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Let X,Y be sets. Introduce a new set, consisting of all maps from X to Y :

Map(X,Y ) = {f | f : X → Y }.

It’s a large set! If X contains q elements and Y contains p elements,
then Map(X,Y ) contains pq elements.

Indeed, let X = {x1, x2, . . . , xq} and Y = {y1, y2, . . . , yp} .

Any map f : X → Y is determined by its values at x1, x2, . . . , xq ,
that is, by f(x1), f(x2), . . . , f(xq) .

For each xi ( 1 ≤ i ≤ q ), f(xi) may be any of y1, y2, . . . , yp ,
therefore, there are p choices for each of f(xi) .

Since there are q elements xi ,
there are p · p · . . . · p

︸ ︷︷ ︸

q times

= pq choices for f(x1), f(x2), . . . , f(xq) .

Notation: The number elements in a finite set X is denoted by |X| .

We have proven that |Map(X,Y )| = |Y ||X| .
That’s why Map(X,Y ) is often denoted by Y X .
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there are p · p · . . . · p

︸ ︷︷ ︸

q times

= pq choices for f(x1), f(x2), . . . , f(xq) .

Notation: The number elements in a finite set X is denoted by |X| .

We have proven that |Map(X,Y )| = |Y ||X| .
That’s why Map(X,Y ) is often denoted by Y X .
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Definition. Let X be a set. The power set of X

is the set of all subsets of X .

Notation: P(X)

By definition, P(X) = {A | A ⊂ X}

Example. Let X = {1, 2, 3} . P(X) =?

P(X) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

1 ∈ X , 1 6∈ P(X) , 1 66⊂ P(X)
{1} ⊂ X , {1} ∈ P(X) , {1} 66⊂ P(X)

For any set X , ∅ ∈ P(X) and X ∈ P(X) .
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Theorem. If X has n elements, then P(X) has 2n elements.

Proof. The number of elements in P(X) is the number of subsets in X .

How many subsets can we construct out of n elements of X ?

For each element in X , there are two choices:
either it’s included in a subset, or not.

For alln elements in X , there are totally 2n choices.
This is the number of all subsets. �

Another notation for P(X) is 2X .
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• Characteristic function of a set A ⊂ U

χA : U → {0, 1} , χA(x) =

{

1, if x ∈ A

0, if x 6∈ A

Example: for [2, 4] ⊂ R , χ[2,4](x) =

{

1, if x ∈ [2, 4]

0, if x 6∈ [2, 4]

x

y

1

2 4

y = χ[2,4]
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Theorem. There is a bijection between the power set P(X) of a set X

and the set Map (X, {0, 1}) of all maps from X to the two point set {0, 1} .

Proof. A bijection is given by P(X) → Map (X, {0, 1})
A 7→ χA , where A ⊂ X .

Indeed, the map above is injective,
since different subsets of X have different characteristic functions:

A = B =⇒ χA = χB for any A,B ⊂ X .

The map is surjective,
since any f ∈ Map (X, {0, 1}) defines a set A = {f−1{1}} ⊂ X,

for which f is the characteristic function: χA = f �

Corollary. |P(X)| = |Map (X, {0, 1})| = 2|X| , as we already know.
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Theorem. Let A, B be sets. Then A ⊂ B ⇐⇒ P(A) ⊂ P(B) .

Proof. Let A ⊂ B . We have to prove that P(A) ⊂ P(B) .

Take any X ∈ P(A) . Then X ⊂ A , but A ⊂ B .

Therefore, by the transitivity of inclusion, X ⊂ B . So X ∈ P(B) .

We have got that ∀X ∈ P(A) , X ∈ P(B) , therefore, P(A) ⊂ P(B) .

And the half of the proof is done!
Assume now that P(A) ⊂ P(B) and prove that A ⊂ B in this case.

Since A ⊂ A , we have that A ∈ P(A) .
But by the assumption, P(A) ⊂ P(B) .

Therefore, A ∈ P(B) , that is, A ⊂ B .

And the other half of the proof is done!
Overall, A ⊂ B ⇐⇒ P(A) ⊂ P(B) �
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Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ),

A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X

and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X),

B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined

since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X,

f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y )

and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y,

f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1.

Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps,

then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Induced maps

8 / 31

Any map f : X → Y induces maps

f∗ : P(X) → P(Y ), A 7→ f(A) for any A ⊂ X and

f∗ : P(Y ) → P(X), B 7→ f−1(B) for any B ⊂ Y.

