$x \leq x$	$a\equiv a \mod 3$	$A\subset A$	a a
antisymmetric	symmetric	antisymmetric	antisymmetric
$\begin{array}{l} x \leq y \wedge y \leq x \\ \Longrightarrow x = y \end{array}$	$\begin{array}{l} a \equiv b \mod 3 \\ \Longrightarrow b \equiv a \mod 3 \end{array}$	$\begin{array}{l} A \subset B \land B \subset A \\ \Longrightarrow A = B \end{array}$	$\begin{vmatrix} a \mid b \land b \mid a \\ \implies a = b \end{vmatrix}$
transitive	transitive	transitive	transitive
$\begin{array}{l} \text{transitive} \\ x \leq y \land y \leq z \\ \implies x \leq z \end{array}$	$transitive$ $a \equiv b \mod 3 \land$ $b \equiv c \mod 3$ $\implies a \equiv c \mod 3$	$transitive$ $A \subset B \land B \subset C$ $\implies A \subset C$	$ \begin{array}{c} \text{transitive} \\ a \mid b \land b \mid c \\ \implies a \mid c \end{array} $

Non-strict total (linear) order

MAT 250 Lecture 6 Construction

• Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)

Non-strict total (linear) order (antisymmetric+transitive+total)

 \leq on $\mathbb R$

Non-strict total (linear) order (antisymmetric+transitive+total)

 \leq on $\mathbb R$

Non-strict partial order

Non-strict total (linear) order (antisymmetric+transitive+total)

 \leq on ${\mathbb R}$

Non-strict partial order (reflexive+antisymmetric+transitive)

Non-strict total (linear) order (antisymmetric+transitive+total)

 \leq on $\mathbb R$

Non-strict partial order (reflexive+antisymmetric+transitive) \subset on $\mathcal{P}(X)$, divisibility on \mathbb{N}

Non-strict total (linear) order (antisymmetric+transitive+total)

 \leq on $\mathbb R$

Non-strict partial order (reflexive+antisymmetric+transitive)

 \subset on $\mathcal{P}(X)$, divisibility on $\mathbb N$

• Equivalence relation

Non-strict total (linear) order (antisymmetric+transitive+total)

```
\leq on \mathbb R
```

Non-strict partial order (reflexive+antisymmetric+transitive)

 \subset on $\mathcal{P}(X)$, divisibility on $\mathbb N$

• **Equivalence relation** (reflexive+symmetric+transitive)

Non-strict total (linear) order (antisymmetric+transitive+total)

```
\leq on \mathbb R
```

Non-strict partial order (reflexive+antisymmetric+transitive)

 \subset on $\mathcal{P}(X)$, divisibility on $\mathbb N$

• **Equivalence relation** (reflexive+symmetric+transitive)

 $\equiv \mod 3$ on \mathbb{Z} .