(We remember that f−1(B) = {x ∈ X | f(x) ∈ B} is the preimage of B ,

and not the result of applying the inverse map f−1. )

The maps f∗ and f∗ are well defined since

for any A ⊂ X, f(A) ⊂ Y and, therefore, f(A) ∈ P(Y ) and

for any B ⊂ Y, f−1(B) ⊂ X and, therefore, f−1(B) ∈ P(X).

Exercise 1. Prove that if f : X → Y and g : Y → Z are maps, then

(g ◦ f)∗ = g∗ ◦ f∗ .

Exercise 2. Formulate and prove a similar identity for (g ◦ f)∗ .



MAT 250
Lecture 6
Constructions

Cartesian product

9 / 31

Definition. Let X,Y be sets.
The Cartesian product (or cross product, or direct product)of X and Y

is the set of all ordered pairs X × Y = {(x, y) | x ∈ X, y ∈ Y } .

For ordered pairs, (x1, y1) = (x2, y2) ⇐⇒ x1 = x2 and y1 = y2 .

So if x = y , then (x, y) = (y, x) , and if X = Y then X × Y = Y ×X .

Example 1. Let X = {1, 2, 3} and Y = {a, b}. Then

X × Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} .

1 2 3
X

a

b

Y
X × Y

Theorem. If X has p elements, and Y has q elements,
then X × Y has pq elements.
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Example 2. Let X = Y = R . Then

X × Y = R× R = R2 = {(x, y) | x ∈ R, y ∈ R} Cartesian plane

Example 3. Let X = [1, 2] ∪ [3, 5) , Y = (4, 6] . X × Y =?

X × Y = {(x, y) | x ∈ X, y ∈ Y } = {(x, y) | x ∈ [1, 2] ∪ [3, 5), y ∈ (4, 6] }

Since X ⊂ R and Y ⊂ R , then X × Y ⊂ R2 .
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Example 4. Let X = {(x, y) ∈ R2 | x2 + y2 ≤ 1} (a disk on a plane)

Y = [0, 1] (a line segment)

X × Y =?

X × Y = {((x, y), z) | (x, y) ∈ X, z ∈ Y }

= {(x, y, z) | x2 + y2 ≤ 1, 0 ≤ z ≤ 1} ⊂ R3 .
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Let X,Y be sets. The maps
projX : X × Y → X , (x, y) 7→ x and
projY : X × Y → Y , (x, y) 7→ y

are called the coordinate projections.

The subsets {x} × Y and X × {y} of X × Y are called fibers.

X

Y

X × Y

x

fi
b
er projY

∣
∣
∣
{x}×Y

: {x} × Y → Y is a bijection

Similarly, projX

∣
∣
∣
X×{y}

: X × {y} → X is a bijection.
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Let f : A → B and g : X → Y be maps. Define a map

f × g : A×X → B × Y by (f × g) ((a, x)) = (f(a), g(x)).

This map is called the direct product of maps f and g .

Let f : Z → X and g : Z → Y be maps. Define a map

f ⊙ g : Z → X × Y by (f ⊙ g)(z) = (f(z), g(z)).

When X = Y = Z and f = g = idX , then
idX ⊙ idX : X → X ×X and (idX ⊙ idX)(x) = (x, x).

The subset ∆ = {(x, x) | x ∈ X} ⊂ X ×X is called the diagonal of X ×X .

X

X

X ×X

∆

The diagonal is the image of idX ⊙ idX .
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The graph of a map f : X → Y is the set

Γf = {(x, y) | x ∈ X, y = f(x)} ⊂ X × Y

Example. Let f : R → R be a map defined by f(x) = x2 .

The domain of f is R , the codomain is R , the range is
Im(f) = {y | y = x2 ∧ x ∈ R} = [0,∞) .

The graph f is Γf = {(x, y) | x ∈ R, y = x2} ⊂ R× R = R2.
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Example. Let f : R2 → R be a function
given by f(x, y) = x2 + y2 , or z = x2 + y2 .

Its graph is the set Γf = {(x, y, z) ∈ R2 × R | z = x2 + y2} ⊂ R3 .

z

y

x

z = x2 + y2

paraboloid
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Example. Let f : R → R2 be a function given by f(t) = (cos t, sin t) .

What does this function do?

t

domain R

0

π/2

x

y

codomain R2

x(t) = cos t

y(t) = sin t

x2 + y2 = 1f(0)

f(π/2)
f

range

f reels up the line on the circle.

The graph of f is the set Γf = {(t, cos t, sin t) ∈ R× R2} ⊂ R3 .

Γf is a curve in R3 . It is called helix.
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The graph of f : R → R2 , f(t) = (cos t, sin t)

is the helix {(x, y, z) ∈ R3 | x = t ∈ R, y = cos t, z = sin t} :

x
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Definition. A metric (or distance function) on a set X is a map

d : X ×X → R≥0 = [0,∞)
satisfying the following conditions for all x, y, z ∈ X :

1. d(x, y) = 0 ⇐⇒ x = y coincidence axiom

2. d(x, y) = d(y, x) symmetry

3. d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

A pair (X, d) is called a metric space.

The conditions 1, 2, 3 are called the axioms of metric space.
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Theorem. A map d : R× R → R≥0 , defined by

d(x, y) = |x− y| for any x, y ∈ R , is a metric.

x y

d(x, y)

Proof. Check the axioms of metric space.

Let x, y, z be any real numbers. Then

1. |x− y| = 0 ⇐⇒ x = y since |x− y| = 0 ⇐⇒ x− y = 0 ⇐⇒ x = y .

2. |x− y| = |y − x| since |a| = | − a| for any real a .

3. |x− z| ≤ |x− y|+ |y − z|

since |x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z| by the triangle inequality

( |a+ b| ≤ |a|+ |b| for all a, b ∈ R )

Therefore, all axioms are satisfied and the map d is a metric.
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Theorem. A map d : R2 × R2 → R≥0 , defined by

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 for any (x1, y1), (x2, y2) ∈ R2 ,

is a metric.

x

y

(x1, y1)

(x2, y2)

d

This metric is called Euclidean.

Proof will be given in a course of Linear Algebra.
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is defined by

d((x1, y1), (x2, y2)) = |x2 − x1|+ |y2 − y1|
for any (x1, y1), (x2, y2) ∈ R2

x

y

(x1, y1)

(x2, y2)

|y2 − y1|

|x2 − x1|

It’s easy to check that this is a metric indeed.

The plane with Euclidean metric
and the plane with taxi driver metric

are different metric spaces.
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Definition. A (binary) relation R on a set X is a subset of X ×X :

R ⊂ X ×X ⇐⇒ R ∈ P(X ×X) .

A binary relation corresponds
to a statement about an ordered pair of arguments taken from X .

More generally:
a statement about an ordered n -tuple of arguments is called an n-ary relation.

Furthermore, the arguments may belong to different sets.

The notion of binary relation generalizes the notion of mapping:
any map f : X → Y can be considered as a relation y = f(x)

between elements of X and Y .

Example. Orthogonality of a line and a plane in R3 .

We will deal mostly with binary relations on a single set.
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Let a set X have 3 elements.

How many relations are there on X ?
Answer: 512 . How come?

The number of relations of a finite set X

is equal to the number of elements in P(X ×X) .
If X has n elements, then X ×X has n2 elements,

and P(X ×X) has 2n
2
elements.

So the number of relations on a set of 3 elements is 23
2
= 29 = 512 .

P(X ×X) is a huge set!
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Notation. Let R be a relation on X , and x, y ∈ X .

If (x, y) ∈ R then we say that “x is related to y ” and write xR y .

Example 1. Let X = R . The inequality ≤ is a relation R≤ on R :
(x, y) ∈ R≤ ⇐⇒ x ≤ y .

Is it true that 1 is related to 2 ? That is, (1, 2) ∈ R≤ ? Yes, since
(1, 2) ∈ R≤ ⇐⇒ 1 ≤ 2 , which is true.

Is it true that 2 is related to 1 ? That is, (2, 1) ∈ R≤ ? No, since
(2, 1) ∈ R≤ ⇐⇒ 2 ≤ 1 , which is false.

The relation R≤ is a subset of the plane: R≤ = {(x, y) ∈ R2 | x ≤ y} ⊂ R2 ,
so we may draw the graph of R≤ .

x

y

R≤ ∀x, y ∈ R (x, y) ∈ R≤
︸ ︷︷ ︸

x≤y

or (y, x) ∈ R≤
︸ ︷︷ ︸

y≤x

.
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Example 2. Let X be a set, and P(X) be its power set.
Inclusion ⊂ is a relation R⊂ on P(X) :

∀A,B ∈ P(X) (A,B) ∈ R⊂ ⇐⇒ A ⊂ B .

X

BA

(A,B) ∈ R⊂ since

A ⊂ B

X

BA

(A,B) 6∈ R⊂ since

A 6⊂ B

Is it true that ∀A,B ∈ P(X) (A,B) ∈ R⊂
︸ ︷︷ ︸

A⊂B

or (B,A) ∈ R⊂
︸ ︷︷ ︸

B⊂A

? No!
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Example 3. Define a relation of divisibility on N as follows:
a | b ⇐⇒ b = a · k for some k ∈ N .

2 | 6 since 6 = 2 · 3 ,

3 ∤ 10 since there is no k ∈ N such that 10 = 3 · k ,

∀a ∈ N 1 | a and a | a .
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Example 4. Define a relation of congruence modulo 3 on Z as follows:
a ≡ b mod 3 ⇐⇒ 3 | (a− b) .

a ≡ b mod 3 ⇐⇒ 3 | (a− b) ⇐⇒ a and b have the same remainder
when divided by 3 .

5 ≡ 2 mod 3 since 3 | (5− 2)

−4 ≡ 20 mod 3 since 3 | (−4− 20)
︸ ︷︷ ︸

−24

16 ≡ 16 mod 3 since 3 | (16− 16)
︸ ︷︷ ︸

0

2019 ≡ 0 mod 3 since 3 | (2019− 0)
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when divided by 3 .

5 ≡ 2 mod 3 since 3 | (5− 2)

−4 ≡ 20 mod 3 since 3 | (−4− 20)
︸ ︷︷ ︸

−24

16 ≡ 16 mod 3 since 3 | (16− 16)
︸ ︷︷ ︸

0

2019 ≡ 0 mod 3 since 3 | (2019− 0)
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Lemma.

A number is divisible by 3 iff the sum of its digits is divisible by 3 .

Proof. Let a number N is written with digits a0, a1, a2, . . . , an−1, an . Then

N = an · 10n + an−1 · 10
n−1 + · · ·+ a2 · 10

2 + a1 · 10 + a0

= an · (99 . . . 9
︸ ︷︷ ︸

n

+1) + an−1 · (99 . . . 9︸ ︷︷ ︸

n−1

+1) + · · ·+ a2 · (99 + 1) + a1(9 + 1) + a0

= (an · 99 . . . 9 + an−1 · 99 . . . 9 + · · ·+ a2 · 99 + a1 · 9)
︸ ︷︷ ︸

divisible by 3

+(an+an−1+ · · ·+a2+a1+a0) .

Therefore, N is divisible by 3 iff
the sum an + an−1 + · · ·+ a2 + a1 + a0 of its digits is divisible by 3 .

Remark. The same proof proves that,
a number is divisible by 9 iff the sum of its digits is divisible by 9 .
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Relations may differ by their properties. Here are some of them:

A relation R on a set X is called

reflexive if ∀x ∈ X xRx for example, ≤

irreflexive if ∀x ∈ X ¬(xRx) for example, <

symmetric if ∀x, y ∈ X xRy =⇒ y Rx for example, ‖

antisymmetric if ∀x, y ∈ X xRy ∧ y Rx =⇒ x = y for example, ⊂

transitive if ∀x, y, z ∈ X xRy ∧ y R z =⇒ xR z for example, <

total if ∀x, y ∈ X xRy ∨ y Rx for example, ≤
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≤ onR ≡ mod 3 on Z ⊂ on P(X) divisibility on N

reflexive reflexive reflexive reflexive

x ≤ x a ≡ a mod 3 A ⊂ A a | a

antisymmetric symmetric antisymmetric antisymmetric

x ≤ y ∧ y ≤ x

=⇒ x = y
a ≡ b mod 3
=⇒ b ≡ a mod 3

A ⊂ B ∧B ⊂ A

=⇒ A = B

a | b ∧ b | a
=⇒ a = b

transitive transitive transitive transitive

x ≤ y ∧ y ≤ z

=⇒ x ≤ z

a ≡ b mod 3 ∧
b ≡ c mod 3

=⇒ a ≡ c mod 3

A ⊂ B ∧B ⊂ C

=⇒ A ⊂ C

a | b ∧ b | c
=⇒ a | c

total
∀x, y ∈ R
x ≤ y∨y ≤ x
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• Ordering relations:

Non-strict total (linear) order (antisymmetric+transitive+total)
≤ on R

Non-strict partial order (reflexive+antisymmetric+transitive)
⊂ on P(X) , divisibility on N

• Equivalence relation (reflexive+symmetric+transitive)
≡ mod 3 on Z .
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